Окраска по цилю нильсену что выявляет
Окраска по Цилю-Нильсену
Метод окраски по Цилю — Нельсену — метод окраски микроорганизмов для выявления кислотоустойчивых микобактерий (возбудителей туберкулёза, микобактериозов, лепры), актиномицетов и других кислотоустойчивых микроорганизмов. Кислотоустойчивость микроорганизмов обусловлена наличием в их клетках липидов, воска и оксикислот. Такие микроорганизмы плохо окрашиваются разведёнными растворами красителей. Для облегчения проникновения красителя в клетки микроорганизмов нанесёный на препарат феноловый фуксин Циля подогревают над пламенем горелки. Окрашенные микроорганизмы не обесцвечиваются слабыми растворами минеральных кислот и спирта.
Метод назван именами немецких медиков Франца Циля (1859—1926) и Фредерика Нельсена (1854—1894).
Этапы окраски
1. Фиксированный мазок покрывают плоской фильтровальной бумагой и наливают на неё феноловый фуксин Циля. Мазок подогревают над пламенем горелки до появления паров, затем отводят для охлаждения и добавляют новую порцию красителя. Подогревание повторяют 2—3 раза. После охлаждения снимают фильтровальную бумагу и промывают препарат водой.
2. Препарат обесцвечивают путем погружения или нанесения на него 5%-го раствора серной кислоты и промывают несколько раз водой.
3. Окрашивают препараты водно-спиртовым раствором метиленового синего 3—5 минут, промывают водой и высушивают.
При окраске по методу Циля — Нельсена кислотоустойчивые бактерии приобретают интенсивно красный цвет, остальная микрофлора окрашивается в светло-синий цвет.
Лабораторные методы выявления микобактерий туберкулеза Методы обследования на МБТ
Бактериологическая диагностика включает обработку клинического материала, микроскопическое исследование, выделение микроорганизма с применением культуральных методов, идентификацию микобактерий с использованием бактериологических и биохимических гестов, а также определение лекарственной чувствительности микобактерий.
Существует несколько групп методов, используемых для выявления МБТ в различном диагностическом материале: рутинные (микроскопия, культуральное исследование), биологические (биопроба, определение вирулентности штаммов МБТ). автоматические системы (MGIT, ВАСТЕС, МВ/ВасТ, ESP Culture System и др.), молекулярной генетические методики (PCR. I.CR, NASBA, Q-Bela и др.). Каждый из этих методов обладает определенной чувствительностью и специфичностью, что необходимо учитывать при клинической интерпретации полученных результатов.
Бактериоскопическое исследование мокроты с окраской мазка по Цилю-Нильсену для выявления кислотоустойчивых микобактерий (КУБ) является наиболее быстрым, доступным и экономически эффективным из существующих методов выявления больных туберкулезом. Оно может быть осуществлено в любой клинико- диагностической лаборатории (КДЛ) лечебно-профилактических учреждений всех уровней и ведомств. Бактериоскопия мокроты представляется чрезвычайно информативной для выяснения эпидемиологической опасности пациента для окружающих, которая коррелирует с числом микобактерий в образце. Бактериоскопическое исследование, проведенное должным образом, имеет положительную прогностическую ценность для легочного туберкулеза, более 90%. Разрешающая способность данного метода составляет 50-100 тыс. микобактерий в 1 миллилитре мокроты и существенно зависит от ряда факторов: правильности сбора мокроты, подготовленности лабораторного персонала и разрешающей способности используемых микроскопов. При микроскопии мазков, приготовленных из проб, взятых в течение трех последовательных дней, результативность метода повышается на 20-30%. Однако нет необходимости использовать более 4-5 проб мокроты.
Метод окраски по Цилю-Нильсену наиболее часто используется при бакгериоскопичсском выявлении микобактерий. Он заключается в следующем: мазки мокроты окрашивают фуксином при нагревании, затем обесцвечивают солянокислым спиртом и докрашивают метиленовым синим. В результате микобактерий окрашиваются в малиновый цвет, а фон — в синий. Это специфическое окрашивание обусловлено способностью микобактерий удерживать краситель при обработке кислотой или спиртом.
Окраска по цилю нильсену что выявляет
ФГБУ «Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии»; Медицинский факультет Санкт-Петербургского университета
Санкт-Петербургскогий государственный университет, Санкт-Петербург, Россия
Санкт-Петербургский НИИ фтизиопульмонологии
Информативность различных методов идентификации кислотоустойчивых микобактерий в зависимости от степени активности туберкулезного процесса
Журнал: Архив патологии. 2018;80(3): 40-45
Цинзерлинг В. А., Агапов М. М., Орлов А. Н. Информативность различных методов идентификации кислотоустойчивых микобактерий в зависимости от степени активности туберкулезного процесса. Архив патологии. 2018;80(3):40-45.
Tsinzerling V A, Agapov M M, Orlov A N. The informative value of various methods for identifying acid-fast bacilli in relation to the degree of tuberculosis process activity. Arkhiv Patologii. 2018;80(3):40-45.
https://doi.org/10.17116/patol201880340-45
ФГБУ «Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии»; Медицинский факультет Санкт-Петербургского университета
ФГБУ «Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии»; Медицинский факультет Санкт-Петербургского университета
Санкт-Петербургскогий государственный университет, Санкт-Петербург, Россия
Санкт-Петербургский НИИ фтизиопульмонологии
Морфологические методы выявления микобактерий туберкулеза (МБТ) незаменимы в рутинной практике фтизиатрических, инфекционных и многопрофильных стационаров, дополняя клинические, радиологические, микробиологические и иммунологические подходы. При этом число микобактерий, обычно оцениваемое по количеству кислотоустойчивых палочек при окраске по Цилю—Нильсену (Ziehl—Neelsen), часто не соответствует активности инфекционного процесса как по клиническим, так и морфологическим данным, что, однако, не послужило пока предметом масштабных исследований [1, 2].
Основным, используемым с конца XIX века, методом окрашивания микобактерий является метод Циля—Нильсена с использованием карболового фуксина. Состав красителя и протокол окрашивания варьируют в модификациях разных авторов, но суть метода неизменна: карболовый фуксин задерживается в клеточной стенке микобактерий и сохраняется в ней даже после обработки кислотой, обесцвечивающей все остальные структуры и микроорганизмы.
Альтернативным методом селективного окрашивания МБТ является использование раствора аурамина О и родамина В, предполагающее исследование ткани с применением люминесцентной микроскопии, что ограничивает его широкое использование. Как и карболовый фуксин, аурамин образует комплекс с миколовыми кислотами в составе микобактерий, но, по-видимому, обладает к ним большим сродством, поэтому правильно окрашенные препараты с полноценно обесцвеченным фоном обеспечивают высокую контрастность микобактерий и позволяют обнаруживать их в большем количестве по сравнению с окраской по Цилю—Нильсену [3, 4].
Обсуждается возможность выявления МБТ в тканях при использовании иммуногистохимии (ИГХ) и метода полимеразной цепной реакции (ПЦР). Применительно к ИГХ проблемой является перекрестная чувствительность антител как к микобактериям туберкулезного комплекса, так и к нетуберкулезным микобактериям. Применение метода ПЦР существенно ограничивают значительные технические трудности, связанные с его проведением, а также отсутствие возможности достоверного определения количества возбудителей и их локализации [5—8].
В качестве сыворотки для ИГХ-исследования используются моноклональные антитела к антигену РАВ (Protein antigen B)—гликопротеину с молекулярной массой 38 кДа, обнаруживаемому вне зависимости от состояния клеточной стенки микобактерий [9].
Неоднородность результатов даже при правильно выполненной классической окраске по Цилю—Нильсену может рассматриваться как повод для изучения свойств возбудителя.
Одним из важных факторов, влияющих на взаимодействие МБТ с макроорганизмом, является иммуносупрессия прежде всего при ВИЧ-инфекции, в результате чего морфологическая картина туберкулеза в большинстве случаев становится нетипичной за счет меньшей выраженности гранулематозной реакции и большей альтерации, при этом число обнаруживаемых кислотоустойчивых палочек, как правило, больше [10]. Тем не менее и у пациентов без иммуносупрессии регулярно встречается ситуация, при которой ожидаемая с учетом клинических данных морфологическая картина далека от классических представлений о строении туберкулезной гранулемы, локализации и форме кислотоустойчивых микобактерий [11—14].
Слабое окрашивание карболовым фуксином или полное отсутствие такового, зачастую безосновательно трактуемое как технологический дефект, в действительности может быть связано с изменением самого возбудителя, предполагающим полную или частичную утрату микобактериями клеточной стенки (возможно, по типу образования L-форм), чей химический состав и пространственная структура определяют их тинкториальные свойства. Трансформация в L-формы является универсальным свойством многих видов бактерий, обеспечивающих адаптацию в неблагоприятных условиях [15]. В случае с МБТ в качестве неблагоприятных условий можно рассматривать как иммунный ответ, так и специфическую терапию. Показано, что потеря клеточной стенки может быть одним из факторов формирования лекарственной устойчивости к противотуберкулезным препаратам [16, 17].
Кроме непостоянства тинкториальных свойств микобактерий, также требует изучения феномен, при котором обнаруживаются атипичные формы возбудителя: кокковидные, булавовидные, ветвящиеся и прочие, отличные от классических палочек Коха [18].
Образование подобных форм может происходить как в процессе изменения структуры клеточной стенки, так и в результате изменения жизненного цикла причем и при ускорении размножения, и при его угнетении с преобладанием старых форм. В любом случае атипичная морфология микобактерий требует сопоставления с клиническими проявлениями заболевания и эффективностью терапии [19—22].
Материал и методы
Изучены 24 случая аутопсии клинически, рентгенологически и микробиологически верифицированного фиброзно-кавернозного туберкулеза легких. Большинство пациентов мужчины, средний возраст 49,67±5,77 года. У большей части пациентов зафиксирована широкая лекарственная устойчивость (ШЛУ) МБТ — 14 случаев либо множественная лекарственная устойчивость (МЛУ) МБТ — 5 случаев (невосприимчивость заболевания соответственно к четырем или двум противотуберкулезным препаратам первой линии), при этом ни в одном случае не выявлено сочетания туберкулеза с ВИЧ. Во всех наблюдениях имело место длительное течение заболевания и продолжительное лечение в профильных стационарах (см. таблицу). 
Непосредственной причиной смерти большинства пациентов стала интоксикация вследствие прогрессирования инфекционного процесса, также были зафиксированы случаи смерти от легочного кровотечения, тромбоэмболии легочной артерии и сердечно-легочной недостаточности. На вскрытии диагноз фиброзно-кавернозного туберкулеза во всех случаях подтвержден.
Кусочки легких для гистологического исследования фиксировали в 10% нейтральном формалине с последующей проводкой в спиртах и заливкой в парафин по общепринятым методикам. Срезы окрашивали гематоксилином и эозином, карболовым фуксином по Цилю—Нильсену, аурамин-родамином (с последующим исследованием с помощью люминесцентного микроскопа), также проводили ИГХ-исследование с использованием моноклональных антител к антигену РАВ.
Исследование включало оценку выраженности морфологических изменений в области каверн и активности туберкулезного процесса по классификации Б.М. Ариэля [23], подсчет количества микобактерий при увеличении в 400 раз и количества полей зрения, в которых они визуализируются, определение соотношения между различными морфологическими формами возбудителя (палочковидными, кокковидными и прочими), а также их локализация (внутриклеточно, внеклеточно либо в виде адгезированных на поверхности фагоцитов).
После оценки процентного соотношения различных морфологических форм микобактерий подсчитывали среднее значение для каждой формы, затем вычисляли абсолютную погрешность с доверительной вероятностью p=0,95. Значимость различий между методами исследования оценивали путем вычисления t-критерия Стьюдента и сравнения с критическими значениями.
Результаты
При окраске гематоксилином и эозином во всех наблюдениях выявлены характерные для туберкулеза изменения, соответствующие прогрессированию инфекционного процесса (активность IV—V степени по классификации Б.М. Ариэля): крупные каверны с широкой фиброзной капсулой в стенках каверн и в окружающей легочной ткани, определялись гранулемы и более крупные очаги отсева, представленные округлыми эозинофильными фокусами казеозного некроза с мелкими фрагментами клеточного детрита различного размера, окруженными клеточным валом, представленным лимфоцитами, плазмоцитами и в большей степени макрофагами с эпителиоидно-клеточной трансформацией и тенденцией к слиянию с формированием единичных гигантских многоядерных клеток Лангерганса типичного строения с примесью единичных нейтрофильных гранулоцитов. В других полях зрения отмечали утолщение межальвеолярных перегородок за счет фиброза, дистелектазы, очаговый антракоз, умеренный интерстициальный и альвеолярный отек, паретическое полнокровие сосудов, очаговые диапедезные кровоизлияния. Бронхи малого и среднего размера характеризовались лимфоцитарной инфильтрацией, склерозом, гипертрофией мышечного слоя, очаговой атрофией мерцательного эпителия (рис. 1, 2). 

При окраске аурамин-родамином и последующем исследовании в люминесцентном микроскопе обнаруживали очаговые скопления внеклеточно расположенных микобактерий в 10—50 полях зрения общим числом от 1000 до 10 000, преимущественно палочковидных (50—85%, в среднем 64,38±4,24%), а также кокковидных (10—45%, в среднем 27,29±3,84%), гранул (2—10%, в среднем 6±1,09%), булавовидных (1—5%, в среднем 1,96±0,6%) и ветвящихся (до 1%) форм микобактерий (рис. 5, 6). 

При ИГХ-исследовании (рис. 7, 8) 

Обобщая полученные данные, можно сказать, что доля типичных палочек, выявленных посредством классической окраски по Цилю—Нильсену, значимо больше таковой (t=10,4; p≤0,05), выявленной при окраске аурамин-родамином, и еще более значимо (t=18,2; p≤0,05), чем при проведении ИГХ-исследования. Столь же сильно разнятся показатели для атипичных морфологических форм микобактерий, выявленных при окраске по Цилю—Нильсену в минимальном количестве и обнаруженных в большом количестве при флюоресцентном и ИГХ-исследовании.
Обсуждение
Несмотря на типичную картину активного туберкулезного поражения с большим объемом казеозных масс, окраска по Цилю—Нильсену не выявила многочисленных кислотоустойчивых бактерий, подтвердив встречаемый в практике феномен. Принципиально важным при этом является выбор для исследования именно пациентов с фиброзно-кавернозным туберкулезом, чей анамнез предполагал длительное волнообразное течение заболевания и продолжительную терапию, корректировавшуюся в ходе лечения, с учетом ее неэффективности вследствие устойчивости микобактерий к противотуберкулезным препаратам.
Такие случаи можно считать самыми сложными для классического бактериоскопического выявления МБТ ввиду предшествовавшего длительного процесса адаптации возбудителя, что сопровождалось периодами активации и угнетения размножения, а также изменением структуры клеточной стенки с сохранением вирулентности. Именно особенности жизненного цикла могут объяснить присутствие в большом количестве атипичных форм микобактерий, наиболее убедительно выявленных при ИГХ-исследовании.
Важно отметить отсутствие во всех наблюдениях (как при окраске по Цилю—Нильсену, так и при флюоресцентном исследовании) внутриклеточной локализации возбудителя. Микобактерии отсутствовали как в эпителиоидных клетках, макрофагах и в гигантских клетках Лангерганса, так и в нейтрофильных гранулоцитах. Наиболее информативным следует считать ИГХ-исследование, так как, если следовать теории, что явление дормантности возбудителя сопровождается полной или частичной потерей им клеточной стенки для последующей внутриклеточной персистенции, то отсутствие окрашивания внутриклеточно расположенных микобактерий карболовым фуксином по Цилю—Нильсену можно объяснить именно структурными изменениями клеточной стенки. Однако ИГХ-исследование не зависит от состояния и компонентов клеточной стенки, следовательно, обеспечивает выявление микобактерий, находящихся на любом этапе жизненного цикла, в том числе с изменением своих тинкториальных свойств.
В ходе ИГХ-исследования, как и в случае с окраской по Цилю—Нильсену и аурамин-родамином, не выявлено достоверных признаков присутствия возбудителя внутри фагоцитов, что идет вразрез с традиционными взглядами на локализацию микобактерий в туберкулезном очаге, сформированными на основе экспериментальных моделей заболевания у грызунов [24, 25]. В ряде наблюдений зафиксирована адгезия единичных микобактерий на поверхности макрофагов и нейтрофильных гранулоцитов. Не исключено, что подобное расположение способно симулировать внутриклеточную локализацию.
Необходимо отметить, что в обследованной группе у пациентов имелась определенная гетерогенность, связанная с возрастом, варьировавшим в пределах от 31 года до 84 лет, и длительностью заболевания (от 2 до 33 лет), однако морфологическая картина туберкулеза и характеристика микобактерий практически идентичны у всех пациентов вне зависимости от возраста и давности заболевания.
Принципиальным моментом также явилось расположение в ряде случаев скоплений МБТ по периферии очагов казеозного некроза на границе с прилегающим к зоне некроза валом эпителиоидных клеток и фиброзной стенкой каверны. Данная локализация микобактерий может натолкнуть на мысль о формировании ими биопленок, что может быть одним из объяснений возникновения лекарственной устойчивости, хотя этот вопрос и требует специального изучения.
Выводы
1. Проведенное исследование подтвердило, что микобактерии туберкулеза могут выявляться в тканях с помощью различных методов и иметь разную морфологию, при этом наличие даже небольшого числа кислотоустойчивых бактерий при окраске по Цилю—Нильсену является важным диагностическим признаком, но их отсутствие не свидетельствует об отсутствии туберкулеза.
2. При использовании всех бактериоскопических методов на светооптическом уровне на нашем материале внутриклеточных форм возбудителя не обнаружено.
3. Наибольшая доля атипичных морфологических форм микобактерий обнаруживается при флюоресцентном (35,62%) и ИГХ- исследованиях (42,71%), что демонстрирует их более высокую чувствительность, в то время как при окраске по Цилю—Нильсену атипичные микобактерии выявляются в сравнительно небольшом количестве (11,87%).
4. Микробиологическая сущность и клиническое значение морфологического полиморфизма микобактерий требуют дальнейшего изучения. Более того, можно утверждать, что в уточнении нуждается и патогенез туберкулеза.
Концепция и дизайн исследования — В.А.Ц., М.М.А.
Сбор и обработка материала — А.Н.О., М.М.А.
Статистическая обработка — М.М.А.
Написание текста — В.А.Ц., М.М.А.
Авторы заявляют об отсутствии конфликта интересов.
Микроскопическое исследование на микобактерию туберкулеза окрашенного мазка мокроты
Методы лабораторной диагностики туберкулеза весьма разнообразны как по характеру производимых исследований, так и по тому патологическому материалу, который подвергается исследованию. Кроме общепринятых исследований, используемых в практике при различных заболеваниях, в клинике туберкулеза применяются специальные лабораторные методы, связанные со спецификой этого заболевания. Получаемые результаты помогают клиницистам в дифференциальной диагностике процессов различной локализации, способствуют раннему выя влению туберкулеза, учитываются при выборе тех или иных методов лечения и определения его эффективности.
Несмотря на указанные недостатки, микроскопия остается одним из основных методов микробиологических исследований. Ее преимущество заключается в быстроте получения результата и относительной простоте исследования. Метод позволяет в короткие сроки обнаружить наиболее эпидемически опасных больных туберкулезом и микобактериозами, выделяющих большие количества микобактерий, и остается актуальным методом при выявлении больных туберкулезом и микобактериозами на первичных этапах обследования больных, а также при динамическом наблюдении за состоянием микобактериальной популяции в процессе лечения. Кроме того, микроскопическое подтверждение тинкториальных свойств культуры остается обязательным исследованием при ее диагностике. Человеческий туберкулез вызывают определенные бактерии, относящиеся к микобактериям. Но очень редко заболевание, схожее с туберкулезом, могут вызвать другие виды микобактерий, а также в мазке могут присутствовать неопасные микобактерии. Для более точного исследования используется бактериологический метод посева.
При подозрении на туберкулез всегда исследуется мокрота, так как легкие поражаются этим заболеванием наиболее часто. При ее отсутствии на исследование направляют промывные воды бронхов. Иногда для уточнения поражения туберкулезом других органов на исследование направляется моча, кал, отделяемое из ран и гнойников.
Микроскопия является предварительным методом исследования с целью выявления наиболее опасных форм туберкулеза («открытых»), при которых больной человек выделяет возбудителя заболевания в окружающую среду. При подозрении на туберкулез органов дыхания необходимо исследовать не менее трёх проб мокроты – это связано с особенностями выделения микобактерий из легких, а также чувствительностью методов исследования. Сбор мокроты осуществляют в течение 3-х дней подряд. Одновременно часть мокроты (или других жидкостей) направляется в бактериологическую лабораторию на посев.
Метод окраски по Ziehl-Neelsen (Цилю-Нильсену) является наиболее распространенным методом для выявления кислотоустойчивых микобактерий. Он основан на использовании нескольких специальных методических приемов:
Показания к назначению:
Бактериологические методы
В соответствии с современными программами ВОЗ, основой выявления туберкулёза за рубежом считают проведение микроскопии мазков мокроты, полученной от кашляющих больных, обратившихся к врачам общей практики; мазки окрашивают по Цилю-Нильсену. Эта методика входит в отечественный поликлинический и клинический минимум обследования пациента, выделяющего мокроту. В 1995 г. Минздравмедпром России в приказе № 8 «О развитии и совершенствовании деятельности лабораторной клинической микробиологии (бактериологии) лечебно-профилактических учреждений» подтвердил эту обязанность клинико-диагностических лабораторий. Обязательное бактериологическое исследование мокроты на М. tuberculosis должно быть организовано для нетранспортабельных больных, больных хроническими заболеваниями органов дыхания и мочевыводящей системы, а также для работников неблагополучных по туберкулёзу животноводческих хозяйств. Этот старейший метод полностью сохраняет свое значение вследствие доступности для практических клинико-диагностических лабораторий, низкой стоимости и быстроты выполнения.
Микобактерии туберкулёза имеют вид тонких, слегка изогнутых палочек различной длины с утолщениями на концах или посередине, располагаются группами и поодиночке (рисунок 1,а) Окрашенные по Цилю-Нильсену мазки микроскопируют с иммерсионной системой не менее 10 мин.
Люминесцентная микроскопия
Метод основан на проникновении в микробную клетку карболового производного флюоресцентного красителя (аурамина, родамина). При окраске флюоресцентным красителем аурамином-родамином микобактерии можно видеть при неиммерсионном 100-кратном увеличении. Более точен результат при окраске по Цилю-Нильсену карболфуксином и иммерсионной микроскопии при 1000-кратном увеличении. Именно окраска мазка по Цилю-Нильсену рекомендована при применении технологий DOTS. Микобактерии в этом случае выглядят светящимися желтыми палочками (рисунок 1, б). Метод имеет неоспоримые преимущества, так как позволяет при меньшем увеличении микроскопа просмотреть фактически весь мазок, так же этот метод экономически более эффективен, так как уменьшается время, затрачиваемое на просмотр мазков.
К недостаткам метода ЛМ следует отнести значительно более высокую стоимость люминесцентного микроскопа, при процедуре окрашивания- соблюдение и коррекция pH мазка, а также освобождение микобактерий в диагностическом материале (особенно в мокроте) от окружающей их слизи, которая препятствует проникновению флуоресцентного красителя в микробную клетку. Поэтому нецелесообразно использование ЛМ для нативной мокроты, но применять этот метод рекомендуется при исследовании мазков, приготовленных после центрифугирования из осадка материала, обработанного для культурального исследования и нейтрализованного после деконтаминации. Поэтому метод ЛМ следует применять в бактериологических лабораториях, где культуральное и микроскопическое исследование может быть произведено из одной и той же порции диагностического материала.
Другим признаком туберкулёза является присутствие в препарате так называемых эпителиоидных клеток, из которых и развиваются клетки Лангханса. Это происходит при увеличении количества ядер без разделения цитоплазмы, которая только увеличивается в размерах (рисунок 1, г).
Микроскопия позволяет быстро получить результат, но обладает низкой чувствительностью и специфичностью, невозможностью дифференциации кислотоустойчивых микобактерий.
Рисунок 1
Культуральный метод
Наиболее распространенным методом выявления микобактерий туберкулеза в нашей стране является культуральный метод. Это «золотой стандарт» бактериологической диагностики туберкулеза, так как чувствительность метода существенно выше микроскопического и дает возможность получить чистую культуру микобактерий для её последующей идентификации и исследования лекарственной устойчивости. Этот метод дает положительные результаты при наличии в исследуемом материале от 20 до 100 жизнеспособных микробных клеток в 1 мл. Однако он трудоемок и длителен в связи с тем, что микобактерии туберкулеза растут очень медленно и их обнаружение может быть зарегистрировано только через 3 недели культивирования.
Следует отметить, что в связи с высокой избирательностью различных штаммов микобактерий и потребностью в полноценных белках до сих пор нет универсальной питательной среды, способной заменить все остальные. В Приказе № 109МЗ РФ для посева диагностического материала на МБТ рекомендуется использовать по одной пробирке международной питательной среды Левенштейна-Йенсена и Финна-2. Однако практика показывает, что кроме указанных сред целесообразно использовать и какую-либо из дополнительных, а посев на три пробирки питательной среды также повышает эффективность культуральной диагностики.
Для полноценной культуральной диагностики туберкулеза необходимо иметь соответствующие помещения и оборудование. Особенно важно наличие центрифуги и антиаэрозольной защитой и способностью обеспечить ускорение 3000g. А также шкафов биологической безопасности для предотвращения внутрилабораторного инфицирования.
Системы BACTEC
Из перечисленных автоматизированных систем наиболее эффективна в настоящее время система BACTEC MGIT 960BD. Флаконы MGIT с жидкой питательной средой 7Н9 содержат в придонной части под силиконом флуоресцентный индикатор, «погашенный» высокими концентрациями кислорода. При наличии роста микобактерий в процессе поглощения кислорода индикатор начинает светиться, регистрация флуоресценции в сисиеме BACTEC MGIT производится автоматически. Использование флаконов MGIT возможно и «вручную», тогда регистрацию свечения производят с помощью трансиллюминатора на флаконах MGIT составляет 11 суток.
Так называемые дефектные по клеточной стенке L-формы микобактерий и других инфекционных патогенов являются результатом изменчивости и основным видом персистирования, то есть переживания в неблагоприятных условиях. Посев на L-формы особенно эффективен при внелегочном туберкулезе, поскольку вегетация МБТ в очагах ВЛТ при повышенном ацидозе и анаэробиозе приводит к снижению их жизнеспособности и ферментативной активности.
Диагноз не может быть поставлен только на основании выявления L-форм микобактерий, но их обнаружение, особенно при верификации методом ПЦР, является весомым аргументом в пользу туберкулезной природы заболевания. В очагах внелегочного туберкулеза наблюдается ранняя L-трансформация микобактерий, поэтому их обнаружение позволяет поставить диагноз на начальных стадиях заболевания.


