поле реляционной базы данных
Реляционные БД
Реляционные базы данных
Реляционные базы данных — наиболее распространенный тип БД, использующий табличное представление данных. Табличный способ отображения информации широко используется в документах и отчётах, поскольку он удобен и позволяет наглядно представлять различного рода данные. Главное достоинство таблиц — в их понятности.
Пример простейшей базы данных в виде таблицы:
В БД может храниться миллионы записей. В любое время можно найти запись, которая необходима в данный момент. Результатом поиска информации в приведенной БД могут быть названия, суммы, количество, даты. В базах данных можно проводить сортировку информации и вывод её на печать, удаление старой и вставка новой информации, просматривать БД целиком или по частям. С числами в таблицах можно проводить обычные математические операции. Фамилии людей и названия предметов можно упорядочить по алфавиту.
Характеристики реляционной базы данных
В реляционных БД строка таблицы называется записью , а столбец — полем . В общем виде это выглядит так:
Одна запись содержит информацию об одном объекте той реальной системы, модель которой представлена в таблице.
Например, одна запись о каком либо объекте в нашей таблице — это информация об одной человеке :. например: Петров Вася Суворовский пр.,д. 32, кв.11 275-75-75
Поля определяют структуру таблицы и характеризуются именем, типом и ключом
Т ип – определяет множество значений, которые может принимать данное поле в различных записях.
Ключ – п оле является ключевым, если значения не повторяются для всех данных этого поля. Поля — это различные характеристики объекта. Значения полей в одной строчке относятся к одному объекту.
Типы полей в реляционной базе данных
В реляционных базах данных используются четыре основных типа полей:
Числовой тип имеют поля, значения которых могут быть только числами. Например, в БД «Погода» три поля числового типа: ТЕМПЕРАТУРА, ДАВЛЕНИЕ, ВЛАЖНОСТЬ.
Символьный тип имеют поля, в которых будут храниться символьные последовательности (слова, тексты, коды и т.п.). Примерами символьных полей являются поля АВТОР и НАЗВАНИЕ в БД «Домашняя библиотека».
Тип «дата» имеют поля, содержащие календарные даты в форме «день/месяц/год» (в некоторых случаях используется американская форма: месяц/день/год). Тип «дата» имеет поле ДЕНЬ в БД «Погода».
Итак, значения полей — это некоторые величины определенных типов. От типа величины зависят те действия, которые можно с ней производить. Например, с числовыми величинами можно выполнять арифметические операции, а с символьными и логическими — нельзя.
Особенности реляционных БД
БД используются для организации хранения данных. Структура реляционной базы данных полностью определяется перечнем названия полей с указанием их типов и свойств. Все записи имеют одинаковые поля, но в них показываются разные свойства объекта. Аналогом реляционной БД считается двумерная таблица. Характерные особенности файла БД:
Реляционная БД чаще всего не ограничивается одной таблицей. Обычно создаются несколько таблиц со связанной информацией. Это позволяет исполнять более сложные операции над данными. Таблицы реляционной БД обязаны соответствовать требованиям понятия нормализации отношений, то есть ограничениям на формирование, которые позволят избежать дублирования и обеспечат непротиворечивость хранимой информации. Пусть создана таблица «Прокат», содержащая следующие поля: Шифр Клиента, Ф. И. О., Вид устройства, Дата выдачи, Оплата, Срок возврата. Эта организация хранения информации имеет несколько недостатков:
Для устранения этих недостатков необходима нормализация с разделением данных на разные таблицы.
Связывание таблиц
Для любой таблицы реляционной БД задаётся первичный ключ (primary key) — поле или сочетание полей, которые определяют каждую запись. Внешний или вторичный ключ (foreign key) — это одно или несколько полей, ссылающихся на поле primary key другой таблицы.
Составной ключ называется так, потому что создаётся из нескольких полей. При образовании составных ключей не рекомендуется включать в них поля, значения которых точно определяют запись. Например, не следует образовывать ключ, в котором находятся вместе поля «номер паспорта» и «шифр клиента», потому что оба эти атрибута однозначно определяют запись. Поля с повторяющимися в таблице значениями тоже нельзя делать составной частью ключа. По значению ключа возможно найти только одну запись.
Ячейка — это наименьший структурный элемент, который задаёт определённое значение соответствующего поля. Таблицы связываются друг с другом, и поэтому данные могут выбираться сразу из нескольких таблиц. Связь создаётся, если в них присутствуют одинаковые поля. Типы связей:
Связи «один к одному» встречаются довольно редко. «Один ко многим» применяются чаще, например, кассир продаёт много билетов. «Многие ко многим» тоже встречаются часто. Например, студент изучает много предметов. Связи «многие ко многим» нельзя организовывать непосредственно. Для установления отношения необходимо сопоставить каждому primary key внешний ключ, который представляет собой primary key другой таблицы. Реляционные системы базируются на теории реляционной модели, которая включает в себя три аспекта:
Управление созданием и использованием БД осуществляется системами управления базами данных (СУБД).
Под их руководством:
Для проведения этих операций организуются запросы. Итогом выполнения запросов будут либо изменения в таблицах, либо получение таблицы данных. При этом поддерживается принцип безопасности информации. Для реляционной БД основным языком управления является SQL.
Стадии и пример проектирования хранилища
Приступая к созданию базы, разработчик составляет для объектов манипулирования и их связей представление в терминах реляционной БД (таблицы, поля, записи). Проектирование проходит несколько стадий:
Преимущества этой модели данных состоят в том, что информация отображается в удобной для пользователя форме, а для манипуляций используется развитой математический аппарат.
Примером реляционной базы данных может послужить проект оптимизации деятельности пункта проката. Требуется автоматизировать такие процедуры: учёт клиентов; регистрацию инвентаря, выданного в прокат; отслеживание даты выдачи, сроков возврата, оплаты; получение информации по этим позициям; формирование отчёта по задолженностям. Реляционная БД может быть задана в виде трёх связанных таблиц.
Используя имеющиеся данные, следует определить отношения и объекты этих отношений. Объектами будут являться клиенты и устройства. Отношения между ними состоят в том, что каждый клиент может брать в прокат одно или несколько устройств.
Атрибутами для сопоставления объектов друг другу должны выступать ячейки с уникальным содержимым. В таблицах есть по одному полю с уникальными данными. В № 1 «Клиент» — это шифр клиента, а в № 3 «Склад» — шифр устройства. Это и будут primary keys. Каждая строка таблицы «Прокат» будет связывать два внешних ключа между собой:
Проблемы модели
Преимущество реляционных хранилищ состоит в том, что они способны обеспечить наилучшее соотношение устойчивости, производительности, гибкости, совместимости и масштабируемости. Реляционные БД предоставляют лёгкий доступ к составляемым отчётам и обеспечивают высокую надёжность и целостность информации из-за отсутствия избыточных данных. Но сейчас, когда всё большее количество приложений работает с высокой нагрузкой, увеличивается значение фактора масштабируемости.
Реляционные БД легко масштабируются, только когда они расположены на одном сервере. Если потребуется увеличить количество серверов и разделить нагрузку между ними, то возрастёт сложность хранилищ, что значительно снизит возможность использовать их как платформу для мощных распределённых систем. Поэтому приходится применять другие типы БД, которые обладают лучшей масштабируемостью и отказываться от возможностей, предоставляемых реляционными хранилищами.
Реляционная БД — это совокупность связей, которые способны структурировать данные, что даёт возможность рационального хранения и эффективного использования информационных материалов.
Руководство по проектированию реляционных баз данных (1-3 часть из 15) [перевод]
Перевод цикла из 15 статей о проектировании баз данных.
Информация предназначена для новичков.
Помогло мне. Возможно, что поможет еще кому-то восполнить пробелы.
Руководство по проектированию баз данных.
1. Вступление.
Если вы собираетесь создавать собственные базы данных, то неплохо было бы придерживаться правил проектирования баз данных, так как это обеспечит долговременную целостность и простоту обслуживания ваших данных. Данное руководство расскажет вам что представляют из себя базы данных и как спроектировать базу данных, которая подчиняется правилам проектирования реляционных баз данных.
Базы данных – это программы, которые позволяют сохранять и получать большие объемы связанной информации. Базы данных состоят из таблиц, которые содержат информацию. Когда вы создаете базу данных необходимо подумать о том, какие таблицы вам нужно создать и какие связи существуют между информацией в таблицах. Иначе говоря, вам нужно подумать о проекте вашей базы данных. Хороший проект базы данных, как было сказано ранее, обеспечит целостность данных и простоту их обслуживания.
Структурированный язык запросов (SQL).
База данных создается для хранения в ней информации и получения этой информации при необходимости. Это значит, что мы должны иметь возможность помещать, вставлять (INSERT) информацию в базу данных и мы хотим иметь возможность делать выборку информации из базы данных (SELECT).
Язык запросов к базам данных был придуман для этих целей и был назван Структурированный язык запросов или SQL. Операции вставки данных (INSERT) и их выборки (SELECT) – части этого самого языка. Ниже приведен пример запроса на выборку данных и его результат.
SQL – большая тема для повествования и его рассмотрение выходит за рамки данного руководства. Данная статья строго сфокусирована на изложении процесса проектирования баз данных. Позднее, в отдельном руководстве, я расскажу об основах SQL.
Реляционная модель.
В этом руководстве я покажу вам как создавать реляционную модель данных. Реляционная модель – это модель, которая описывает как организовать данные в таблицах и как определить связи между этими таблицами.
Правила реляционной модели диктуют, как информация должна быть организована в таблицах и как таблицы связаны друг с другом. В конечном счете результат можно предоставить в виде диаграммы базы данных или, если точнее, диаграммы «сущность-связь», как на рисунке (Пример взят из MySQL Workbench).
Примеры.
В качестве примеров в руководстве я использовал ряд приложений.
РСУБД, которую я использовал для создания таблиц примеров – MySQL. MySQL – наиболее популярная РСУБД и она бесплатна.
Утилита для администрирования БД.
После установки MySQL вы получаете только интерфейс командной строки для взаимодействия с MySQL. Лично я предпочитаю графический интерфейс для управления моими базами данных. Я часто использую SQLyog. Это бесплатная утилита с графическим интерфейсом. Изображения таблиц в данном руководстве взяты оттуда.
Существует отличное бесплатное приложение MySQL Workbench. Оно позволяет спроектировать вашу базу данных графически. Изображения диаграмм в руководстве сделаны в этой программе.
Проектирование независимо от РСУБД.
Важно знать, что хотя в данном руководстве и приведены примеры для MySQL, проектирование баз данных независимо от РСУБД. Это значит, что информация применима к реляционным базам данных в общем, не только к MySQL. Вы можете применить знания из этого руководства к любым реляционным базам данных, подобным Mysql, Postgresql, Microsoft Access, Microsoft Sql or Oracle.
В следующей части я коротко расскажу об эволюции баз данных. Вы узнаете откуда взялись базы данных и реляционная модель данных.
2. История.
В 70-х – 80-х годах, когда компьютерные ученые все еще носили коричневые смокинги и очки с большими, квадратными оправами, данные хранились бесструктурно в файлах, которые представляли собой текстовый документ с данными, разделенными (обычно) запятыми или табуляциями.
Так выглядели профессионалы в сфере информационных технологий в 70-е. (Слева внизу находится Билл Гейтс).
Текстовые файлы и сегодня все еще используются для хранения малых объемов простой информации. Comma-Separated Values (CSV) — значения, разделённые запятыми, очень популярны и широко поддерживаются сегодня различным программным обеспечением и операционными системами. Microsoft Excel – один из примеров программ, которые могут работать с CSV–файлами. Данные, сохраненные в таком файле могут быть считаны компьютерной программой.
Выше приведен пример того, как такой файл мог бы выглядеть. Программа, производящая чтение данного файла, должна быть уведомлена о том, что данные разделены запятыми. Если программа хочет выбрать и вывести категорию, в которой находится урок ‘Database Design Tutorial’, то она должна строчка за строчкой производить чтение до тех пор, пока не будут найдены слова ‘Database Design Tutorial’ и затем ей нужно будет прочитать следующее за запятой слово для того, чтобы вывести категорию Software.
Таблицы баз данных.
Чтение файла строчка за строчкой не является очень эффективным. В реляционной базе данных данные хранятся в таблицах. Таблица ниже содержит те же самые данные, что и файл. Каждая строка или “запись” содержит один урок. Каждый столбец содержит какое-то свойство урока. В данном случае это заголовок (title) и его категория (category).
Компьютерная программа могла бы осуществить поиск в столбце tutorial_id данной таблицы по специфическому идентификатору tutorial_id для того, чтобы быстро найти соответствующие ему заголовок и категорию. Это намного быстрее, чем поиск по файлу строка за строкой, подобно тому, как это делает программа в текстовом файле.
Современные реляционные базы данных созданы так, чтобы позволять делать выборку данных из специфических строк, столбцов и множественных таблиц, за раз, очень быстро.
История реляционной модели.
Реляционная модель баз данных была изобретена в 70-х Эдгаром Коддом (Ted Codd), британским ученым. Он хотел преодолеть недостатки сетевой модели баз данных и иерархической модели. И он очень в этом преуспел. Реляционная модель баз данных сегодня всеобще принята и считается мощной моделью для эффективной организации данных.
Сегодня доступен широкий выбор систем управления базами данных: от небольших десктопных приложений до многофункциональных серверных систем с высокооптимизированными методами поиска. Вот некоторые из наиболее известных систем управления реляционными базами данных (РСУБД):
— Oracle – используется преимущественно для профессиональных, больших приложений.
— Microsoft SQL server – РСУБД компании Microsoft. Доступна только для операционной системы Windows.
— Mysql – очень популярная РСУБД с открытым исходным кодом. Широко используется как профессионалами, так и новичками. Что еще нужно?! Она бесплатна.
— IBM – имеет ряд РСУБД, наиболее известна DB2.
— Microsoft Access – РСУБД, которая используется в офисе и дома. На самом деле – это больше, чем просто база данных. MS Access позволяет создавать базы данных с пользовательским интерфейсом.
В следующей части я расскажу кое-что о характеристиках реляционных баз данных.
3. Характеристики реляционных баз данных.
Реляционные базы данных разработаны для быстрого сохранения и получения больших объемов информации. Ниже приведены некоторые характеристики реляционных баз данных и реляционной модели данных.
Использование ключей.
Каждая строка данных в таблице идентифицируется уникальным “ключом”, который называется первичным ключом. Зачастую, первичный ключ это автоматически увеличиваемое (автоинкрементное) число (1,2,3,4 и т.д). Данные в различных таблицах могут быть связаны вместе при использовании ключей. Значения первичного ключа одной таблицы могут быть добавлены в строки (записи) другой таблицы, тем самым, связывая эти записи вместе.
Используя структурированный язык запросов (SQL), данные из разных таблиц, которые связаны ключом, могут быть выбраны за один раз. Для примера вы можете создать запрос, который выберет все заказы из таблицы заказов (orders), которые принадлежат пользователю с идентификатором (id) 3 (Mike) из таблицы пользователей (users). О ключах мы поговорим далее, в следующих частях.
Столбец id в данной таблице является первичным ключом. Каждая запись имеет уникальный первичный ключ, часто число. Столбец usergroup (группы пользователей) является внешним ключом. Судя по ее названию, она видимо ссылается на таблицу, которая содержит группы пользователей.
Отсутствие избыточности данных.
В проекте базы данных, которая создана с учетом правил реляционной модели данных, каждый кусочек информации, например, имя пользователя, хранится только в одном месте. Это позволяет устранить необходимость работы с данными в нескольких местах. Дублирование данных называется избыточностью данных и этого следует избегать в хорошем проекте базы данных.
Ограничение ввода.
Используя реляционную базу данных вы можете определить какой вид данных позволено сохранять в столбце. Вы можете создать поле, которое содержит целые числа, десятичные числа, небольшие фрагменты текста, большие фрагменты текста, даты и т.д.
Когда вы создаете таблицу базы данных вы предоставляете тип данных для каждого столбца. К примеру, varchar – это тип данных для небольших фрагментов текста с максимальным количеством знаков, равным 255, а int – это числа.
Помимо типов данных РСУБД позволяет вам еще больше ограничить возможные для ввода данные. Например, ограничить длину или принудительно указать на уникальность значения записей в данном столбце. Последнее ограничение часто используется для полей, которые содержат регистрационные имена пользователей (логины), или адреса электронной почты.
Эти ограничения дают вам контроль над целостностью ваших данных и предотвращают ситуации, подобные следующим:
— ввод адреса (текста) в поле, в котором вы ожидаете увидеть число
— ввод индекса региона с длинной этого самого индекса в сотню символов
— создание пользователей с одним и тем же именем
— создание пользователей с одним и тем же адресом электронной почты
— ввод веса (числа) в поле дня рождения (дата)
Поддержание целостности данных.
Настраивая свойства полей, связывая таблицы между собой и настраивая ограничения, вы можете увеличить надежность ваших данных.
Назначение прав.
Большинство РСУБД предлагают настройку прав доступа, которая позволяет назначать определенные права определенным пользователям. Некоторые действия, которые могут быть позволены или запрещены пользователю: SELECT (выборка), INSERT (вставка), DELETE (удаление), ALTER (изменение), CREATE (создание) и т.д. Это операции, которые могут быть выполнены с помощью структурированного языка запросов (SQL).
Структурированный язык запросов (SQL).
Для того, чтобы выполнять определенные операции над базой данных, такие, как сохранение данных, их выборка, изменение, используется структурированный язык запросов (SQL). SQL относительно легок для понимания и позволяет в т.ч. и уложненные выборки, например, выборка связанных данных из нескольких таблиц с помощью оператора SQL JOIN. Как и упоминалось ранее, SQL в данном руководстве обсуждаться не будет. Я сосредоточусь на проектировании баз данных.
То, как вы спроектируете базу данных будет оказывать непосредственное влияние на запросы, которые вам будет необходимо выполнить, чтобы получить данные из базы данных. Это еще одна причина, почему вам необходимо задуматься о том, какой должна быть ваша база. С хорошо спроектированной базой данных ваши запросы могут быть чище и проще.
Переносимость.
Реляционная модель данных стандартна. Следуя правилам реляционной модели данных вы можете быть уверены, что ваши данные могут быть перенесены в другую РСУБД относительно просто.
Как говорилось ранее, проектирование базы данных – это вопрос идентификации данных, их связи и помещение результатов решения данного вопроса на бумагу (или в компьютерную программу). Проектирование базы данных независимо от РСУБД, которую вы собираетесь использовать для ее создания.
В следующей части подробнее рассмотрим первичные ключи.
Реляционная база данных. Проектирование реляционных баз данных
В этой статье мы изучим особенности и структуру реляционных данных, а также увидим пример создания этих БД. Рассмотрим проектирование, составим концептуальную модель данных. Узнаем, что такое объект и нормализация данных, обсудим, на что обратить внимание на этапе проектирования баз данных. Скучно не будет!
Таблица как важная часть реляционной БД
Всем известно, что реляционная база данных состоит из таблиц. При этом каждая таблица включает в себя столбцы (поля либо атрибуты) и строки (записи либо кортежи).
Приведём пример
Допустим, вы хотите создать базу данных для интернет-форума. На форуме есть зарегистрированные пользователи, создающие темы и оставляющие сообщения в данных темах. Вся эта информация и должна размещаться в базе данных.
В теории всё можно расположить в одной таблице, а именно:
Однако такое расположение противоречит атомарности, причём в столбцах «Созданные сообщения» и «Созданные темы» возможно неограниченное число значений. Целесообразнее всего разбить таблицу на три:
Теперь таблица «Пользователи» соответствует правилам. Но вот таблицы «Сообщения» и «Темы» — нет, т. к. не должно быть 2-х одинаковых строк. В нашем же случае один и тот же пользователь может написать 2 одинаковых сообщения:
А ещё давайте вспомним о том, что каждое сообщение должно относиться к какой-нибудь теме. Для решения этого вопроса в реляционных базах данных используют ключи.
Ключи в БД
Первичный ключ (РК, primary key) — столбец, значения которого различны во всех строках. РК бывают логические (естественные) и суррогатные (искусственные).
Например, для таблицы «Пользователи» первичным ключом может быть столбец e-mail, т. к. не бывает 2-х пользователей с одним и тем же e-mail.
На практике для хранения и обработки данных рекомендуют применять суррогатные ключи (их использование позволит абстрагировать РК от реальных данных). Это важно, если пользователь, вдруг, сменит e-mail, а ведь первичные ключи нельзя менять.
Суррогатный ключ — это дополнительное поле в БД. Обычно это уникальный id (порядковый номер записи), хотя принцип может быть и другой, главное — уникальность.
Вносим первичные ключи в наши таблицы:
Заметьте, что каждая запись в таблице уникальна. Осталось лишь установить соответствие между сообщениями и темами, используя первичные ключи. Добавляем в таблицу с сообщениями ещё одно поле:
Теперь становится ясно, что сообщение относится к теме «О рыбалке» (id=4), которая создана Васей, а остальные принадлежат теме «О рыбалке», созданной Кириллом (id=1). Такое поле будет называться внешний ключ (FK, foreign key). При этом каждое значение данного поля сопоставляется с каким-либо первичным ключом из таблицы «Темы». В результате устанавливается однозначное соответствие между темами и сообщениями.
Ещё момент: допустим, добавляется новый пользователь по имени Вася.
Как узнать, какой же из «Васей» оставил сообщение? Для этого поля «Автор» в наших таблицах «Сообщения» и «Темы» мы тоже сделаем внешними ключами:
Итак, наша база данных фактически готова. Схематично она выглядит так:
В этой небольшой базе данных лишь 3 таблицы. А что делать, если их 10 либо 200? Ясно, что всё не так просто. Именно поэтому любое проектирование реляционных баз данных начинается с разработки концептуальной модели данных.
Концептуальная модель базы данных
Простой пример — интернет-магазин. В нём есть товары, поставляемые поставщиками и заказываемые покупателями. Это три объекта и две связи:
Делая поставку, поставщик подтверждает её документами. Аналогично и с покупателем. Таким образом, и поставку, и покупку можно рассматривать в качестве самостоятельных объектов.
Но давайте вспомним, что связи типа «многие ко многим» недопустимы в реляционных моделях данных, поэтому такие связи надо менять на связи типа «один ко многим». Делаем это, добавляя промежуточный объект:
Видим, что в структуре появились ещё 2 объекта — «Журнал поставок» и «Журнал покупок» со связями типа «один ко многим» (каждый журнал может включать несколько поставок/покупок, но каждая поставка/покупка включает лишь один журнал).
Атрибуты таблицы
Каждый объект интернет-магазина имеет свои атрибуты:
В результате мы создали концептуальную модель будущей базы данных. Точнее говоря, речь идёт лишь о части БД, т. к. мы не учли склады, сотрудников и т. п. Собственно, при обширной предметной области данные лучше разбить на несколько локальных областей. Как правило, объём должен быть в пределах 5-7 объектов. И лишь после создания локальных моделей выполняется их объединение в общую сложную схему. В нашем случае ограничимся созданной моделью. Однако теперь давайте преобразуем её в реляционную модель данных.
Проектирование реляционной базы данных. Преобразование модели в реляционную
Из набора таблиц состоят наши объекты, а из полей таблиц — атрибуты объектов:
Итак, мы определились с таблицами, полями, РК и FK. Следует отметить, что в таблицах «Журнал покупок» и «Журнал поставок» РК составные, т. к. состоят из 2-х полей.
Что касается нормализации, то под ней понимают обратимый и пошаговый процесс, при котором исходная схема меняется другой схемой, в которой таблицы характеризуются более простой и логичной структурой. Это нужно по следующим причинам: 1. Устранение избыточности данных. Вспомним нашу таблицу:
Очевидно, что в поле «Темы» одни и те же названия встречаются регулярно. Для хранения таких данных нужны дополнительные ресурсы памяти. Кроме того, при дублировании данных можно допустить ошибку во время ввода значений атрибута, вследствие которой БД перейдёт в состояние несогласованности. 2. Устранение различных аномалий, связанных с обновлением, удалением, модификацией и пр. Пример аномалии модификации — чтобы поменять название темы, нам придётся смотреть все строки и менять название в каждой из них.
Каждая форма накладывает определённые ограничения на данные разного уровня. В ходе нормализации база данных становится всё строже, подверженность аномалиям снижается.
Если говорить о реляционных базах данных, то минимум — это 1НФ. Однако в процессе проектирования специалисты по СУБД стремятся нормализовать базу хотя бы до уровня 3НФ, исключив тем самым избыточность данных и аномалии. Это важно, если мы стремимся получить качественный результат проектирования. Однако подробное описание нормализации данных выходит за рамки нашей статьи, поэтому давайте просто посмотрим, как будет выглядеть наша база на уровне 3НФ:
Итак, в процессе проектирования мы преобразовали концептуальную модель в реляционную. Следующий этап — реализация её в конкретной СУБД. Для этого потребуется как сама СУБД, так и знание языка SQL. Например, прекрасно подойдёт СУБД MySQL или какая-нибудь другая СУБД.
Подводим итоги проектирования
Проектирование БД — процесс небыстрый и достаточно трудоёмкий. Во время проектирования надо хорошо знать предметную область, учитывать все нюансы. Вся информация должна отображаться в виде таких элементов, как объекты, атрибуты, связи, причём проектирование успешно лишь тогда, когда всё сделано максимально рационально.
Вообще, взгляды на проектирование среди разработчиков могут различаться. Некоторые игнорируют теорию, руководствуясь лишь опытом и здравым смыслом. Другие во время проектирования отводят главную роль интуиции, считая проектирование искусством, которым владеют далеко не все. Как бы там ни было, знания никогда не бывают лишними.
Да, реляционная база данных — это не более чем хранилище, где хранятся данные. Однако от того, как грамотно вы его организуете, будет зависеть стабильность работы всего приложения, где используются эти самые данные.
В заключение, добавим, что умение проектировать базы вам никогда не помешает. А научиться всему этому вы сможете на нашем курсе «Реляционные СУБД». Ждём вас!