слайд в бурении что это

Оперативная оценка насыщенности пород по газовому каротажу.

Авторы: Тарасова Е.В., Миникеев Р.Р., ООО «Петровайзер»
Издание: «Каротажник» №6 2015 г.

В настоящее время геолого-технологические исследования стали необходимым инструментом контроля проводки, без них не обходится бурение, капитальный ремонт практически ни одной скважины. Потребителями информации ГТИ являются геологическая и технологическая служба Заказчика и буровой компании и все службы бурового сервиса. Информация ГТИ широко используется при проектировании строительства скважин, разведки, освоения и эксплуатации месторождений, подсчете запасов нефти и газа.

Главное направление эволюции и последних достижений в области ГТИ направлено на снижение стоимости бурения скважин путем добавления новых видов услуг:

В 2013-15гг специалистами ООО «Петровайзер» произведен контроль бурения и выдано заключение о результатах ГТИ, насыщении коллекторов по результатам геохимических исследований ГТИ по 370 скважинам 24 месторождений на территории Центрального района России и Ненецкого АО, Западной и Восточной Сибири, Сахалина (ЗАО «Ванкорнефть», ОАО «Удмуртнефть», ООО «РН-Сахалинморнефтегаз», ОАО АНК «Башнефть»). Более 90% исследований проведено в наклонно-направленных и горизонтальных скважинах.

Поскольку технология бурения наклонно-направленных и особенно горизонтальных скважин существенно отличается от бурения вертикальных стволов, отличаются и методики интерпретации разрезов скважин.

При бурении горизонтальных стволов механическая скорость проходки зачастую зависит не от физических свойств пород, их литологии, а от технологии проводки скважины, и возможного ограничения скорости проходки по технологическим/геологическим причинам, что может привести к ошибочной интерпретации результатов механического каротажа.

При интерпретации рекомендуется рассматривать как неясное насыщение либо неопределенная литологическая характеристика моменты наращиваний, других перерывов в бурении, поскольку в эти моменты наиболее вероятны искажения данных как механического, так и газового каротажа (за счет технологических причин, программного и человеческого факторов). К погрешностям в определении параметров ГТИ после наращивания приводят высокие скорости проходки (до 60-80м/ч и более), отсутствие возможности достоверного определения нагрузки на долото и пр. При наличии дополнительной информации эти пробелы могут быть заполнены.

При слайдировании при помощи ВЗД бурильная колонна не вращается, буровой шлам должным образом не выносится на поверхность и может скапливаться вокруг бурильной колонны, в результате чего создается прихватоопасная ситуация и затрудняется возможность интерпретации данных по шламу, искажаются результаты механического каротажа.

На участке разреза (рис. 1) бурение производится при помощи ВЗД в режиме слайд-ротор. Литологическая характеристика, коллекторские свойства пород, насыщенность практически не меняются. Однако скорость проходки существенно снижается, изменяется кажущаяся нагрузка на долото, газ и шлам выходит неравномерно, пачками. При работе ротором возрастает кажущаяся нагрузка на долото, скорость проходки и давление нагнетания. При интерпретации результатов газового каротажа необходимо учитывать не связанное с насыщением пластов снижение газопоказаний в моменты наращиваний.

слайд в бурении что это. Смотреть фото слайд в бурении что это. Смотреть картинку слайд в бурении что это. Картинка про слайд в бурении что это. Фото слайд в бурении что это

Рис. 1 Бурение при помощи ВЗД в режиме слайд-ротор.

Роторная управляемая система (РУС) не использует режим слайдирования для контроля направления скважины. Она постоянно вращается, направляя долото по желаемой траектории. Вращение всей бурильной колонны предотвращает прихваты и спиральное скручивание труб, обеспечивая передачу необходимой нагрузки на долото для оптимизации скорости проходки.

При наборе кривизны с использованием РУС (рис. 2) скорость проходки также зависит не только от литологии пород, но в меньшей степени, чем при бурении ВЗД. В моменты наращиваний отмечается не связанное с насыщением пластов снижение газопоказаний и изменение состава газа.

слайд в бурении что это. Смотреть фото слайд в бурении что это. Смотреть картинку слайд в бурении что это. Картинка про слайд в бурении что это. Фото слайд в бурении что это

Рис. 2 Кривая механического и газового каротажа при наборе кривизны с использованием РУС.

По литературным данным, роторная управляемая система предпочтительна при бурении сложных участков с малым радиусом допуска. Высокопроизводительный забойный двигатель (ВЗД) может обеспечивать такие же результаты, что и РУС, в более мощных пластах и в случае, когда слайдирование будет сведено к минимуму.

На многих месторождениях бурение, в том числе в горизонтальном стволе, осуществляется с очень высокими скоростями (средняя скорость до 80 м/час). Это выгодно в коммерческом отношении, может способствовать поддержанию устойчивости ствола за счет снижения количества СПО и прочих гидродинамических воздействий на пласт. Однако с точки зрения интерпретации результатов ГТИ возникают дополнительные сложности при литологическом расчленении разреза, отборе шлама, при привязке газа и шлама и пр.

В большинстве случаев, несмотря на сложности интерпретации в горизонтальных стволах, пласты – неколлекторы выделяются снижением скорости проходки и появлением аргиллитов в шламовой смеси.

При высокой скорости проходки – 70-85м/ч – по механическому каротажу (Рис.3) четко отбился пласт аргиллита снижением скорости проходки до 20-30м/ч, с задержкой на время отставания пласт отразился на диаграмме газового каротажа.

слайд в бурении что это. Смотреть фото слайд в бурении что это. Смотреть картинку слайд в бурении что это. Картинка про слайд в бурении что это. Фото слайд в бурении что это

Рис. 3 Выделение пласта аргиллитов 3585-3670м в горизонтальном стволе по механическому и газовому каротажу

Помимо технологии проводки скважины значительное влияние на результаты механического и газового каротажа и геологических исследований ГТИ оказывает траектория ствола скважины. При бурении «вверх» под углом более 90° происходит значительное снижение скорости проходки, не связанное с литологией пород. В период наращиваний и перерывов в циркуляции выделившийся в процессе бурения газ в соответствии с законами физики устремляется вверх, но не к устью скважины, а к забою, что приводит к перемешиванию вновь выделившегося в процессе бурения и находящегося в стволе скважины газа, неверной привязке газа, к помехам при интерпретации.

Сложности при интерпретации результатов ГТИ возникают также при бурении по синусоидальной траектории.

По результатам механического и гидродинамического каротажа производится расчленение разреза и выделение потенциальных коллекторов.

Характер насыщения коллекторов оценивается по результатам интерпретации данных газового каротажа, люминесцентно-битуминологического анализа шлама.

Формирование шламовых смесей и их характеристики при бурении в участках набора кривизны и в горизонтальных стволах также значительно отличаются от традиционных академических. Зачастую шлам размолот до размеров зерен, что не позволяет достоверно определить литологию пород, их коллекторские свойства и насыщение.

Первым этапом интерпретации газового каротажа является оценка качества результатов. Анализируется форма кривых газового каротажа, выполняется проверка соотношения газовых компонентов С1>C2>C3>C4.

Если соотношение не выполняется, рассматриваются следующие варианты:

Если результаты газового каротажа признаны корректными, производится их интерпретация.

Свойства углеводородов изучаемых отложений меняются в широких пределах от «сухого» (метанового) газа до «тяжелой» нефти с низким газовым фактором, до 3м 3 /м 3 смеси азот+метан, содержащей до 70% азота. Поэтому как при оперативном анализе, так и при выдаче окончательного заключения о насыщении коллекторов применяется комплекс из нескольких известных методик. Каждая из них имеет свои достоинства, недостатки и область применения.

Характер насыщения выделенных потенциальных коллекторов определяется по составу газа по:

Количественная интерпретация газового каротажа осуществляется по остаточной нефтегазонасыщенности Fнг (для нефтяных и газоконденсатных залежей) и газонасыщенности Fг (для газовых залежей).

Метод ОПУС3 (обобщенный показатель углеводородного состава)

Производится расчет показателя ОПУС3 по формуле:

Переводной коэффициент для пересчета значений С1отн, С2отн, С3отн:

Далее производится количественный анализ газовой фазы и оценка характера насыщения пласта.

Для оценки характера насыщения по соотношениям Пикслера производится расчет отношения содержания метана в газе к содержанию остальных УВ компонентов: С12, С13, С14, С15. На рис. 4 пример графической оценки характера насыщения пласта по соотношениям Пикслера. Положение линий, разделяющих на классы, отличается для разных регионов.

слайд в бурении что это. Смотреть фото слайд в бурении что это. Смотреть картинку слайд в бурении что это. Картинка про слайд в бурении что это. Фото слайд в бурении что это

Рис 4 Пример графической оценки характера насыщения пласта по соотношениям Пикслера. Пласт с хорошими коллекторскими свойствами насыщен газоконденсатом либо смесью газ+нефть.

Метод X-log (методика «Geoservices»).

Производится расчет флюидных коэффициентов:

Фактор смачиваемости газа (Wh) (4)

Коэффициент отношения легких составляющих к тяжелым (Bh)

Определитель характерного признака нефти (Ch)

По комплексной оценке флюидных коэффициентов оценивается характер насыщения участка разреза.

Соотношения Старосельского В.И.

Комплексирование методик позволяет повысить эффективность оценки насыщенности, минимизировать вредные влияния добавок нефти в ПЖ (это влияние искажает результаты), отделить угольные пласты от нефтенасыщенных.

Установить жесткую границу между классами (газонасыщенные, конденсатонасыщенные, нефтегазонасыщенные, нефтенасыщенные, водонасыщенные породы) по результатам геохимических методов затруднительно и не всегда возможно. Граничные значения разделения на классы меняются в зависимости от состава газа, подбираются для разных регионов.

При низком коэффициенте дегазации в условиях газовой и газоконденсатной залежи можно получить хорошие результаты. В залежах нефти с низким газовым фактором результат практически нулевой, поскольку суммарные газопоказания практически не меняются при переходе от неколлектора к коллектору, состав газа искажается вплоть до полного абсурда, поскольку концентрация тяжелых компонентов, а иногда и метана оказывается ниже разрешающей способности газоаналитической аппаратуры. В отложениях с низким газовым фактором либо наличии снижающих степень дегазации добавок в ПЖ особенно важно наиболее полное извлечение УВ из раствора, в связи с чем остро стоит вопрос о повсеместном внедрении в практику работ высокоэффективных принудительных методов дегазации.

В большинстве случаев (при наличии материалов хорошего качества) по газовому каротажу отбивается вход в продуктивный пласт, смена насыщения газ-нефть (ГНК-газонефтяной контакт).

На рис. 5 по механическому и газовому каротажу, а также результатам исследования шлама отлично отбился и вход в проектный пласт

слайд в бурении что это. Смотреть фото слайд в бурении что это. Смотреть картинку слайд в бурении что это. Картинка про слайд в бурении что это. Фото слайд в бурении что это

Рис. 5 Изменение абсолютных газопоказаний и состава газа, увеличение механической скорости проходки и количества известняка в шламе при входе в проектный пласт

Разделение на классы продукт-вода по результатам геохимических методов зачастую возможно только с учетом количественных критериев – рассчитываются коэффициент разбавления газа в ПЖ, приведенные к объему раствора газопоказания, остаточная нефтегазонасыщенность (Fнг) либо газонасыщенность (Fг) и по критическим значениям этих параметров производится разделение на классы вода-продукт.

где Z – коэффициент сжимаемости газа;

Т, Рпл – пластовые температура (°С) и давление (атм),

Гпр – приведенные газопоказания, газосодержание промывочной жидкости (см 3 /л).

Нв – вертикальная глубина скважины, м;

где Кд – коэффициент дегазации, определяется при калибровке;

Е— коэффициент разбавления газа в ПЖ.

где – расход промывочной жидкости (л/сек),

ДМК – время бурения метра ствола скважины, мин/м,

dдол – номинальный диаметр долота, см.

Для количественной интерпретации газового каротажа необходимы величина газового фактора залежи (не всегда предоставляется Заказчиком) а также коэффициент дегазации ПЖ.

Контакт газ-нефть (ГНК) из применяемых методик наиболее корректно отбивается по ОПУС3 (рис.6).

слайд в бурении что это. Смотреть фото слайд в бурении что это. Смотреть картинку слайд в бурении что это. Картинка про слайд в бурении что это. Фото слайд в бурении что это

Рис.6 Оценка характера насыщения по газовому каротажу, контакт газ-нефть

По газовому каротажу практически все методики интерпретации по углеводородным газам, за исключением количественных, достоверно оценивают только фазовое состояние УВ в промывочной жидкости, но не учитывают коллекторские свойства пород и возможное насыщение пласта смесью воды с УВ. Так, сильноглинистые породы-неколлекторы, имеющие поровое пространство, часть которого может быть занята УВ, могут характеризоваться по газовому каротажу и ЛБА как нефтенасыщенные.

Для выявления в разрезе участков обводнения, водонефтяного контакта (ВНК) необходимо помимо количественной интерпретации газового каротажа использовать результаты контроля электропроводности ПЖ (ГТИ).

К сожалению, в распоряжении интерпретационной службы ГТИ в большинстве случаев отсутствует информация по неуглеводородным газам, использование которой существенно повышает эффективность разделения на классы «нефть» – «вода».

Для окончательных выводов о насыщении пластов обязателен анализ газового каротажа в функции времени, чтобы исключить диффузионные газовые пачки, образовавшиеся в процессе наращиваний, перерывов в циркуляции и пр.

Источник

slide drilling

Смотреть что такое «slide drilling» в других словарях:

Drilling — For other uses, see Drilling (disambiguation). Drilling is a cutting process that uses a drill bit to cut or enlarge a hole in solid materials. The drill bit is a multipoint, end cutting tool. It cuts by applying pressure and rotation to the… … Wikipedia

Slide lathe — Lathe Lathe (l[=a][th]), n. [OE. lathe a granary; akin to G. lade a chest, Icel. hla[eth]a a storehouse, barn; but cf. also Icel. l[ o][eth] a smith s lathe. Senses 2 and 3 are perh. of the same origin as lathe a granary, the original meaning… … The Collaborative International Dictionary of English

Four-slide — A four slide machine The same four slide machine from another angle A fou … Wikipedia

Coiled tubing — In the oil and gas industries, coiled tubing refers to metal piping, normally 1 to 3.25 in diameter, used for interventions in oil and gas wells and sometimes as production tubing in depleted gas wells, which comes spooled on a large reel. Coiled … Wikipedia

machine tool — machine tooled, adj. a power operated machine, as a lathe, used for general cutting and shaping of metal and other substances. [1860 65] * * * Stationary, power driven machine used to cut, shape, or form materials such as metal and wood. Machine… … Universalium

Earth Sciences — ▪ 2009 Introduction Geology and Geochemistry The theme of the 33rd International Geological Congress, which was held in Norway in August 2008, was “Earth System Science: Foundation for Sustainable Development.” It was attended by nearly… … Universalium

Deepwater Horizon explosion — This article is about the explosion. For the drilling rig and oil spill, see Deepwater Horizon (disambiguation). Deepwater Horizon explosion Anchor handling tugs and platform supply vessels combat the fir … Wikipedia

Lathe (metal) — Center lathe with DRO and chuck guard. Size is 460 mm swing x 1000 mm between centers A metal lathe or metalworking lathe is a large class of lathes designed for precisely machining relatively hard materials. They were originally designed to… … Wikipedia

Economic Affairs — ▪ 2006 Introduction In 2005 rising U.S. deficits, tight monetary policies, and higher oil prices triggered by hurricane damage in the Gulf of Mexico were moderating influences on the world economy and on U.S. stock markets, but some other… … Universalium

Lathe — A lathe (pronEng|ˈleɪð) is a machine tool which spins a block of material to perform various operations such as cutting, sanding, knurling, drilling, or deformation with tools that are applied to the workpiece to create an object which has… … Wikipedia

Источник

Применение осцилляторов для бурения скважин

Experience in using oscillators for drilling boreholes

KRUTIK E.N. 1
BORISOV M.S. 1
FUFACHEV O.I. 1
PATLASOV A.Yu. 1
POPOV A.M. 1
SINITSKIKH S.Yu. 1
1 Gidrobur-Servis LLC
Perm, 614025,
Russian Federation

Бурение наклонных и горизонтальных участков скважин с большим отходом от вертикального ствола осложняется недостаточной передачей нагрузки на долото из-за трения колонны о стенки скважины. В особенно сложных случаях возможны подвисания бурильной колонны, с ее последующим срывом и ударом о забой скважины. Удары крайне негативно сказываются на ресурсе оборудования, установленного в компоновку низа бурильной колонны. Одним из методов снижения трения колонны о стенки скважины является использование осцилляторов. В ООО «Гидробур-сервис» разработаны два типа осцилляторов. Изготовлены опытные образцы осцилляторов, создающих радиальные вибрации. В статье приведены результаты промысловых испытаний указанных образцов.
слайд в бурении что это. Смотреть фото слайд в бурении что это. Смотреть картинку слайд в бурении что это. Картинка про слайд в бурении что это. Фото слайд в бурении что это

Drilling of slanted and horizontal sections of boreholes with large distance from the vertical direction is hindered by insufficient transfer of load onto the drill bit due to friction between the drill pipe and walls of a borehole. «Stick-and-slip» effect and hitting the borehole bottom may occur in most complicated cases. Hits have extremely negative impact upon lifetime of drilling tools installed in the bottomhole assembly. One of the methods to reduce friction of the pipe against borehole walls is to use oscillators. Two types of oscillators have been designed by «Hydrobur-service» LLC. Pilot specimen of the oscillators, emitting radial vibrations, have been produced. This article contains results of field tests of the mentioned specimen.

В настоящее время интенсивно увеличиваются объемы бурения скважин, имеющих значительное отклонение от вертикали и увеличенный горизонтальный участок. При этом возрастают риски прихватов, подвисаний компоновки низа бурильной колонны (КНБК) с ее последующим срывом и ударов о забой скважины. Удары крайне негативно влияют на дорогостоящее оборудование КНБК, в частности на долото, телесистему и забойный двигатель, значительно снижая их ресурс. Для уменьшения (предотвращения) подвисаний и срывов бурильной колонны в состав бурового раствора вводят смазывающие добавки (нефтепродукты) или применяют растворы на углеводородной основе (РУО). Однако следует учитывать, что производители винтовых забойных двигателей (ВЗД) устанавливают ограничение на содержание нефтепродуктов в буровом растворе, обусловленное используемым в качестве обкладки статора материалом, и при бурении в данных условиях требуется использование винтовых забойных двигателей специального исполнения с маслобензостойкой эластомерной обкладкой.
Кроме того, эффективность использования данного способа для борьбы с подвисаниями КНБК снижается по мере увеличения протяженности горизонтального участка. Одним из устройств, позволяющих снизить негативные последствия срывов КНБК, является механизм подачи долота, разработанный компанией ООО «Гидробур-сервис» и проходящий опытно-промышленные испытания. Другим способом, позволяющим снизить вероятность подвисания КНБК, а также увеличить протяженность горизонтального участка скважины, является использование в составе бурильной колонны осцилляторов. Они, в общем случае, могут быть трех типов, в зависимости от направления вибраций: радиальные, осевые и радиально-осевые.
В ООО «Гидробур-сервис» разработаны осцилляторы двух типов, опытно-промышленные испытания прошли осцилляторы с радиальным направлением колебаний, выполненным на основе героторного многозаходного механизма.

Работа осциллятора осуществляется следующим образом. Устройство устанавливается в состав бурильной колонны на расстоянии 200 – 400 метров от долота, в соответствии с опытом применения осцилляторов буровыми подрядчиками на месторождениях. При прокачке бурового раствора через осциллятор приводится в движение массивный ротор, который, осуществляя планетарное движение, создает радиальные вибрации. Данные вибрации, определенной частоты и интенсивности, создают основной эффект при работе осциллятора, а их передача на колонну бурильных труб позволяет уменьшить силы трения колонны о стенки скважины. Наибольший эффект от работы осциллятора достигается в месте его установки при бурении в режиме «слайда».
Наиболее значимыми характеристиками осциллятора являются создаваемая им частота вибраций и сила воздействия на бурильную колонну, которая, в свою очередь, в значительной мере зависит от центробежной силы инерции ротора и жесткости бурильной колонны.
Частота вибраций героторного механизма определяется по формуле:
слайд в бурении что это. Смотреть фото слайд в бурении что это. Смотреть картинку слайд в бурении что это. Картинка про слайд в бурении что это. Фото слайд в бурении что это

где n – частота вращения выходного вала, z2 – число зубьев ротора.
Параметры, требуемые для определения частоты вибраций, согласно [1]:
1. Частота вращения выходного вала
слайд в бурении что это. Смотреть фото слайд в бурении что это. Смотреть картинку слайд в бурении что это. Картинка про слайд в бурении что это. Фото слайд в бурении что это

где Q – расход бурового раствора.
2. Рабочий объем механизма –
слайд в бурении что это. Смотреть фото слайд в бурении что это. Смотреть картинку слайд в бурении что это. Картинка про слайд в бурении что это. Фото слайд в бурении что это

где S – площадь живого сечения рабочих органов, T – шаг винтовой поверхности статора.
3. Площадь живого сечения рабочих органов –
слайд в бурении что это. Смотреть фото слайд в бурении что это. Смотреть картинку слайд в бурении что это. Картинка про слайд в бурении что это. Фото слайд в бурении что это

где e – эксцентриситет, Dk – контурный диаметр рабочих органов.
Центробежная сила инерции ротора определяется согласно [1] по формуле:
слайд в бурении что это. Смотреть фото слайд в бурении что это. Смотреть картинку слайд в бурении что это. Картинка про слайд в бурении что это. Фото слайд в бурении что это

где m – масса ротора осциллятора, ω = 2∙π∙n – угловая скорость.

слайд в бурении что это. Смотреть фото слайд в бурении что это. Смотреть картинку слайд в бурении что это. Картинка про слайд в бурении что это. Фото слайд в бурении что этоСогласно формуле (5) инерционная сила в значительной мере зависит от угловой скорости ротора. Однако данный параметр, связанный с частотой вибраций, требует отдельной оптимизации и подбора для более эффективной работы осциллятора. Значение эксцентриситета находится в крайне узком диапазоне, таким образом, масса ротора является оптимальной переменной для задания инерционной силы.

При выборе инерционной силы следует учитывать следующие факторы и параметры: усталостную прочность материала корпусных деталей осциллятора и бурильных труб; склонность резьбовых соединений к самопроизвольному развинчиванию при воздействии на них вибраций; повышение перепада давления, создаваемого осциллятором.

Жесткость бурильной колонны – постоянно меняющаяся величина, даже в пределах бурения одного интервала и с использованием одной и той же бурильной колонны, т.к. зависит от приложенной осевой нагрузки и крутящего момента, точек опоры бурильной колонны о стенки скважины, траектории скважины, проявления «баклинг» эффекта (потеря устойчивости бурильной колонны), геометрии бурильных труб и непосредственно корпусных элементов осциллятора и др. Определение жесткости бурильной колонны на заданном интервале является темой отдельного исследования, выходящего за рамки данной статьи. Для предварительной оценки и сравнения осцилляторов одного габарита и типа достаточно владеть информацией о его рабочей частоте и инерционной силе источника колебаний.
С целью проведения опытных работ в ООО «Гидробур-сервис» была изготовлена партия осцилляторов 178-го габарита. Был использован героторный механизм, создающий вибрации с частотой, зависящей от расхода рабочей жидкости, согласно рис. 1, и инерционной силой в зависимости от расхода рабочей жидкости, согласно рис.2. Рабочим расходом для рассматриваемых осцилляторов является от 25 л/с до 38 л/с.

Произведенные осцилляторы прошли испытания на скважинах Западной Сибири:
1. Еты-Пуровского месторождения, куст № 237,
скв. № 1923;
2. Еты-Пуровского месторождения, куст № 238,
скв. № 3770;
3. Еты-Пуровского месторождения, куст № 238,
скв. № 3771;
4. Месторождения «Крайнего» — куст № 103,
скв. № 6708;
5. Еты-Пуровского месторождения, куст № 259,
скв. № 3761;
6. Еты-Пуровского месторождения, куст № 259,
скв. № 3765.
Осцилляторы устанавливались на расстоянии 225 – 400 метров от долота.
Бурение осуществляется в режиме «слайда» (скольжения колонны без ее вращения) или при вращении бурильной колонны ротором. При бурении с помощью забойных двигателей управление траекторией скважины (изменение зенитного или азимутального углов) осуществляется только в режиме «слайда» за счет заранее установленного угла перекоса шпиндельной секции двигателя (при условии, что не используются роторные управляемые системы). Положение бурильной колонны определяется по показаниям телесистемы.

Закономерно, что при сокращении времени, потраченного на ориентирование КНБК (происходящего только в режиме «слайда»), увеличивается доля от общего времени бурения с вращением ротора и в связи с этим учитывалась общая фактическая средняя скорость на интервале, бурение которого происходило с использованием осциллятора. Для оценки полученных результатов было произведено их сравнение с плановой скоростью и с результатами, полученными при бурении с использованием осцилляторов других производителей. Сравнительная диаграмма с полученными результатами приведена на рис. 3. На рис. 4 показаны линии тренда мгновенной механической скорости проходки (МСП) в режиме «слайда» в зависимости от глубины бурения. На рисунках применено следующее обозначение:
«№ скважины (Производитель осциллятора)», где ГБС — ООО «Гидробур-сервис», др. произв. – другие производители осцилляторов.
Анализируя данные, представленные на рис. 3 и рис.4, можно обнаружить, что при бурении с использованием осцилляторов производства «Гидробур-сервис» (ГБС) выполнение запланированной скорости находилось в пределах от 90 % до 170 %. При использовании осцилляторов другого производителя фактическая МСП по отношению к запланированной была в пределах 70 % – 85 %. Также при бурении с осцилляторами ГБС скорость в режиме «слайд» (рис. 4) в среднем выше, чем при бурении с осцилляторами другого производителя, несмотря на меньшую запланированную МСП. Профиль скважины, геологические условия, оборудование КНБК и параметры бурового раствора для проведения сравнительного анализа были подобраны максимально идентичными. Часть обозначенных параметров приведена в табл.

слайд в бурении что это. Смотреть фото слайд в бурении что это. Смотреть картинку слайд в бурении что это. Картинка про слайд в бурении что это. Фото слайд в бурении что это

ВЫВОДЫ
Использование осциллятора в составе бурильной колонны позволяет сократить время на ориентирование, снижает количество подвисаний и срывов КНБК на забой при бурении в режиме «слайда», тем самым позволяет пробурить участок в режиме направленного бурения более качественно, снижает количество или полностью исключает необходимость введения смазывающих добавок. Однако были случаи, когда положительный эффект от работы осциллятора не наблюдался. На данный момент продолжаются опытно-промышленные испытания осцилляторов.слайд в бурении что это. Смотреть фото слайд в бурении что это. Смотреть картинку слайд в бурении что это. Картинка про слайд в бурении что это. Фото слайд в бурении что это

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *