правило буравчика магнитное поле

Правило буравчика кратко и понятно — формула и как пользоваться

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Тем, кому в школе плохо давалась физика, правило буравчика и сегодня — самая настоящая «терра инкогнита». Особенно если попытаться найти определение известного закона в Сети: поисковые системы тут же выдадут множество мудрёных научных объяснений со сложными схемами. Однако вполне возможно кратко и понятно объяснить, в чём же оно состоит.

В чём состоит правило буравчика

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Буравчик — инструмента для сверления отверстий

Оно звучит так: в случаях, когда направление буравчика совпадает с направлением тока в проводнике во время поступательных движений, то одновременно идентичным ему будет и направление вращения ручки буравчика.

В поисках направления

Чтобы разобраться, придётся всё-таки вспомнить школьные уроки. На них учителя физики рассказывали нам о том, что электроток — это движение элементарных частиц, которые при этом несут свой заряд по проводящему материалу. Благодаря источнику движение частиц в проводнике — направленное. Движение, как известно, жизнь, а потому вокруг проводника возникает не что иное, как магнитное поле, и оно тоже вращается. Но как?

Ответ даёт именно это правило (без использования каких-либо специальных инструментов), и результат оказывается весьма ценным, ведь в зависимости от направления магнитного поля парочка проводников начинает действовать по совершенно разным сценариям: либо отталкиваться друг от друга, либо, напротив, устремляться навстречу.

Использование

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Самый простой способ определения пути движений линий магнитного поля — применение правила буравчика

Представить это можно и так — на примере собственной правой руки и самого обычного провода. Провод кладём в руку. Четыре пальца крепко сжимаем в кулак. Большой палец указывает вверх — наподобие жеста, которым мы демонстрируем, что нам что-то нравится. В данной «раскладке» большой палец чётко укажет направление движения тока, тогда как остальные четыре — путь движений линий магнитного поля.

Правило вполне применимо в жизни. Физикам оно необходимо для того, чтобы определить направление магнитного поля тока, рассчитать механическое вращение скорости, вектор магнитной индукции и момент сил.

Кстати, о том, что правило применимо к самым разным ситуациям говорит и то, что существует сразу несколько его толкований — в зависимости от рассматриваемого каждого конкретного случая.

Источник

Правило буравчика магнитное поле

В узком понимании, правило буравчика – это мнемонический алгоритм, применяемый для определения пространственного направления магнитной индукции, в зависимости от ориентации электрического тока, возбуждающего магнитное поле.

Данное правило можно сформулировать следующим образом: Если острие буравчика (штопора, винта) направить вдоль вектора тока, то ориентация линий магнитной индукции совпадёт с направлением, в сторону которого вращается ручка буравчика в традиционном исполнении этого инструмента (с правым винтом).

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Главное правило

Рассмотренный нами пример является частным случаем алгоритма буравчика. Существует несколько вариантов формулировок правила, применяемых в различных ситуациях.

Общая, или главная формулировка, позволяет распространить данное правило на все случаи. Это вариант мнемонического правила, используемый для определения ориентации результирующей векторного произведения, называемого аксиальным вектором, а также для выбора связанного с этими векторами правого базиса (трёхмерной системы координат), что позволяет определить знак аксиального вектора.

Примечание: правый базис – условное соглашение, согласно которому выбирается декартовая система координат (положительный базис). Иногда полезно пользоваться зеркальным отражением декартовой системы (левый или отрицательный базис).

Главное правило позволяет определить направление в пространстве аксиальных векторов, важных для вычислений:

Хотя ориентация аксиального вектора является условной, она важна для расчётов: придерживаясь принятого алгоритма выбора, легче производить вычисления, без риска перепутать знаки.

Во многих случаях применяют специальные формулировки, хорошо описывающие частные случаи в конкретной ситуации.

Правило правой руки

В электротехнике очень часто применяют интерпретацию буравчика для правой руки.

Действия можно сформулировать так: «Если отведённый в сторону большой палец правой руки расположить вдоль проводника так, чтобы он совпал с направлением электрического тока, то остальные пальцы будут указывать направление образованных электрическим полем магнитных силовых линий.

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Сформулированные выше алгоритмы применяются и для соленоидов. Но разница в том, что в случае с соленоидом, рукоятку буравчика вращают так, чтобы это движение совпадало с направлением токов в витках, а продвижение винта буравчика указывает на ориентацию вектора магнитных линий в соленоиде.

При использовании правой руки, пальцами охватывают (условно) катушку так, чтобы направление тока в витках совпадало с пространственным расположением пальцев. Тогда большой палец укажет на ориентацию вектора электромагнитных линий внутри катушки. На рисунке изображены схемы, объясняющие алгоритмы определения направлений векторов для соленоидов.

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Не трудно догадаться, что данные правила можно применять с целью определения направления тока. Например, если с помощью магнитной стрелки определить устремление линий магнитной индукции, то путём применения правила буравчика (как вариант его формулировки для правой руки), легко определяется, в какую сторону течёт ток.

Специальные правила

Рассмотрим варианты главного правила буравчика для частных случаев. Применение таких правил часто упрощает процесс вычислений.

Для векторного произведения

Расположите векторы так, чтобы их начальные точки совпадали. Для этой ситуации правило буравчика звучит так:

Если один из векторов сомножителей вращать кратчайшим способом до совпадения направлений со вторым вектором, то буравчик, вращающийся подобным образом, будет завинчиваться в сторону, куда указывает векторное произведение.

По циферблату часов

При расположении векторов способом совпадения их начальных точек можно определить направление вектора-произведения с помощью часовой стрелки. Для этого необходимо мысленно двигать кратчайшим путём один из векторов-сомножителей в сторону другого вектора. Тогда, если смотреть со стороны вращения этого вектора по часовой стрелке, то аксиальный вектор будет направлен вглубь циферблата.

Правила правой руки, для произведения векторов

Существует два варианта правила.

Первый вариант:

Если согнутые пальцы правой руки направить в сторону кратчайшего пути для совмещения вектора-сомножителя с другим сомножителем (векторы выходят из одной точки), то отведенный в сторону большой палец укажет направление аксиального вектора.

Второй вариант:

Если правую ладонь расположить таким образом, чтобы получилось совпадение большого пальца с первым вектором-сомножителем, а указательного – со вторым, то отведённый в сторону средний палец совпадёт с направлением вектора произведения.

Для базисов

Перечисленные выше правила применяются также для базисов.

Например, правило буравчика для правого базиса можно записать так:

При вращении ручки буравчика и векторов таким образом, чтобы первый базисный вектор по кратчайшему пути стремился ко второму, то штопор будет завинчиваться в сторону третьего базисного вектора.

Указанные правила универсальны. Их можно переписать для механики с целью определения векторов:

Правила буравчика применяются также для уравнений Максвелла, что усиливает их универсальность.

Правило левой руки

В электротехнике довольно часто возникают вопросы, связанные с определением силы Ампера. Для решения задач подобного рода применяется алгоритм, называемый правилом левой руки – мнемоническое правило, описывающее способ
определения направленности Амперовой силы, выталкивающей точечный заряд либо проводник, по которому протекает электроток.

Алгоритм применения левой руки состоит в следующем: если левую ладонь будут перпендикулярно пронизывать силовые линии, а пальцы расположатся по направлению тока, то действующие на проводник силы будут устремляться в сторону, куда указывает оттопыренный большой палец.

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Интерпретация для точечного заряда

Заметим, что сформулированное правило справедливо для решения задач по определению ориентации силы Лоренца. Перефразируем правило: если ладонь левой руки поместить в магнитное поле таким образом, чтобы линии индукции перпендикулярно входили в неё, а выпрямленные пальцы направить в сторону движения положительного заряда, то направление вектора силы Лоренца совпадёт с отставленным на 90º большим пальцем.

Визуальная интерпретация правила левой руки представлена. Обратите внимание на то, что алгоритм действий для определения сил Ампера и Лоренца практически одинаков.

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Примечание: В случае с отрицательным зарядом вытянутые пальцы направляют в сторону, противоположную движению частицы.

Полезные сведения и советы

Советы: если вам необходимо определить пространственное расположение момента силы, под действием которой происходит вращение некоего тела – вращайте винт в ту же сторону. Условное врезание винта укажет на ориентацию вектора момента силы. Скорость вращения тела не влияет на направление вектора.

Полезно знать, что при вращении буравчика по ходу вращения тела, траектория его ввинчивания совпадёт с направлением угловой скорости.

Мнемонические правила для отдельных случаев

Представленные технологии не обязательны для использования при решении практических задач. Правило правой руки в физике используют в качестве вспомогательного инструмента. Вычисления делают с применением стандартных методик векторной алгебры. Однако достаточно часто требуется ускоренное уточнение направления магнитных линий либо иного параметра. Не всегда нужны сведения о силе токе в амперах, другие точные данные. В подобных ситуациях пригодятся правила буравчика по физике.

Для угловой скорости

Для рассмотрения механических систем часто приходится оперировать с выражениями угловой скорости (w) и перемещения (v). По движению буравчика определяют направление вектора w.

Для момента импульса

Этот же принцип используют для уточнения параметров момента импульса (L), который зависит от общей массы и ее распределения в исследуемом объекте. Однако выяснить направление вектора можно с применением простого правила буравчика.

Для момента сил

По классическому определению вращающий момент (M) равен произведению векторов силы (F) и радиуса (r), который соединяет точки оси вращения и места приложения соответствующего воздействия. Для расчетов применяют сложные вычисления с использованием интегралов и угловых проекций. Движение тела будет соответствовать перемещению буравчика. Подразумевается вращение рукоятки его в сторону соответствующего момента сил.

Магнитостатика и электродинамика

Земля создает мощное поле, защищающее людей от солнечной радиации. Под его воздействием стрелка компаса перемещается в определенное положение. Ток, проходящий через проводник, создает силовое воздействие для вращения двигателя. Обратный алгоритм действий применяют для генерации электроэнергии. Отмеченные процессы можно сформулировать и описать комплексом уравнений. Правило правой руки позволяет определить отдельные параметры в электродинамике без лишних сложностей.

Магнитная индукция

Рассматриваемое явление открыто в начале 19 века. Основные зависимости физических величин определены законом Фарадея:

Позднее были определена зависимость ЭДС не только от формы силы внешнего воздействия. Ток появляется и в проводнике, который движется в стабильном магнитном поле. Био-Савар установил векторную зависимость экспериментально. Позднее Лаплас сделал общее определение и уточнил принципы вычислений для перемещающего единичного заряда. Эти постулаты стали основой современной магнитостатики.

В приведенном выражении «минус» перед второй частью объясняется условием противоположной направленности линий соответствующего магнитного потока (закон Лоренца) току в проводнике.

Для упрощенного рассмотрения методики правило буравчика кратко будет обозначаться далее в тексте аббревиатурой «ПБ». Правило левой руки или правой – «ПЛР» или «ППР», соответственно. Иные сокращения для обозначения направлений:

МетодСоответствие
ПБ
НДБтоку в контрольном проводнике
НВРвектору (В), созданному пропускаемым током
ППР
НБПтоку
НСПсиловым линиям

Для тока в проводнике, движущемся в магнитном поле

Метод определенияСоответствие
ППР
НБПдвижению контрольного провода
НСП (прямая ладонь, силовые линии входят перпендикулярно)индукционного тока

Уравнения Максвелла

В этом случае применяют возможность выражения операции ротора через произведение двух векторов. Для простоты понимания можно представить вращающуюся жидкую среду обладающей определенной угловой скоростью.

Методы определения базовых параметров

МетодСоответствие
ПБ
НДБвекторному выражению ротора
НВРзавихрениям поля
ППР
НБПвектору ротора (потоку, который проходит через контрольный контур)
НСПзавихрениям (индуцируемой электродвижущей силе)

Правило буравчика

Магнитное поле электрического тока

Вокруг проводника с током образуется магнитное поле, так что свободно вращающаяся магнитная стрелка, помещенная вблизи проводника, будет стремиться занять положение, перпендикулярное плоскости, проходящей вдоль него. В этом легко убедиться, проделав следующий опыт.Магнитное поле прямого проводника с током В отверстие горизонтально положенного листа картона вставляют прямолинейный проводник и пропускают через него ток. Насыпают на картон железные опилки и убеждаются в том, что они располагаются концентрическими окружностями, имеющими общий центр в точке пересечения проводником картонного листа. Магнитная стрелка, подвешенная на нити вблизи этого проводника, займет положение, указанное на рисунке. При изменении направления тока в проводнике магнитная стрелка повернется на угол 180°, оставаясь в положении, перпендикулярном плоскости, проходящей вдоль проводника. В зависимости от направления тока в проводнике направление магнитных линий образуемого им магнитного поля определяется правилом буравчика, которое формулируется следующим образом:

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Если поступательное движение буравчика совпадает с направлением тока в проводнике, то вращательное движение его рукоятки указывает направление магнитных линий поля, образующегося вокруг этого проводника.

Если по проволоке, согнутой в виде кольца, пропустить ток, то под действием его также возникнет магнитное поле. Проволока, согнутая спирально и состоящая из нескольких витков, расположенных так, что оси их совпадают, называется соленоидом.

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Магнитное поле соленоида

При прохождении тока через обмотку соленоида или один виток проволоки возбуждается магнитное поле. Направление этого поля также определяется правилом буравчика. Если расположить ось буравчика перпендикулярно плоскости кольцевого проводника или вдоль оси соленоида и вращать его рукоятку по направлению тока, то поступательное движение этого буравчика укажет направление магнитных линий поля кольца или соленоида. Магнитное поле, возбужденное током обмотки соленоида, подобно магнитному полю постоянного магнита, т. е. конец соленоида, из которого выходят магнитные линии, является его северным полюсом, а противоположный конец — южным. Направление магнитного поля зависит от направления тока и при изменении направления тока в прямолинейном проводнике или в катушке изменится также направление магнитных линий поля, возбуждаемого этим током. В однородном магнитном поле во всех точках поле имеет одинаковое направление и одинаковую интенсивность. В противном случае поле называется неоднородным. Графически однородное магнитное поле изображают параллельными линиями с одинаковой плотностью, например, в воздушном зазоре между двумя разноименными параллельно расположенными полюсами магнита.

Связь магнитного поля с правилами

В этой части публикации рассматриваются электрические величины. Поэтому следует напомнить о направлении течения тока в проводке – от «плюса» источника питания к «минусу». От контрольной точки с большим потенциалом (ϕ1=10 B) – к месту измерения с относительно меньшим (ϕ1= 5 B).

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Кольцевая проводящая конструкция

На иллюстрации представлена кольцевая конструкция. Для уточнения характеристик системы в соответствии с базовыми правилами винт вкручивают с учетом реального направления силовых линий. Вращение рукоятки соответствует току в проводе, подключенному к источнику питания.

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Пояснение правила

В этом примере необходимо выяснить направление вектора (В) магнитной индукции и соответствующую конфигурацию линий силового поля. Для проверки сжимают руку в кулак. Один палец ставят вертикально – известный жест «Класс!». Он будет соответствовать движению тока. Вектор, обозначающий магнитное поле, совпадает с положением четырех сжатых пальцев.

Важно! Нельзя прикасаться к проводнику под напряжением при проведении эксперимента, чтобы исключить поражение электротоком. Для наглядности опыт можно повторить с железными опилками

Гранулы рассыпают на плоской поверхности. Допустимо использование листа картона, другого материала с нейтральными по отношению к электромагнитным полям свойствами. В центре перпендикулярно устанавливают провод. После подключения к источнику тока можно наблюдать распределение полос, которое соответствует линиям созданного силового поля.

Для наглядности опыт можно повторить с железными опилками. Гранулы рассыпают на плоской поверхности. Допустимо использование листа картона, другого материала с нейтральными по отношению к электромагнитным полям свойствами. В центре перпендикулярно устанавливают провод. После подключения к источнику тока можно наблюдать распределение полос, которое соответствует линиям созданного силового поля.

К сведению. По рассмотренной схеме определяют полюса катушки, подключенной к источнику питания. Пользуются стандартным алгоритмом ППР. Отогнутый большой палец будет показывать на северный полюс.

Электродинамика и магнитостатика

Магнитная индукция представляет собой векторный фактор, который характеризует силовое поле. Величина показывает влияние магнитного фона на отрицательно и положительно заряженные частицы в исследуемом пространстве. Индукция определяет силу влияния поля на заряд, перемещающийся с заданной скоростью. Для этого случая законы применения описываются так:

Для подвижного проводника

В стержне из металла находится большое число свободных электронов, движение которых характеризуется как хаотичное. Если катушка движется в силовом электромагнитном поле вдоль линий, то фон отклоняет электроны, перемещающиеся одновременно с проводником. Их движение создает ЭДС (электродвижущую силу) и называется электромагнитной наведенной индукцией.

Ток будет протекать под действием разности потенциалов при подсоединении такой катушки к внешней цепи по замкнутому контуру. При передвижении стержня по направлению силовых линий снижается до нуля воздействие поля на заряды. Не возникает электродвижущая сила, нет напряжения, отсутствует ток электронов.

ЭДС индукции равняется произведению рабочего размера проводника, скорости движения стержня и значения магнитной индукции. Ее направление устанавливается по закону правой руки. Ладонь располагается так, чтобы в нее были направлены линии силового поля, а отогнутый под 90° большой палец ставится вдоль движения стержня. В этом положении четыре распрямленных пальца покажут курс тока индукции.

Видео по теме

Источник

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Особая форма существования материи – магнитное поле Земли способствовало зарождению и сохранению жизни. Осколки этого поля, куски руды, притягивающие железо, привели электричество на службу человечеству. Без электроэнергии выжить будет немыслимо.

Что такое линии магнитной индукции

Магнитное поле определено напряженностью в каждой точке его пространства. Кривые, объединяющие точки поля с равными по модулю напряженностями называются линиями магнитной индукции. Напряжённость магнитного поля в конкретной точке — силовая характеристика и для ее оценки применяется вектор магнитного поля В. Его направление в конкретной точке на линии магнитной индукции происходит по касательной к ней.

В случае, если на точку в пространстве влияет несколько магнитных полей, то напряженность определяется суммированием векторов магнитной индукции каждого действующего магнитного поля. При этом напряженность в конкретной точке суммируется по модулю, а вектор магнитной индукции определяется как сумма векторов всех магнитных полей.

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Несмотря на то, что линии магнитной индукции невидимые, они обладают определенными свойствами:

Направление линий магнитной индукции внутри постоянного магнита

Исторически, во многих местах Земли давно замечено природное качество некоторых камней притягивать к себе железные изделия. Со временем, в древнем Китае, вырезанные определенным образом из кусков железной руды (магнитного железняка) стрелки превратились в компасы, показывающие направление к северному и южному полюсу Земли и позволяющие ориентироваться на местности.

Исследования этого природного явления определили, что более сильное магнитное свойство дольше сохраняется у сплавов железа. Более слабыми природными магнитами являются руды, содержащие никель или кобальт. В процессе изучения электричества, ученые научились получать искусственно намагниченные изделия из сплавов, содержащих железо, никель или кобальт. Для этого их вносили в магнитное поле, создаваемое постоянным электрическим током, а переменным током, если необходимо, размагничивали.

Изделия, намагниченные в природных условиях или полученные искусственно, имеют два различных полюса – места, где магнетизм наиболее сконцентрирован. Взаимодействуют магниты между собой посредством магнитного поля так, что одноименные полюса отталкиваются и разноименные притягиваются. Это образует вращающие моменты для их ориентации в пространстве более сильных полей, например, поля Земли.

Визуальное изображение взаимодействие слабо намагниченных элементов и сильного магнита дает классический опыт со стальными опилками, рассыпанными на картоне и плоским магнитом под ним. Особенно если опилки продолговатые, наглядно видно, как выстраиваются они вдоль силовых магнитных линий поля. Меняя положение магнита под картоном наблюдается изменение конфигурации их изображения. Применение компасов в этом опыте еще усиливает эффект понимания строения магнитного поля.

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Одно из качеств силовых магнитных линий, открытых еще М. Фарадеем, говорит о том, что они замкнуты и непрерывны. Линии, выходящие из северного полюса постоянного магнита, входят в южный полюс. Однако внутри магнита они не размыкаются и входят из южного полюса в северный. Количество линий внутри изделия максимально, магнитное поле однородно, а индукция может слабеть при размагничивании.

Определение направления вектора магнитной индукции с помощью правила буравчика

В начале 19 века ученые обнаружили, что магнитное поле создается вокруг проводника с протекающим по нему током. Возникшие силовые линии ведут себя по таким же правилам, как и с природным магнитом. Больше того, взаимодействие электрического поля проводника с током и магнитного поля послужило основой электромагнитной динамики.

Понимание ориентации в пространстве сил во взаимодействующих полях позволяет рассчитать осевые вектора:

Такое понимание было сформулировано в правиле буравчика.

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Совместив поступательное движение правостороннего буравчика с направлением тока в проводнике получаем направление линий магнитного поля, на которое указывает вращение рукоятки.

Не являясь законом физики, правило буравчика в электротехнике применяется для определения не только направления силовых линий магнитного поля зависящего от вектора тока в проводнике, но и наоборот, определение направления тока в проводах соленоида в связи с вращением линий магнитной индукции.

Понимание этой взаимосвязи позволило Амперу обосновать закон вращающихся полей, что привело к созданию электрических двигателей различного принципа. Вся втягивающая аппаратура, использующая катушки индуктивности, соблюдает правило буравчика.

Правило правой руки

Определение направления тока движущемся в магнитном поле проводника (одной стороны замкнутого витка проводников) наглядно демонстрирует правило правой руки.

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Оно говорит о том, что правая ладонь, повернутая к полюсу N (силовые линии входят в ладонь), а большой палец, отклоненный на 90 градусов показывает направление движения проводника, то в замкнутом контуре (витке) магнитное поле индуцирует электрический ток, вектор движения которого указывают четыре пальца.

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Это правило демонстрирует как изначально появились генераторы постоянного тока. Некая сила природы (вода, ветер) вращала замкнутый контур проводников в магнитном поле вырабатывая электроэнергию. Затем двигатели, получив электрический ток в постоянном магнитном поле преобразовывали его в механическое движение.

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Правило правой руки справедливо и в случае катушек индуктивности. Движение внутри них магнитного сердечника приводит к появлению индукционных токов.

Если четыре пальца правой руки совмещены с направлением тока в витках катушки, то отклоненный на 90 градусов большой палец укажет на северный полюс.

Правила буравчика и правой руки удачно демонстрируют взаимодействие электрического и магнитного полей. Они делают доступным понимание работы различных устройств в электротехнике практически всем, а не только ученым.

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Что такое ЭДС индукции и когда возникает?

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Что такое датчик Холла: принцип работы, устройство и способы проверки на работоспособность

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

История открытия электричества

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Что такое магнитный двигатель и как его сделать своими руками?

правило буравчика магнитное поле. Смотреть фото правило буравчика магнитное поле. Смотреть картинку правило буравчика магнитное поле. Картинка про правило буравчика магнитное поле. Фото правило буравчика магнитное поле

Что такое амперметр и как им проводить измерения?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *