смачиватель для пожаротушения что это
Рекомендации по применению смачивателей
Как указывалось выше, применение смачивателей значи тельно улучшает огнетгшащие свойства воды и уменьшает время тушения. Используя растворы ПАВ, подраз деления пожарной охраны как бы вдвое увеличивают объем воды, доставляемой па пожары. Сокращение Bpv мени тушения предотвращает образование крупных и затяжных пожаров и значительно снижает убытки от огня.
Организацией применения смачивателей пожарными частями гарнизонов должны заниматься отделы (отделения) службы и подготовки совместно с пожарно-тех- ническими станциями. Упомянутые выше ПАВ выпускаются промышленностью и органы пожарной охраны снабжаются ими в плановом порядке либо приобретают на предприятиях, которые используют их в технологических процессах.
В настоящее время смачиватели в больших количествах применяются на текстильных предприятиях, заводах и фабриках, занятых очисткой твердых поверхностей, флотацией и обогащением руд, обезжириванием и дублением кож, окраской мехов, приготовлением эмульсий, ядохимикатов, а также на предприятиях при производстве лаков и красок, бумаги, синтетических волокон и пленок, синтетических каучуков и других полимеров. Широко применяются смачиватели в нефтяной и химической промышленности.
Вели для приготовления рабочего раствора исполь- ювать имеющийся на основных пожарных автомобилях стационарный воздушно-пенный смеситель, то концентрация смачивателя в вывозимых на пожар растворах может быть в 25—50 раз выше рабочей. Такой большой диапазон концентраций объясняется различной растворимостью смачивателей, вязкостью концентрированных растворов и возможностью смесителя подсасывать различное количество раствора.
Для приготовления концентрированных растворов (свыше 10%) все пасты, большую часть твердых и жидких ПАВ (ОП-7, ОП-10, ДБ) следует растворять при перемешивании в теплой (40—60 е С) воде. Если время растворения неограничено, то воду не подогревают, а смесь длительное время перемешивают до получения раствора.
Растворы смачивателей, выпозимые на пожар в автоцистернах, применяют главным образом для подачи первого ствола. Практика тушения показывает, что одной автоцистерны с раствором смачивателя, как правило, достаточно для ликвидации незапущепного пожара и локализации развившегося. Учитывая высокую смачивающую способность растворов ПАВ, для их подачи необходимо нспользозать только прорезппенпые рукава. При прокладке рукавной лппин надо предусматривать ее запас, так как раствором смачивателя из одной автоцистерны тушат площадь пожара в 2—2,5 раза больше, чем водой, и следовательно, ствольщики от начальной позиции передвигаются на значительные расстояния.
Тушить растворами смачивателя можно все твердые материалы, которые тушат водой. Особенно высокий эффект наблюдается при тушении целлюлозных материалов (хлопка, древесины, тканей, бумаги и т. д.), которые являются основными горючими материалами на пожарах жилых, административных, лечебных, сельскохозяйственных и других зданий. Поэтому пожары в этих зданиях тушат растворами смачивателей с меньшей интенсивностью подачи и быстрее, чем водой. В связи с этим рекомендуется применять перекрывные стволы с диаметром спрыска не более 13 мм. Однако практика тушения показывает, что для сокращения излишне проливаемого на пожарах раствора смачивателя желательно применять стволы и с меньшим диаметром спрыска. При использовании стволов со спрыском 13 мм их необходимо перекрывать после быстрой обработки горящих поверхностей, во время разборки горящих материалов, при остановках, в продвижении, изменении позиций стволов. Пожары внутри помещений следует тушить распыленными струями, так как при )том уменьшается интенсивность подачи раствора, понижается температура и задымленность в горящем помещении. Сплошными струями тушат пожары, когда из-за высокой температуры в помещении нельзя близко подойти к горящему объекту. Струи надо быстро передвигать до горящей поверхности, стремясь как можно быстрее обработать ее.
Смачиватель для пожаротушения что это
Смачиватель — поверхностно-активное вещество (ПАВ), водные растворы которого, обладая пониженным поверхностным натяжением, применяются для тушения пожаров, прежде всего, плохо смачивающихся водой твёрдых гидрофобных горючих веществ (древесина, хлопок, торф, резина, угольная пыль и другие). Молекулы ПАВ, как правило, состоят из длинной неполярной и короткой полярной частей. За счёт своего дифильного строения ПАВ концентрируются на границе раздела воздух — жидкость, при этом полярная часть молекулы (гидрофильная) растворена в воде, а неполярная (гидрофобная) обращена в воздух. Благодаря этому смачиватель становится посредником контакта между молекулами воды и молекулами трудносмачиваемого твёрдого гидрофобного вещества. Хорошее смачивание и растекание возможно при высокой адгезии (когда молекулярная природа жидкости и твёрдого тела близки) и при низкой когезии (когда поверхностное натяжение жидкости мало). При тушении раствором смачивателя огнетушащая эффективность воды повышается в 1,5— 2 раза. Ранее, когда в России основными пенообразователями, применяемыми для тушения пожаров, были протеиновые пенообразователи, обладающие плохой смачивающей способностью, наряду с пенообразователями выпускались в качестве смачивателей индивидуальные биологически неразлагаемые химические соединения (НБ, ЦБ, ОП-7, ОП-10 и др.). В настоящее время роль смачивателя выполняют отечественные пенообразователи общего назначения (ПО-ЗНП, ПО-6ТС, ТЭАС и др.), которые выпускаются в жидком виде и могут быть использованы для получения пены. В России стандартная проверка смачивающей способности и выбор рабочей концентрации пенообразователя осуществляются по ГОСТ Р 50588 и заключаются в определении времени смачивания рабочим раствором гидрофобной ткани.
Лит.: ГОСТ Р 50588-93. Пенообразователи для тушения пожаров. Общие технические требования и методы испытаний.
Смачиватель
Смачиватель – это поверхностно-активное вещество (ПАВ), водные растворы которого, обладая пониженным поверхностным натяжением, применяются для тушения пожаров, прежде всего, плохо смачивающихся водой твёрдых гидрофобных горючих веществ (древесина, хлопок, торф, резина, угольная пыль и др.).
Применение смачивателей
Смачиватели применяются для:
Общие сведения
Как огнетушащее вещество, вода плохо смачивает твёрдые материалы из-за высокого поверхностного натяжения (72,8-103Дж/м 2 ), что препятствует ее быстрому распределению по поверхности, прониканию вглубь горящих твёрдых материалов и замедляет охлаждение.
Для уменьшения поверхностного натяжения и увеличения смачивающей способности в воду добавляют поверхностно-активные вещества (ПАВ). На практике используют растворы ПАВ (смачивателей), поверхностное натяжение которых в 2 раза меньше, чем у воды. Оптимальное время смачивания 7-9 с. Соответствующие этому времени концентрации смачивателей в воде считают оптимальным и рекомендуют для тушения. Применение растворов смачивателей позволяет уменьшить расход воды на 35-50% и снизить на 20-30%, что обеспечивает тушение одним и тем же объемом огнетушащего вещества на большей площади. Рекомендуемые концентрации смачивателей (%), в водных растворах для тушения пожаров приведены в таблице.
Рекомендуемые концентрации смачивателей
Смачиватель | Оптимальная концентрация (% к воде) |
Смачиватель ДБ | 0,2-0,25 |
Сульфанол | |
НП-1 | 0,3-0,5 |
НП-5 | 0,3-0,5 |
Б(Смачиватель) | 1,5-1,8 |
Никаль НБ | 0,7-0,8 |
Вспомогательное вещество | |
ОП-7 | 1,5-2,0 |
ОП-8 | 1,5-2,0 |
Эмульгатор ОП-4 | 1,95-2,1 |
Пенообразователь | |
ПО-1 | 3,5-4,0 |
ПО-1Д | 6,0-6,5 |
Рабочая концентрация смачивателей составляет, как правило, от 0,1 % до 3 %.
Молекулы ПАВ, как правило, состоят из длинной неполярной и короткой полярной частей. За счёт своего дифильного строения ПАВ концентрируются на границе раздела воздух – жидкость, при этом полярная часть молекулы (гидрофильная) растворена в воде, а неполярная (гидрофобная) обращена в воздух. Благодаря этому смачиватель становится посредником контакта между молекулами воды и молекулами трудносмачиваемого твёрдого гидрофобного вещества. Хорошее смачивание и растекание возможно при высокой адгезии (когда молекулярная природа жидкости и твёрдого тела близки) и при низкой когезии (когда поверхностное натяжение жидкости мало).
При тушении раствором смачивателя огнетушащая эффективность воды повышается в 1,5-2 раза.
Ранее, когда в России основными пенообразователями, применяемыми для тушения пожаров, были протеиновые пенообразователи, обладающие плохой смачивающей способностью, наряду с пенообразователями выпускались в качестве смачивателей индивидуальные биологически неразлагаемые химические соединения (НБ, ЦБ, ОП-7, ОП-10 и др.). В настоящее время роль смачивателя выполняют отечественные пенообразователи общего назначения (ПО-ЗНП, ПО-6ТС, ТЭАС и др.), которые выпускаются в жидком виде и могут быть использованы для получения пены.
В России стандартная проверка смачивающей способности и выбор рабочей концентрации пенообразователя осуществляются по ГОСТ Р 50588-2012 «Пенообразователи для тушения пожаров. Общие технические требования и методы испытаний» и заключаются в определении времени смачивания рабочим раствором гидрофобной ткани.
Требования к смачивателям
Согласно вышеуказанному ГОСТу смачиватель должен соответствовать следующим техническим характеристикам:
Физические свойства смачивателей
Ориентация молекул смачивателя в поверхности воды
Основное физическое свойство растворов смачивателей – уменьшение поверхностного натяжения, улучшающее смачивающую способность воды.
Из приведенных закономерностей следует, что вода стремится уменьшить свою поверхность, поэтому капелька воды принимает форму шара. Однако при добавке в воду смачивателя поверхностное натяжение уменьшается и капля теряет шарообразную форму.
Молекулы смачивателя адсорбируются на поверхности воды и концентрируются с образованием мономолекулярного слоя.
Трудно смачиваемые вещества (например, резина, каменноугольная или корковая пыль) притягиваются гидрофобной частью молекулы. Гидрофильная часть направлена в воду, благодаря чему смачиватель становится посредником контакта между молекулами воды и молекулами трудносмачиваемого вещества.
Огнетушащая эффективность смачивателей
Некоторые твёрдые материалы (например, резина, угольная пыль, древесная мука, волокнистые материалы, торф) или совсем не тушатся водой без смачивателя, или тушатся с трудом, т.е. с большим расходом воды.
Влияние смачивателя на форму капель воды
Капля обычной воды на поверхности вещества
Капля воды со смачивателем
При тушении тлеющего пожара вода со смачивателем, поданная в очаг горения, прежде всего локализует горение, препятствуя появлению газа в зоне пламени. В охлажденный очаг пожара смачивающий раствор проникает широким фронтом и тушит его интенсивнее, чем вода без смачивателя. Такой процесс возможен лишь тогда, когда охлаждение настолько сильно, что смачивающий раствор проникает, не испарившись. В зонах пожара, где вода быстро испаряется и не оказывает охлаждающего действия, огнетушащая эффективность воды со смачивателем равна эффективности чистой воды.
Хотя применение воды со смачивателями при тушении указанных твёрдых материалов имеет ряд преимуществ, в России они используются не слишком широко.
Рекомендуем также к прочтению познавательный материал: «Огнетушащие вещества охлаждения»
Применение смачивателей при тушении пожаров
Ниже приведены примеры тушения пожаров растворами смачивателей.
При тушении каучука на Народном предприятии шинного завода и Фюрстенвальде в 1963 году (несколько штабелей размером 4 х 4 х 2 м) было установлено: 5%-ным раствором смачивателя (неомерпип FX), распыляемым из трех насадков Арекс-Н-200 потушили пожар за 1 мин 54 сек. Однако после тушения произошло повторное воспламенение. Сплошной и распыленной струями чистой воды при тех же условиях тушения добиться не удалось.
Результаты тушения пожаров в жилых домах и квартирах раствором смачивателя (сульфопол NP-1) приведены в таблице. Выводы из 175 крупных опытов тушения пожаров горючих веществ классов А и В таковы:
Тушение пожаров в жилых домах растворами смачивателей
Огнетушащие вещества охлаждения
Огнетушащие вещества охлаждения – это вещества обладающие физико-химическими свойствами, которые непосредственно воздействуют на процесс горения и создают условия для его прекращения (вода, водные растворы солей, с добавками смачивателей – поверхностно-активных веществ, а также углекислота в твердом агрегатном состоянии – в виде снега).
Вода – основное огнетушащее вещество охлаждения, наиболее доступное и универсальное. Хорошее охлаждающее свойство воды обусловлено ее высокой теплоемкостью [4187 Дж/(кг/град), 1 ккал/(кг/град)] при нормальных условиях. При попадании на горящее вещество вода частично испаряется и превращается в пар.
При испарении 1 литра воды образуется 1700 литров пара, которым кислород вытесняется из зоны пожара. Вода, имея высокую теплоту парообразования [2236 кДж/кг (534 ккал/кг)], отнимает от горящих материалов и продуктов горения большое количество теплоты. Вода обладает высокой термической стойкостью; ее пары только при температуре выше 1700 °С могут разлагаться на водород и кислород. В связи с этим тушение водой большинства твердых материалов (древесины, пластмасс, каучука и др.) безопасно, так как их температура горения не превышает 1300 °С.
Вода как огнетушащее вещество охлаждения
Не вступает в реакцию почти со всеми твердыми горючими веществами, за исключением щелочных и щелочноземельных металлов (калия, натрия, кальция, магния и др.) и некоторых других веществ.
Таблица реакции воды с веществами и материалами
Вещество или материал
Результат воздействия воды
Наибольший огнетушащий эффект достигается при подаче воды в распыленном состоянии, так как увеличивается площадь одновременного равномерного охлаждения, вода быстро нагревается и превращается в пар, отнимая большое количество теплоты. Чтобы избежать ненужных потерь, распыленную воду применяют в основном при сравнительно небольшой высоте пламени, когда можно подать ее между пламенем и нагретой поверхностью (например, при горении подшивки перекрытий, стен и перегородок, обрешетки крыши, волокнистых веществ, пыли, темных нефтепродуктов и др.).
Распыленные водяные струи применяют также для снижения температуры в помещениях, защиты от теплового излучения (водяные завесы), для охлаждения нагретых поверхностей строительных конструкций сооружений, установок а также для осаждения дыма.
Сплошные струи используют при тушении наружных и открытых внутренних пожаров, когда необходимо подать большое количество воды на значительное расстояние или если воде необходимо придать ударную силу. (Например, при тушении газонефтяных фонтанов, открытых пожаров, а также пожаров в зданиях больших объемов, когда близко подойти к очагу горения невозможно; при охлаждении с большого расстояния соседних объектов, металлических конструкций, резервуаров, технологических аппаратов).
Сплошные струи нельзя применять там, где может быть мучная, угольная и другая пыль, а также при горении жидкостей в резервуарах. Для равномерного охлаждения площади горения сплошную струю воды перемещают с одного участка на другой. Когда с увлажненного горючего вещества сбито пламя и горение прекращено, струю переводят в другое место. Как огнетушащие вещество, вода плохо смачивает твердые материалы из-за высокого поверхностного натяжения (72,8–103 Дж/м 2 ), что препятствует быстрому распределению ее по поверхности, прониканию в глубь горящих твердых материалов и замедляет охлаждение.
Смачиватели
Для уменьшения поверхностного натяжения и увеличения смачивающей способности в воду добавляют поверхностно-активные вещества (ПАВ). На практике используют растворы ПАВ (смачивателей), поверхностное натяжение которых в 2 раза меньше, чем у воды. Оптимальное время смачивания 7–9 секунд. Применение растворов смачивателей позволяет уменьшить расход воды на 35–50 %, что обеспечивает ликвидацию горения одним и тем же объемом огнетушащего вещества на большей площади.
Рекомендуемые концентрации смачивателей в водных растворах для тушения пожаров приведены в таблице.
Рекомендуемые концентрации смачивателей
Смачиватель
Оптимальная концентрация в воде, %
Твердый диоксид углерода (углекислота)
При этом он является средством не только охлаждения, но и разбавления горящих веществ. Теплота испарения твердого диоксида углерода значительно меньше, чем воды – 0,57·103 кДж/кг (136,9 ккал/кг), однако, из-за большой разницы температур твердого диоксида углерода и нагретой поверхности, поверхность охлаждается гораздо быстрее, чем при применении воды. Твердый диоксид углерода прекращает горение всех горючих веществ, за исключением магния и его сплавов, металлического натрия и калия.
Он неэлектропроводен и не взаимодействует с горючими веществами и материалами, поэтому его применяют при тушении электроустановок, двигателей и моторов, а также при пожарах в архивах, музеях, выставках и т.д. подают твердый диоксид углерода из огнетушителей, передвижных и стационарных установок.
Источник: учебник Пожарная тактика “Основы тушения пожаров”, В. В. Теребнев, А. В. Подгрушный, Москва 2012.
Пенообразователи и поверхностно-активные вещества для тушения пожаров: классификация пенообразователей и пены
Специфика пен, используемых для тушения пожаров, заключается в первую очередь в способе их получения – образовании пены на сетках или тонких перфорированных листах. Формирование пенной структуры этим способом происходит за доли секунды, и здесь определяющими являются свойства смачивающих пленок на металлической поверхности и свободных пленок в процессе их быстрой деформации и контактного взаимодействия.
Состав пены для тушения пожаров
Важнейшим показателем, характерным для процесса образования противопожарной пены, является наличие предельного давления, под которым водный раствор подается в генератор пены. При достижении предельного давления раствора (как правило, это 5-6 атм.) происходит «срыв» процесса пенообразования и вместо пены из генератора раздельно выходят распыленный раствор и воздух. Существует критическая скорость формирования пены, превышение которой вызывает сбой процесса. Водный раствор пенообразователя должен содержать вещества, которые обеспечивают стабильность процесса пенообразования и устойчивость пены в процессе тушения пламени.
Второй характерной особенностью противопожарной пены является ее контактная устойчивость на поверхности горючих жидкостей и химических соединений, определяющая эффективность процесса тушения и способность предотвращения повторного возгорания жидкости. Сочетание специфического способа образования пены с возможностью подбора состава пенообразующей композиции позволяет ставить вопрос о направленном регулировании физико-химических свойств пены как путем изменения режима образования пены, так и варьированием рецептуры пенообразователя.
Связующим звеном при анализе процесса образования пены на сетках, механизма стабилизации и контактного разрушения пены являются электроповерхностные свойства границы раздела «углеводород – раствор ПАВ – воздух».
Для пены и системы «пена – жидкость» их значение оказалось важным практически на всех этапах существования:
Основная трудность при изучении пены заключается в невозможности создания ее эталонного образца, поэтому важной стороной работы является создание устройств и методов измерения физико-химических параметров пены и обеспечения контролируемых и воспроизводимых условий ее получения.
Комплекс экспериментальных исследований и теоретических обобщений процесса образования пены, принципы регулирования свойств пены с различными газами-наполнителями, обеспечение контактной устойчивости пены к полярным жидкостям и способы ее «модифицирования» в сочетании с методологией определения электроповерхностных свойств пены и пленок проверены при создании новых пенообразователей и способов тушения нефти и нефтепродуктов.
Огнетушащая эффективность пены определяется комплексом физико-химических параметров. Причем в зависимости от назначения важнейшими свойствами пены могут быть такие, как изолирующая способность, термическая устойчивость, вязкость, предельное сдвиговое напряжение, кратность, самопроизвольное растекание, пленкообразующее действие и т.д. Обеспечение этих свойств осуществляется путем выбора состава пенообразующего раствора и способа получения пены.
Что такое пенообразователь и его применение в пожаротушении
Термин «пенообразователь» относится к концентрированному водному раствору, на основе которого получают рабочий раствор пенообразователя, а не к устройству, с помощью которого получают пену. Такие устройства называют генераторами пены или пеногенераторами. Существуют пеногенераторы различных типов, например эжекционного типа, с принудительной подачей воздуха, барботажные и т.д.
По мере развития промышленности возникали новые требования к качеству пены, что вело к синхронному совершенствованию состава пенообразователя и созданию новых конструкций пеногенераторов.
В настоящее время трудно определить авторство на конкретные виды генераторов пены, поскольку приблизительно одинаковые конструкции производятся различными компаниями в Европе и в Америке. При анализе литературы, включая материалы рекламного характера, авторы книги указывали авторство изделия, если находили его в патентном описании компании.
Составы пенообразователей, как правило, не раскрываются фирмами-производителями, поэтому бывает трудно отнести их к определенному классу. В связи с этим авторы книги не могут нести ответственность за информацию, предоставляемую компаниями-производителями.
Свойство, качество и эффективность пенообразователей тесно связаны с названием фирм, которые организовали их производство. С течением времени различные фирмы – производители пенообразователей, появлявшиеся на рынке пожарной техники, распадались или меняли название.
К началу 2000 года ряд известных в области противопожарной техники компаний объединились в рамках нескольких концернов, таких как «Тайко», «Кидде», «Вильяме», а такая известная компания, как «ЗМ», покинула рынок пенообразователей для пожаротушения.
Применяемые для пожаротушения пенообразователи, называемые еще пенными концентратами, представляют собой концентрированные растворы поверхностно-активных веществ (ПАВ). Для получения пенообразующего раствора исходный пенный концентрат – пенообразователь разбавляют на 94-99 % водой так, чтобы содержание пенообразователя в рабочем растворе составляло не более 6 % об.
Концентрация рабочего раствора зависит от типа пенообразователя. Например, пенообразователь ПО-ЗАИ (Ива) применяется в 3 %-ной концентрации, а ПО-1Д – в 6 %-ной. Такое различие связано с природой ПАВ, на основе которых изготовлены эти пенообразователи.
Природа молекул ПАВ определяет возможность образования пены высокой кратности, необходимой для тушения пожаров в трюмах кораблей и складских помещениях.
Пенообразователи (пенные концентраты) представляют собой многокомпонентные водные растворы, в состав которых входят один или несколько видов поверхностно-активных веществ; добавки, обеспечивающие термическую и гидростатическую устойчивость пены, низкую температуру замерзания пенного концентрата; ингибиторы коррозии и вещества, обеспечивающие совместимость перечисленных выше компонентов.
Химическое строение и состав молекул ПАВ определяют характер взаимодействия пены с горючей жидкостью, что в итоге отразится на «загрязнении» (сорбции) пены горючим, на самопроизвольном растекании пены и водного раствора по углеводородам и на обеспечении контактной устойчивости пены на полярных жидкостях, таких как низкомолекулярные спирты.
Для получения пены средней кратности на генераторах эжекционного типа используются пенообразователи на углеводородной поверхностно-активной основе. Эти вещества обеспечивают высокую пенообразующую способность водного раствора, но пены на их основе обладают низкой термической устойчивостью и смешиваются с нефтью и нефтепродуктами при погружении в топливо. Пены низкой кратности на основе углеводородных ПАВ практически не применяются для тушения пожаров углеводородов, поскольку они хорошо смешиваются с нефтепродуктами и утрачивают изолирующие свойства.
Низкократные пены, полученные на основе пенообразователей с фторированными ПАВ, обладают особыми свойствами, которые обусловлены сверхнизким поверхностным натяжением рабочих растворов этих веществ. Этот эффект позволяет предотвратить смешение пены с горючим и обеспечить образование и самопроизвольное растекание водного раствора из пены по поверхности нефтепродукта в виде тонкой водной пленки.
По природе поверхностно-активной основы пенообразователи делятся на протеиновые (фторпротеиновые) и синтетические (фторсинтетические).
Отечественный ГОСТ разделяет пенообразователи на составы общего и специального назначения, причем «общего» означает широкую доступность пенообразователя по стоимости. Пенообразователи специального назначения используются для тушения полярных горючих жидкостей, таких как ацетон или этиловый спирт.
Фторсодержащие пенообразователи также относятся к группе специальных и разрабатывались, в первую очередь, как пленкообразующие и для тушения пожаров низкомолекулярных спиртов.
Производившиеся в период 70-90-х годов прошлого столетия отечественные пенообразователи, такие как ПО-1, ПО-1Д и ПО-6К, относились к категории биологически жестких, поэтому их производство прекращено. Биологически мягкие углеводородные пенообразователи типа ПО-ЗА (ПО-ЗАИ), ПО-ЗНП, «Сампо», ТЭАС (ПО-6ТС) и их аналоги выпускаются в небольших количествах. Как показала практика, они недостаточно эффективны при тушении пожаров нефтепродуктов в резервуарах.
Наиболее эффективными в этом плане являются пенообразователи на основе фторсинтетических ПАВ, пена на основе которых способна формировать водные пленки, самопроизвольно растекающиеся по нефти и нефтепродуктам. Эти пенообразователи получили общее название – водные пленкообразующие. К этой группе пенообразователей относятся отечественные составы «Подслойный» и «Мультипена» (г. Новороссийск).
Характеристика пенообразователей
Характеристика популярных пенообразователей
Требования к пенообразователям
К фторсодержащим пенообразователям, которые используются в системе подслойного тушения пожаров, предъявляются дополнительные требования:
Пенообразующая способность таких пенообразователей не должна зависеть от жесткости воды, использованной для приготовления рабочего раствора.
Поверхностно активные вещества пенообразователей для тушения пожаров
Пены получают из водных растворов поверхностно-активных веществ. Основное отличительное свойство этих веществ заключается в их способности самопроизвольно концентрироваться, адсорбироваться на границе раздела фаз «вода – воздух» и «вода – углеводороды».
Характерной особенностью ПАВ-пенообразователей является их способность к образованию мицелл, в которых ПАВ аккумулируются, если их концентрация превысила критическое значение, называемое критической концентрацией мицеллообразования (ККМ). При появлении свободной поверхности, например при пенообразовании, молекулы ПАВ из мицелл поступают на поверхность пенных пленок. Вновь образованная поверхность пленок будет стабильной до тех пор, пока запас молекул в мицеллах не исчерпается.
ПАВ – это, как правило, вещества, синтезированные на белковой или синтетической основе, например на базе углеводородов или фторуглеродов, путем присоединения к ним гидрофильной группы, повышающей их растворимость в воде.
ПАВ снижают поверхностное натяжение воды на границе с воздухом и этим обеспечивают эластичность водных пленок в течение всего времени существования. Снижение поверхностного натяжения воды молекулами ПАВ достигается за счет их самопроизвольного концентрирования на поверхности. Причем молекулы ПАВ ориентируются углеводородными гидрофобными концами к воздуху, а полярным гидрофильным – к воде. Поэтому, если подойти сверху, поверхность водного раствора ПАВ представляется как углеводородная, а поверхностное натяжение углеводородов намного ниже, чем воды. В результате адсорбции поверхностное натяжение воды оказывается заметно пониженным при растворении в ней даже очень небольшого количества ПАВ.
Склонность молекул ПАВ к адсорбции объясняется их дифильным строением, т.е. в одной молекуле имеются две части, которые резко различаются по растворимости в воде: гидрофобная часть – это углеводородная цепочка и гидрофильная часть, представляющая собой солевой остаток кислоты. Такое химическое строение характерно для веществ, относящихся к группе анионных ПАВ. Другие виды ПАВ также содержат гидрофильную и гидрофобную части, но их химическое строение иное.
При растворении в воде молекулы ПАВ вытесняются из раствора на поверхность из-за плохой совместимости гидрофобной части молекул с водой. По мере увеличения концентрации и достижения некоторой предельной величины молекулы ПАВ образуют ассоциаты, называемые мицеллами, в которых гидрофильные части молекул обращены наружу, а гидрофобные – внутрь. Мицеллярные растворы являются термодинамически устойчивыми коллоидными системами. Концентрация ПАВ, при которой начинается образование мицелл, называется критической концентрацией мицеллообразования.
В зависимости от знака заряда, который приобретает поверхность при адсорбции молекул, все поверхностно-активные вещества разделяются на четыре группы:
Такое поведение ПАВ зависит от характера диссоциации молекул. Так, анионные ПАВ диссоциируют с образованием поверхностно-активного аниона, а катионные образуют поверхностно-активный катион.
Примеры:
Величина адсорбции молекул ПАВ на границе «раствор – воздух» определяется на основании анализа зависимости поверхностного натяжения водного раствора от концентрации ПАВ.
Предполагается, что стабильной является пенная пленка, поверхность которой покрыта плотным монослоем молекул ПАВ, поэтому максимальная поверхность, которую может стабилизировать пенообразователь, определяется концентрацией ПАВ, величиной ККМ и величиной адсорбции молекул в плотном монослое на границе раздела фаз.
Классификация пенообразователей и пен
Пенообразователи и пены различаются по химической природе поверхностно-активного вещества, способу образования, назначению, структуре.
По природе основного поверхностно-активного вещества пенообразователи делятся на:
По способу образования пенообразователи делятся на:
По назначению пенообразователи различают:
По структуре пены подразделяются на высокодисперсные и грубодисперсные.
По кратности пены бывают:
Типы применяемых пенообразователей и их параметры
Пенообразователи целевого назначения отличаются определенной направленностью состава. Например, образующие очень устойчивую пену, длительно не разрушающуюся на открытом воздухе. Такие пены хорошо сохраняются на поверхности потушенного бензина и нефти, препятствуя повторному воспламенению горючего. Пенообразователи являются многокомпонентными растворами, например пенообразователь «Сампо», в состав которого входят алкилсульфаты, высшие жирные спирты, карбамид, бутанол и бутилацетат.
Для тушения спиртов и водорастворимых органических соединений используют пенообразователи, в состав которых входят природные или синтетические полимеры, которые коагулируют при смешении водного раствора с растворителем. В результате коагуляции на поверхности органического растворителя образуется толстая полимерная пленка, которая
механически защищает пену от контакта с растворителем.
Широко использовалось природное высокомолекулярное соединение – альгинат натрия, который добывают из морских водорослей – ламинарий. При контакте пены со спиртом полимер коагулирует, образуя толстую полимерную пленку на поверхности спирта, которая предотвращает непосредственный контакт пены со спиртом.
К пенообразователям целевого назначения также относятся морозоустойчивые пенообразователи, которые содержат от 15 до 35 % полиэтиленгликолей. Универсальные и многоцелевые отечественные пенообразователи «Форэтол» и «Универсальный» пригодны для тушения любых горючих жидкостей, но особенно высока их эффективность при тушении метанола и этилового спирта, причем тушение происходит без существенного их разбавления водой. Пленкообразующие пенообразователи, например «Подслойный» (Новороссийск), способны самопроизвольно формировать на поверхности углеводородов водную пленку, которая предотвращает поступление паров воды
в зону горения. Этот эффект достигается за счет резкого понижения поверхностного натяжения водного раствора до величины порядка 15–18 мН/м.
- О чем говорит неприятный запах мочи
- разрушение штукатурного слоя стен