специальность искусственный интеллект что это

Что такое искусственный интеллект и как стать AI-разработчиком

специальность искусственный интеллект что это. Смотреть фото специальность искусственный интеллект что это. Смотреть картинку специальность искусственный интеллект что это. Картинка про специальность искусственный интеллект что это. Фото специальность искусственный интеллект что это

Здравствуйте! В статье мы расскажем о специалистах по ИИ. Разберемся, что входит в их обязанности и сколько они зарабатывают. А также вы узнаете, как обучиться на AI-разработчиком с нуля и что для этого нужно.

Что такое искусственный интеллект

Искусственный интеллект (artificial intelligence, AI) – это инновационная IT-технология, с помощью которой можно создавать сложные компьютерные программы, имитирующие мышление человека.

По структуре каждая такая программа напоминает человеческий мозг – разные ее элементы выполняют те же функции, что и нейроны нервной системы:

Суть заключается в том, что с помощью языков программирования и математических вычислений можно создать программу, которая повторяет мыслительные процессы: синтез, обобщение, абстрагирование, сравнение и пр. При этом она не просто обрабатывает информацию, но и учитывает прошлый опыт, то есть обучается, можно сказать, что действует разумно.

Искусственный интеллект нужен, чтобы:

ИИ применяется в разных сферах: продажи, финансы, производство, добыча полезных ископаемых, наука и т. д. Например, искусственный интеллект используется для поиска мошеннических схем среди огромного потока банковских транзакций. А также в качестве примера можно привести голосовых помощников Siri, Алиса, Олег, которые распознают и воспроизводят голос.

Чем занимается специалист по ИИ

Конкретные обязанности специалиста в области искусственного интеллекта зависят от того, в какой области он работает: торговля, медицина, информационные технологии и пр.

Перечислим основные задачи AI-разработчика:

Как обучиться профессии

Получить профессию специалиста по искусственному интеллекту можно либо на очном отделении вуза, либо в онлайн-школе. Из учебных заведений, где можно учиться на AI-разработчика, отметим:

По этому направлению подойдут такие факультеты, как «Интеллектуальные системы управления и обработки данных», «Цифровая экономика и большие данные», «Математические методы искусственного интеллекта». Специальность престижная, поэтому стоимость учебы превышает 100 тысяч рублей за год.

Более удобный, эффективный и доступный формат обучения – это онлайн-курсы. Освоить профессию дистанционно можно в срок до 1,5 лет. Учебная программа содержит максимум полезной информации и практики: домашние задания после каждого урока, командная разработка, хакатоны и пр.

На нашем сайте собраны лучшие онлайн-курсы по искусственному интеллекту. Удобный фильтр поможет вам найти вариант под свои требования: по цене, сроку, наличию рассрочку или скидки. У нас можно узнать условия каждой обучающей программы, а также почитать реальные отзывы.

К концу курса у вас будут проекты в портфолио (например, нейросеть или рекомендательная система), диплом, а также неограниченный доступ к видео и другим материалам. В некоторых школах можно пройти стажировку и получить помощь с трудоустройством.

Что нужно знать, чтобы стать специалистом по ИИ

Чтобы стать специалистом по искусственному интеллекту, нужно знать на углубленном уровне разные разделы математики: теорию вероятности, статистику, математический анализ и линейную алгебру.

А также AI-разработчик должен обладать следующими знаниями и навыками:

Зарплаты в сфере искусственного интеллекта

Чтобы узнать зарплату специалиста по искусственному интеллекту, мы посмотрели вакансии на HeadHunter. Заработок указан только в 4 объявлениях: от 25 до 45 тысяч рублей.

специальность искусственный интеллект что это. Смотреть фото специальность искусственный интеллект что это. Смотреть картинку специальность искусственный интеллект что это. Картинка про специальность искусственный интеллект что это. Фото специальность искусственный интеллект что это

На этом же сайте мы посмотрели, сколько зарабатывают AI-разработчики – от 150 до 400 тыс. руб. в зависимости от квалификации, опыта, должностных обязанностей, места и региона работы, а также сферы деятельности: Image Recognition, Video Analytics, Computer Vision и др.

специальность искусственный интеллект что это. Смотреть фото специальность искусственный интеллект что это. Смотреть картинку специальность искусственный интеллект что это. Картинка про специальность искусственный интеллект что это. Фото специальность искусственный интеллект что это

Место работы и востребованность специалистов

Специалист по ИИ – это профессия будущего, поскольку технология может найти применения во множестве сфер.

Перечислим отрасли, в которых наиболее востребованы AI-разработчики:

В России профессия набирает популярность. На сайте по поиску работы Head Hunter в настоящий момент опубликовано почти 4000 вакансий, в которых требуется знание искусственного интеллекта. Наиболее востребованы специалисты с опытом 1-3 года в Москве, Санкт-Петербурге, Нижнем Новгороде, Новосибирске и Краснодаре.

Советы начинающим

Мы подготовили ТОП-3 рекомендации от экспертов для начинающих специалистов по ИИ:

Источник

Специалист по ИИ: кто это, обязанности, зарплаты и как им стать в 2021 году. Обзор профессии.

Кто такой специалист по ИИ?

Специалист по ИИ (искусственный интеллект, AI) — это программист, который с помощью специальных наборов данных и алгоритмов обучает искусственный интеллект.

Что делают специалисты по ИИ и чем занимаются?

Обязанности на примере одной из вакансий:

Что должен знать и уметь специалист по ИИ?

Требования к специалистам по ИИ:

Востребованность и зарплаты специалиста по ИИ

На сайте поиска работы в данный момент открыто 2 576 вакансий, с каждым месяцем спрос на специалистов по ИИ растет.

Количество вакансий с указанной зарплатой специалиста по ИИ по всей России:

Вакансий с указанным уровнем дохода по Москве:

Вакансий с указанным уровнем дохода по Санкт-Петербургу:

Как стать специалистом по ИИ и где учиться?

Варианты обучения для специалиста по ИИ с нуля:

Ниже сделали обзор 15+ лучших онлайн-курсов.

15+ лучших курсов для обучения специалиста по ИИ: подробный обзор

1 место. Skillbox

специальность искусственный интеллект что это. Смотреть фото специальность искусственный интеллект что это. Смотреть картинку специальность искусственный интеллект что это. Картинка про специальность искусственный интеллект что это. Фото специальность искусственный интеллект что это

Вы научитесь создавать аналитические системы и использовать алгоритмы машинного обучения, освоите работу с нейросетями. Наполните портфолио и получите престижную профессию.

На рынке не хватает специалистов по Data Science

включая Сбербанк, Яндекс и Тинькофф, ищут специалистов по Data Science

зарплата начинающего специалиста

Кому подойдёт этот курс

Вы получите базовые навыки по программированию, аналитике, статистике и математике, которые откроют путь к карьере в Data Science и Machine Learning. Сможете использовать свои знания сразу на практике.

Вы прокачаете свои знания и навыки в программировании на Python и R. Подтянете математику и умение мыслить как аналитик, использовать алгоритмы машинного обучения для решения бизнес-задач — и усилите портфолио мощными проектами.

Научитесь использовать данные для построения прогнозов и оптимизации бизнес-процессов и переведёте компанию на новый уровень.

Чему вы научитесь

Освоите самый популярный язык для работы с данными.

Сможете разрабатывать дашборды или интерактивную инфографику.

Научитесь работать с библиотеками Pandas, NumPy и Matpotlib и освоите базы данных PostgreSQL, SQLite3, MongoDB.

Освоите фреймворки для обучения нейронных сетей Tensorflow и Keras. Узнаете, как устроены нейронные сети для задач компьютерного зрения и лингвистики.

Изучите разные алгоритмы, научитесь решать задачи регрессии, классификации и кластеризации.

Построите рекомендательную систему и добавите её в своё портфолио.

Заботимся, чтобы каждый построил карьеру мечты

Специалисты Skillbox из Центра карьеры помогут вам получить первую стажировку и приглашение на работу мечты

За 2021 год мы трудоустроили более 1000 студентов на работу по новой профессии

Как проходит обучение

В курсе — практические видеоуроки.

В том темпе, в котором вам удобно.

Закрепляете знания и исправляете ошибки.

И дополняете ею своё портфолио.

Программа

Вас ждут 7 курсов с разным уровнем сложности, знание которых можно приравнять к году работы.

Дипломные проекты

Проект-соревнование на платформе Kaggle. Вы используете анонимные данные о заказах клиентов, чтобы предсказать, какие продукты будут в их следующем чеке. Создадите рекомендательную систему для сайта и рекламных коммуникаций.

Проект-соревнование на платформе Kaggle. Это подразумевает написание воспроизводимого кода, генерирующего csv-файл с ответами, в котором для каждого изображения с лицом человека указана его наиболее вероятная эмоция. В итоге вы реализуете собственный проект в области компьютерного зрения.

Ваше резюме после обучения

Диплом Skillbox

Подтвердит, что вы прошли курс, и станет дополнительным аргументом при устройстве на работу.

Источник

Чему учат на факультете искусственного интеллекта в GU

специальность искусственный интеллект что это. Смотреть фото специальность искусственный интеллект что это. Смотреть картинку специальность искусственный интеллект что это. Картинка про специальность искусственный интеллект что это. Фото специальность искусственный интеллект что это

специальность искусственный интеллект что это. Смотреть фото специальность искусственный интеллект что это. Смотреть картинку специальность искусственный интеллект что это. Картинка про специальность искусственный интеллект что это. Фото специальность искусственный интеллект что это

Что за специальность и где работать

— Где востребованы возможности искусственного интеллекта и в каких сферах смогут работать выпускники факультета?

— Направление Data Science появилось как ответ на распространение интернета и всеобщую информатизацию. У бизнеса и других структур копятся массивы данных, с которыми нужно что-то делать. Крупные банки, провайдеры интернета и телефонии, поисковые сервисы, социальные сети аккумулируют сведения о пользователях и хотят извлекать из этого выгоду.

Пользователи, в свою очередь, хотят быстро отсеивать нужную информацию и получать только интересные предложения. Товары и услуги нужны всем, но реклама раздражает, потому что зачастую навязывает что-то неактуальное.

И тут на сцену выходит искусственный интеллект: он может анализировать клиентскую базу любого размера и составлять персонализированные предложения. Он может строить прогнозы на основе прошлых действий пользователя. Например, банки могут автоматически рассчитать вероятность того, что человек вернет кредит. И хотя у них заложены некоторые риски, прогнозирование важно, чтобы не разориться в кризис.

Партнер нашего факультета ИИ — «МегаФон». Это компания, которая всерьез работает с большими данными, чтобы лучше обслуживать своих клиентов. Занятиям со специалистами «МегаФона» у нас будет посвящена целая учебная четверть.

Кроме того, когда мы говорим об искусственном интеллекте, подразумеваем сразу несколько родственных направлений: data science, машинное обучение, data engineering. Базовые понятия и инструменты у них одни и те же. Поэтому наш выпускник сможет себя попробовать там, где ему интереснее.

— А бизнес не боится доверять свои процессы ИИ? Ведь цена ошибки может быть высока.

— Поздно бояться — бизнес уже вовсю пользуется искусственным интеллектом и во многих ситуациях не может без него обойтись. Понятно, что система ошибается. Но и люди ошибаются: издалека можно пень за человека принять. И все же автоматизация позволяет избежать множества проблем, связанных с человеческим фактором: устал, отвлекся, не успел. Плюс анализ big data без ИИ невозможен в принципе.

Или даже возьмем задачу попроще. Вот надо вам расшифровать аудиозаписи — перевести их в текст. А записей таких десятки. Нанимать наборщиков — дорого и неэффективно. Система распознавания речи сильно упростит задачу. Да, она будет ошибаться, особенно в пунктуации и незнакомых ей словах, но все равно исправить записанное программой проще и быстрее, чем набрать все с нуля. Кто защищал диссертацию и вынужден был часами просиживать за расшифровкой стенограмм, меня поймет — процесс довольно мучительный.

— А помимо крупных компаний куда-то реально трудоустроиться?

— Сфера применения искусственного интеллекта не ограничивается обработкой больших данных. Одно из преимуществ ИИ в том, что он позволяет решать сложные задачи усилиями небольшого штата сотрудников.

Стартапам и среднему бизнесу специалисты по искусственному интеллекту нужны, чтобы разрабатывать умные сервисы: голосовые помощники, системы поиска по картинкам и музыке, программы перевода речи в текст, приложения с функцией распознавания лиц, службы проверки контента на плагиат и так далее.

Все мы знаем софт, который накладывает маски и эффекты на изображение с веб-камеры: пририсовывает рожки к голове, бороду к подбородку или маску слона на все лицо. Такого плана вещи можно писать в одиночку.

Медицинские решения на основе ИИ способны выявлять тревожные симптомы и предупреждать о необходимости обратиться к специалисту. Можно сфотографировать на смартфон родинку и проверить ее на признаки злокачественного новообразования. Если это мотивирует кого-то вовремя пройти обследование — уже хорошо.

Суть в том, что вариантов применения технологий, которым мы учим, практически неограниченное количество. И в обозримом будущем круг задач, которые можно решать с помощью ИИ и машинного обучения, будет только расти. Поэтому наш выпускник, если у него появятся новаторские идеи, сможет запускать и собственные проекты.

Цели и ценности

— Кто преподает на факультете и по какому принципу вы этих людей искали?

— Мы отбирали преподавателей, которые добились успеха как специалисты в сфере data science и при этом умеют преподнести материал в практическом ключе. Они понимают нашу аудиторию: студенты хотят освоить профессию и скорее начать работать. У большинства людей, которые приходят учиться в GU, нет вузовского образования и опыта — знания нужно закладывать с нуля. Поэтому нас не устраивает подход «оттарабанил лекцию и пошел дальше». Мы на реальных примерах показываем, как получить результат, и объясняем, почему именно так. Мы выбираем задачи, с которыми человек столкнется на собеседованиях и на работе, помогаем вписаться в существующий рынок.

Автор курсов и декан факультета — Сергей Ширкин — специалист-практик, который накопил обширные знания сразу по нескольким направлениям. Он работал с базами данных (это data engineering), применял ИИ в банковской сфере, в области распознавания изображений. Когда Сергей познакомился с нашей концепцией, он ее одобрил и помог нам наладить учебный процесс.

О кривой обучения и не страшной математике

— «Искусственный интеллект», «нейронные сети» — это звучит сложно и таинственно. Насколько высок порог вхождения в профессию?

— Речь не идет о чем-то тяжелом и доступном лишь избранным. Можно провести аналогию с профессией веб-разработчика: спрос на специалистов велик, а порог вхождения не слишком высок. Отсюда растущая популярность data science, но отсюда же и нехватка настоящих профи при обилии начинающих.

Как и на других факультетах, мы ведем студента от элементарных задач к серьезным проектам, которые можно показать работодателю. Продвинутых программистских навыков не требуется, но важно изучить Python, алгоритмы и структуры. То же самое касается математики: если раньше вы учили ее только в школе и что-то уже забыли, это нормально. Все необходимое из школьного курса мы в любом случае повторим на занятиях.

Главное — не рассчитывать, что «оплатил абонемент на фитнес — мышцы сами растут». Сразу говорю, этого не будет. Вы получаете знания и инструменты, а дальше трудитесь над учебными проектами, ищете решения, задаете вопросы, читаете книги. Мы вас направляем, помогаем не заблудиться в трудностях, объясняем, чего будет ждать от вас работодатель.

Кстати, нашим студентам не стоит бояться конкуренции с выпускниками вузов. Потому что с вузовской теоретической базой специалистом по data science не станешь — придется долго набирать практику. А вот после учебы у нас можно сразу начать карьеру в крупной компании или присоединиться к перспективному стартапу.

— От математики никуда не деться?

— На самом деле, научить обработке данных можно и без математики: по принципу «нажми на кнопку — получишь результат». Но мы ведь не обезьянок в цирк готовим. Специалист должен знать, как работают инструменты, которыми он пользуется. Иначе любая незнакомая проблема поставит его в тупик. Когда человек понимает математическую составляющую задачи, он сам определяет, какой инструмент лучше подойдет.

У нас математика исключительно прикладная: мы все закрепляем на примерах и не оставляем места путанице. Человеческий мозг так устроен, что нужное для дела — запоминает, остальное — забывает.

Я сам изучал механику и математику в вузе. У меня не складывались ассоциативные связи между тем, что нам дают, и тем, где это можно применить. Например, я не понимал, что такое нормальное распределение: формулы знал, но понятие оставалось для меня абстракцией. И только позже, на работе, мне одна девушка-HR объяснила, что это значит. Доценты и профессора не смогли этого доступно растолковать, а ей удалось.

Когда вы видите, как теория работает в конкретной ситуации и куда ее можно приложить, все меняется — у вас складывается общая картина. Практических задач в сфере анализа данных и искусственного интеллекта сейчас много как никогда. Поэтому я уверен, что мы сможем заинтересовать студентов, увлечь их профессией.

— Если все не так сложно, почему на факультете ИИ учатся полтора года, а не четыре месяца, например?

— Потому что мы не обзор профессии даем, как бывает на других курсах, а учим с нуля людей, мало знакомых с математикой. Более того, мы считаем, что студентам с хорошим теоретическим заделом все равно надо математику перепроходить в контексте практических задач. Мы предлагаем не тратить личное время на предварительную подготовку, а сразу учиться профессии. Лучше сэкономленное время потом посвятить повышению квалификации и углубиться в те области, которые вам интересны.

— Что именно из математики вы даете на факультете?

— Для начала мы повторим, что такое график и производная. Дальше зададим основы матанализа, линейной алгебры и комбинаторики. С интегралами познакомимся в общих чертах — без глубокого погружения. Будем брать самые простые вещи, которые в сфере ИИ работают и помогают решать актуальные для рынка задачи. При наличии мотивации студент с помощью преподавателя разберется в этих темах, даже если раньше с ними не сталкивался.

Практика

— С какими инструментами студенты научатся работать?

— Большинство связанных с ИИ вакансий требуют знания Python. Поэтому мы изучаем этот язык и его библиотеки, позволяющие работать с векторами, матрицами, нейронными сетями. Это перекрывает 99 % задач, которые могут возникнуть. Специализированных инструментов много: Pandas, NumPy, Tensor Flow, Keras, Theano, Matplotlib, Seaborn, Scikit-Learn. Чтобы использовать все это осознанно и самостоятельно, мы математику и учим.

Мы также будем изучать вспомогательные вещи. Например, Linux и регулярные выражения нужны, чтобы уметь вычленить из текста нужные фрагменты. Основы HTML тоже объясним — не для верстки, конечно, а чтобы студент представлял себе структуру DOM и мог к ней обращаться. Все это пригодится для сбора данных в интернете.

В то же время мы старались не перегружать курс. Например, большинство библиотек, о которых мы сейчас говорили, ради быстродействия написаны на языке С. Но это не значит, что нам надо его учить. Для начала работы по специальности этого не требуется, и мы на этом не останавливаемся. Понятно, что нет предела совершенству, и если выпускник захочет создавать свои инструменты, он может C изучить. Я всегда таких людей приветствую. Но мы даем набор навыков для трудоустройства и дальнейшего саморазвития.

— Какие проекты студенты делают, чтобы набрать опыт и что-то записать в резюме?

— Проекты будут двух типов: наши и партнерские. Первый наш практический курс учит собирать и обрабатывать данные сети Интернет. Здесь студенты опробуют несколько подходов к задаче. Сначала мы будем «парсить» страницы: напишем на Python «паука», который пробежится по нужным адресам и скачает искомую информацию. Этот метод нужен, когда сайт не хочет отдавать данные сам.

Дальше научимся обращаться к сайтам по-хорошему — через программный интерфейс, он же API (Application Interface). То есть отправлять серверу запрос и получать информацию. Также разберемся, какие есть сервисы открытых данных и как ими пользоваться. Студенты выберут подход, с помощью которого соберут данные в интересующей их сфере. Кто-то решит в культурном наследии порядок навести, другой будет медицинскую статистику собирать, третий составит базу по туроператорам и пассажирским перевозкам. Кстати, на будущее можно и систему сбора релевантных вакансий написать.

Следующий проект будет связан с машинным обучением. Построим модель прогнозирования, чтобы компьютер не просто проверял гипотезы, а формировал их на основе имеющихся данных. Здесь мы тоже разберем два подхода: сначала напишем классификатор, затем создадим нейронную сеть, а по итогу студент сам решит, что использовать в отчетном проекте.

Еще будет проект, где понадобится решать задачи с использованием машинного зрения или с распознаванием естественного языка — на выбор.

Также студенты освоят платформу Kaggle и потренируются в спортивном анализе данных. Победы в таких состязаниях на рынке ценятся и приравниваются к профессиональным достижениям. Даже если вы ни дня не работали в data science, но у вас хорошие результаты на Kaggle, вами заинтересуются крупные работодатели.

Проект от «МегаФона» будет посвящен обработке больших данных, которые сам партнер и предоставит.

Мы ведем переговоры с Maps.me о проекте с распознаванием изображений. Студенты напишут приложение, которое будет брать спутниковые карты Open Street Map и оцифровывать: размечать контуры водоемов, зданий, дорог, — а затем все это грузить обратно в систему. Кто «народные карты» рисовал или помогал проекту Wikimapia, представляет, о чем речь. Мы покажем, как этот процесс автоматизировать. Это еще и полезная миссия, потому что с подобными офлайн-картами можно ориентироваться там, где нет интернета.

— Количество и разнообразие проектов действительно впечатляет… Теперь ясно, зачем учиться полтора года!

— Уверен, за лучшими нашими выпускниками работодатели и так в очередь выстроятся. Кадровый голод действительно существует. И зря некоторые думают, что сейчас все побегут в Data Science и рынок насытится. Хотеть стать экспертом — одно, а пройти этот путь — совсем другое. Как гласит притча, «много званых, но мало избранных». Крутых специалистов много не бывает, а бизнес в них очень нуждается. Мы со студентами будем работать, чтоб хотя бы часть этих потребностей закрыть.

— У меня по этой теме вопросов не осталось. Посмотрим, есть ли они у читателей. Сергей, огромное спасибо за рассказ!

В следующий раз мы с Сергеем поговорим об особенностях постоянной удаленной работы (не фриланс). Рассмотрим это с точек зрения сотрудника и работодателя. Уже скоро 🙂

Освоить востребованную профессию в Data Science можно всего за полтора года на курсах GeekBrains. После учёбы вы сможете работать по специальностям Data Scientist, Data Analyst, Machine Learning, Engineer Computer Vision-специалист или NLP-специалист.

Освоить востребованную профессию в Аналитике больших данных можно всего за полтора года на курсах GeekBrains.

специальность искусственный интеллект что это. Смотреть фото специальность искусственный интеллект что это. Смотреть картинку специальность искусственный интеллект что это. Картинка про специальность искусственный интеллект что это. Фото специальность искусственный интеллект что это

Продолжаем говорить о факультетах GeekUniversity с руководителем образовательных проектов GeekBrains Сергеем Кручининым.

Что за специальность и где работать

— Где востребованы возможности искусственного интеллекта и в каких сферах смогут работать выпускники факультета?

— Направление Data Science появилось как ответ на распространение интернета и всеобщую информатизацию. У бизнеса и других структур копятся массивы данных, с которыми нужно что-то делать. Крупные банки, провайдеры интернета и телефонии, поисковые сервисы, социальные сети аккумулируют сведения о пользователях и хотят извлекать из этого выгоду.

Пользователи, в свою очередь, хотят быстро отсеивать нужную информацию и получать только интересные предложения. Товары и услуги нужны всем, но реклама раздражает, потому что зачастую навязывает что-то неактуальное.

И тут на сцену выходит искусственный интеллект: он может анализировать клиентскую базу любого размера и составлять персонализированные предложения. Он может строить прогнозы на основе прошлых действий пользователя. Например, банки могут автоматически рассчитать вероятность того, что человек вернет кредит. И хотя у них заложены некоторые риски, прогнозирование важно, чтобы не разориться в кризис.

Партнер нашего факультета ИИ — «МегаФон». Это компания, которая всерьез работает с большими данными, чтобы лучше обслуживать своих клиентов. Занятиям со специалистами «МегаФона» у нас будет посвящена целая учебная четверть.

Кроме того, когда мы говорим об искусственном интеллекте, подразумеваем сразу несколько родственных направлений: data science, машинное обучение, data engineering. Базовые понятия и инструменты у них одни и те же. Поэтому наш выпускник сможет себя попробовать там, где ему интереснее.

— А бизнес не боится доверять свои процессы ИИ? Ведь цена ошибки может быть высока.

— Поздно бояться — бизнес уже вовсю пользуется искусственным интеллектом и во многих ситуациях не может без него обойтись. Понятно, что система ошибается. Но и люди ошибаются: издалека можно пень за человека принять. И все же автоматизация позволяет избежать множества проблем, связанных с человеческим фактором: устал, отвлекся, не успел. Плюс анализ big data без ИИ невозможен в принципе.

Или даже возьмем задачу попроще. Вот надо вам расшифровать аудиозаписи — перевести их в текст. А записей таких десятки. Нанимать наборщиков — дорого и неэффективно. Система распознавания речи сильно упростит задачу. Да, она будет ошибаться, особенно в пунктуации и незнакомых ей словах, но все равно исправить записанное программой проще и быстрее, чем набрать все с нуля. Кто защищал диссертацию и вынужден был часами просиживать за расшифровкой стенограмм, меня поймет — процесс довольно мучительный.

— А помимо крупных компаний куда-то реально трудоустроиться?

— Сфера применения искусственного интеллекта не ограничивается обработкой больших данных. Одно из преимуществ ИИ в том, что он позволяет решать сложные задачи усилиями небольшого штата сотрудников.

Стартапам и среднему бизнесу специалисты по искусственному интеллекту нужны, чтобы разрабатывать умные сервисы: голосовые помощники, системы поиска по картинкам и музыке, программы перевода речи в текст, приложения с функцией распознавания лиц, службы проверки контента на плагиат и так далее.

Все мы знаем софт, который накладывает маски и эффекты на изображение с веб-камеры: пририсовывает рожки к голове, бороду к подбородку или маску слона на все лицо. Такого плана вещи можно писать в одиночку.

Медицинские решения на основе ИИ способны выявлять тревожные симптомы и предупреждать о необходимости обратиться к специалисту. Можно сфотографировать на смартфон родинку и проверить ее на признаки злокачественного новообразования. Если это мотивирует кого-то вовремя пройти обследование — уже хорошо.

Суть в том, что вариантов применения технологий, которым мы учим, практически неограниченное количество. И в обозримом будущем круг задач, которые можно решать с помощью ИИ и машинного обучения, будет только расти. Поэтому наш выпускник, если у него появятся новаторские идеи, сможет запускать и собственные проекты.

Цели и ценности

— Кто преподает на факультете и по какому принципу вы этих людей искали?

— Мы отбирали преподавателей, которые добились успеха как специалисты в сфере data science и при этом умеют преподнести материал в практическом ключе. Они понимают нашу аудиторию: студенты хотят освоить профессию и скорее начать работать. У большинства людей, которые приходят учиться в GU, нет вузовского образования и опыта — знания нужно закладывать с нуля. Поэтому нас не устраивает подход «оттарабанил лекцию и пошел дальше». Мы на реальных примерах показываем, как получить результат, и объясняем, почему именно так. Мы выбираем задачи, с которыми человек столкнется на собеседованиях и на работе, помогаем вписаться в существующий рынок.

Автор курсов и декан факультета — Сергей Ширкин — специалист-практик, который накопил обширные знания сразу по нескольким направлениям. Он работал с базами данных (это data engineering), применял ИИ в банковской сфере, в области распознавания изображений. Когда Сергей познакомился с нашей концепцией, он ее одобрил и помог нам наладить учебный процесс.

О кривой обучения и не страшной математике

— «Искусственный интеллект», «нейронные сети» — это звучит сложно и таинственно. Насколько высок порог вхождения в профессию?

— Речь не идет о чем-то тяжелом и доступном лишь избранным. Можно провести аналогию с профессией веб-разработчика: спрос на специалистов велик, а порог вхождения не слишком высок. Отсюда растущая популярность data science, но отсюда же и нехватка настоящих профи при обилии начинающих.

Как и на других факультетах, мы ведем студента от элементарных задач к серьезным проектам, которые можно показать работодателю. Продвинутых программистских навыков не требуется, но важно изучить Python, алгоритмы и структуры. То же самое касается математики: если раньше вы учили ее только в школе и что-то уже забыли, это нормально. Все необходимое из школьного курса мы в любом случае повторим на занятиях.

Главное — не рассчитывать, что «оплатил абонемент на фитнес — мышцы сами растут». Сразу говорю, этого не будет. Вы получаете знания и инструменты, а дальше трудитесь над учебными проектами, ищете решения, задаете вопросы, читаете книги. Мы вас направляем, помогаем не заблудиться в трудностях, объясняем, чего будет ждать от вас работодатель.

Кстати, нашим студентам не стоит бояться конкуренции с выпускниками вузов. Потому что с вузовской теоретической базой специалистом по data science не станешь — придется долго набирать практику. А вот после учебы у нас можно сразу начать карьеру в крупной компании или присоединиться к перспективному стартапу.

— От математики никуда не деться?

— На самом деле, научить обработке данных можно и без математики: по принципу «нажми на кнопку — получишь результат». Но мы ведь не обезьянок в цирк готовим. Специалист должен знать, как работают инструменты, которыми он пользуется. Иначе любая незнакомая проблема поставит его в тупик. Когда человек понимает математическую составляющую задачи, он сам определяет, какой инструмент лучше подойдет.

У нас математика исключительно прикладная: мы все закрепляем на примерах и не оставляем места путанице. Человеческий мозг так устроен, что нужное для дела — запоминает, остальное — забывает.

Я сам изучал механику и математику в вузе. У меня не складывались ассоциативные связи между тем, что нам дают, и тем, где это можно применить. Например, я не понимал, что такое нормальное распределение: формулы знал, но понятие оставалось для меня абстракцией. И только позже, на работе, мне одна девушка-HR объяснила, что это значит. Доценты и профессора не смогли этого доступно растолковать, а ей удалось.

Когда вы видите, как теория работает в конкретной ситуации и куда ее можно приложить, все меняется — у вас складывается общая картина. Практических задач в сфере анализа данных и искусственного интеллекта сейчас много как никогда. Поэтому я уверен, что мы сможем заинтересовать студентов, увлечь их профессией.

— Если все не так сложно, почему на факультете ИИ учатся полтора года, а не четыре месяца, например?

— Потому что мы не обзор профессии даем, как бывает на других курсах, а учим с нуля людей, мало знакомых с математикой. Более того, мы считаем, что студентам с хорошим теоретическим заделом все равно надо математику перепроходить в контексте практических задач. Мы предлагаем не тратить личное время на предварительную подготовку, а сразу учиться профессии. Лучше сэкономленное время потом посвятить повышению квалификации и углубиться в те области, которые вам интересны.

— Что именно из математики вы даете на факультете?

— Для начала мы повторим, что такое график и производная. Дальше зададим основы матанализа, линейной алгебры и комбинаторики. С интегралами познакомимся в общих чертах — без глубокого погружения. Будем брать самые простые вещи, которые в сфере ИИ работают и помогают решать актуальные для рынка задачи. При наличии мотивации студент с помощью преподавателя разберется в этих темах, даже если раньше с ними не сталкивался.

Практика

— С какими инструментами студенты научатся работать?

— Большинство связанных с ИИ вакансий требуют знания Python. Поэтому мы изучаем этот язык и его библиотеки, позволяющие работать с векторами, матрицами, нейронными сетями. Это перекрывает 99 % задач, которые могут возникнуть. Специализированных инструментов много: Pandas, NumPy, Tensor Flow, Keras, Theano, Matplotlib, Seaborn, Scikit-Learn. Чтобы использовать все это осознанно и самостоятельно, мы математику и учим.

Мы также будем изучать вспомогательные вещи. Например, Linux и регулярные выражения нужны, чтобы уметь вычленить из текста нужные фрагменты. Основы HTML тоже объясним — не для верстки, конечно, а чтобы студент представлял себе структуру DOM и мог к ней обращаться. Все это пригодится для сбора данных в интернете.

В то же время мы старались не перегружать курс. Например, большинство библиотек, о которых мы сейчас говорили, ради быстродействия написаны на языке С. Но это не значит, что нам надо его учить. Для начала работы по специальности этого не требуется, и мы на этом не останавливаемся. Понятно, что нет предела совершенству, и если выпускник захочет создавать свои инструменты, он может C изучить. Я всегда таких людей приветствую. Но мы даем набор навыков для трудоустройства и дальнейшего саморазвития.

— Какие проекты студенты делают, чтобы набрать опыт и что-то записать в резюме?

— Проекты будут двух типов: наши и партнерские. Первый наш практический курс учит собирать и обрабатывать данные сети Интернет. Здесь студенты опробуют несколько подходов к задаче. Сначала мы будем «парсить» страницы: напишем на Python «паука», который пробежится по нужным адресам и скачает искомую информацию. Этот метод нужен, когда сайт не хочет отдавать данные сам.

Дальше научимся обращаться к сайтам по-хорошему — через программный интерфейс, он же API (Application Interface). То есть отправлять серверу запрос и получать информацию. Также разберемся, какие есть сервисы открытых данных и как ими пользоваться. Студенты выберут подход, с помощью которого соберут данные в интересующей их сфере. Кто-то решит в культурном наследии порядок навести, другой будет медицинскую статистику собирать, третий составит базу по туроператорам и пассажирским перевозкам. Кстати, на будущее можно и систему сбора релевантных вакансий написать.

Следующий проект будет связан с машинным обучением. Построим модель прогнозирования, чтобы компьютер не просто проверял гипотезы, а формировал их на основе имеющихся данных. Здесь мы тоже разберем два подхода: сначала напишем классификатор, затем создадим нейронную сеть, а по итогу студент сам решит, что использовать в отчетном проекте.

Еще будет проект, где понадобится решать задачи с использованием машинного зрения или с распознаванием естественного языка — на выбор.

Также студенты освоят платформу Kaggle и потренируются в спортивном анализе данных. Победы в таких состязаниях на рынке ценятся и приравниваются к профессиональным достижениям. Даже если вы ни дня не работали в data science, но у вас хорошие результаты на Kaggle, вами заинтересуются крупные работодатели.

Проект от «МегаФона» будет посвящен обработке больших данных, которые сам партнер и предоставит.

Мы ведем переговоры с Maps.me о проекте с распознаванием изображений. Студенты напишут приложение, которое будет брать спутниковые карты Open Street Map и оцифровывать: размечать контуры водоемов, зданий, дорог, — а затем все это грузить обратно в систему. Кто «народные карты» рисовал или помогал проекту Wikimapia, представляет, о чем речь. Мы покажем, как этот процесс автоматизировать. Это еще и полезная миссия, потому что с подобными офлайн-картами можно ориентироваться там, где нет интернета.

— Количество и разнообразие проектов действительно впечатляет… Теперь ясно, зачем учиться полтора года!

— Уверен, за лучшими нашими выпускниками работодатели и так в очередь выстроятся. Кадровый голод действительно существует. И зря некоторые думают, что сейчас все побегут в Data Science и рынок насытится. Хотеть стать экспертом — одно, а пройти этот путь — совсем другое. Как гласит притча, «много званых, но мало избранных». Крутых специалистов много не бывает, а бизнес в них очень нуждается. Мы со студентами будем работать, чтоб хотя бы часть этих потребностей закрыть.

— У меня по этой теме вопросов не осталось. Посмотрим, есть ли они у читателей. Сергей, огромное спасибо за рассказ!

В следующий раз мы с Сергеем поговорим об особенностях постоянной удаленной работы (не фриланс). Рассмотрим это с точек зрения сотрудника и работодателя. Уже скоро 🙂

Освоить востребованную профессию в Data Science можно всего за полтора года на курсах GeekBrains. После учёбы вы сможете работать по специальностям Data Scientist, Data Analyst, Machine Learning, Engineer Computer Vision-специалист или NLP-специалист.

Освоить востребованную профессию в Аналитике больших данных можно всего за полтора года на курсах GeekBrains.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *