Один градус долготы в километрах чему равен
Форум Окулесица
Всего тем: 5684, сообщений: 277001
Список тем форума
тема | автор | к-во сообщений | последний ответ |
Здесь возводим еду в культ.. | lenash | 1472 |
Пояснения
Используемые значки
| Открытая тема. |
| Закрытая тема. В эту тему нельзя добавить сообщение. |
| Тема с отметкой. Эта тема не участвует в обычной сортировке по дате. |
| Тема с отметкой. Эта тема отмечена как «флуд». |
| Тема с отметкой. В этой теме отмечена «ссора». |
| Тема с отметкой. В этой теме отмечена «провокация». |
Форумы
Правила форума
У нас на форуме
Зачем в женской карте мужские аспекты
Самой добывать мужа или сам объявится?
Удачные аспекты в транзите для прививки
В блогах Окулуса
Астрологический прогноз для асцендентов в земной стихии: Телец, Дева, Козерог
Милый друг мой, не жалей о старом
Новые статьи
Восточный гороскоп на 2022 год Тигра
Гороскоп на сентябрь 2021 года. Общий и по Знакам Зодиака
Выпадение волос (облысение). Гомеопатия
Новое на Джокере
Солнце в квинконксе с Плутоном
Анонсы
Виталий Веташ
Мифологический и художественный образ Сатурна в Козероге
Наталия Бучацкая
Прогноз на ноябрь 2021 для Весов, Скорпионов, Стрельцов, Козерогов, Водолеев, Рыб
Оксана Тамилина
Лунный календарь садовода и огородника на 2021 год
Как измерить расстояние на карте с помощью градусной сетки?
С помощью карты можно определять расстояние между точками на земной поверхности, но точность таких вычислений невысока.
Ситуация относительно проста, если точки лежат на одном меридиане. Все меридианы имеют одинаковую длину. Можно подсчитать, что одному градусу широты соответствует примерно 111,3 км реальной длины. Поэтому надо найти разницу в долготе между точками и умножить ее на 111,3 км. Например, если точка А находится на северной широте 50°, а Б располагается на северной широте 32°, и при этом у них совпадает долгота, то расстояние между ними составит.
111,3х(50° – 32°) = 111,3х16 = 1780,8 км
Ситуация меняется, когда одна точка имеет северную, а другая – южную широту. В этом случае широты уже надо складывать. Так, если бы точка Б из предыдущего примера располагалась бы на южной широте 32°, то расстояние от А до Б составило бы:
111,3х(50° + 32°) = 111,3х82 = 9126,6 км
Ситуация усложняется, когда точки находятся на разных меридианах, но на одной параллели. Если у обеих точек долгота западная (или, наоборот, восточная), то сначала надо найти разницу их долгот. Если же одна точка имеет восточную, а другая западную долготу, то их надо суммировать. Далее результат надо умножить на длину 1° параллели. Эта длина у параллелей различна и зависит от их широты. Можно воспользоваться таблицей ниже:
Широта параллели | Длина ее дуги величиной в 1° |
---|---|
0° | 111,3 |
5° | 110,9 |
10° | 109,6 |
15° | 107,6 |
20° | 104,6 |
25° | 102,1 |
30° | 96,5 |
35° | 91,3 |
40° | 85,4 |
45° | 78,8 |
50° | 71,7 |
55° | 64,0 |
60° | 55,8 |
65° | 47,2 |
70° | 38,2 |
75° | 28,9 |
80° | 19,4 |
85° | 9,7 |
90° | 0 |
Например, нужно найти расстояние между точками, имеющими координаты:
А – 60° с. ш, 39° з. д.
Б – 60° с. ш, 25° з. д.
Широты у них одинаковы, поэтому смотрим на долготу. Она у обеих точек западная, поэтому надо найти их разницу:
39° – 25° = 14°
Полученный результат надо умножить на длину 1° параллели, широта которой составляет 60°. По табличке определяем, что на широте 60° дуга в 1° имеет длину 55,8 км. Перемножаем два числа:
14°х 55,8 км = 781,2 км
Список использованных источников
1 градус долготы в км. Перевести километры в градусы и обратно
Как измерить расстояние на карте с помощью градусной сетки?
С помощью карты можно определять расстояние между точками на земной поверхности, но точность таких вычислений невысока.
Ситуация относительно проста, если точки лежат на одном меридиане. Все меридианы имеют одинаковую длину. Можно подсчитать, что одному градусу широты соответствует примерно 111,3 км реальной длины. Поэтому надо найти разницу в долготе между точками и умножить ее на 111,3 км. Например, если точка А находится на северной широте 50°, а Б располагается на северной широте 32°, и при этом у них совпадает долгота, то расстояние между ними составит.
111,3х(50° – 32°) = 111,3х16 = 1780,8 км
Ситуация меняется, когда одна точка имеет северную, а другая – южную широту. В этом случае широты уже надо складывать. Так, если бы точка Б из предыдущего примера располагалась бы на южной широте 32°, то расстояние от А до Б составило бы:
111,3х(50° + 32°) = 111,3х82 = 9126,6 км
Ситуация усложняется, когда точки находятся на разных меридианах, но на одной параллели. Если у обеих точек долгота западная (или, наоборот, восточная), то сначала надо найти разницу их долгот. Если же одна точка имеет восточную, а другая западную долготу, то их надо суммировать. Далее результат надо умножить на длину 1° параллели. Эта длина у параллелей различна и зависит от их широты. Можно воспользоваться таблицей ниже:
Например, нужно найти расстояние между точками, имеющими координаты:
А – 60° с. ш, 39° з. д.
Б – 60° с. ш, 25° з. д.
Широты у них одинаковы, поэтому смотрим на долготу. Она у обеих точек западная, поэтому надо найти их разницу:
39° – 25° = 14°
Полученный результат надо умножить на длину 1° параллели, широта которой составляет 60°. По табличке определяем, что на широте 60° дуга в 1° имеет длину 55,8 км. Перемножаем два числа:
14°х 55,8 км = 781,2 км
Список использованных источников
Не нашли, то что искали? Используйте форму поиска по сайту
Понравилась статья? Оставь комментарий и поделись с друзьями
Длина дуги параллелей и меридианов на эллипсоиде Красовского,
с учетом искажений от полярного сжатия Земли
2020 г. Минисправочники – Мобильная версия
Для определения расстояния по туристической карте, в километрах между пунктами, число градусов умножают на длину дуги 1° параллели и меридиана (по долготе и широте, в системе географических координат), точные расчётные значения которых берутся из таблиц. Приблизительно, с определённой погрешностью, их можно посчитать по формуле, на калькуляторе.
Пример из школьного урока географии (по старому учебнику и из учебного пособия для факультативного курса)
Частный м-б может быть и больше и меньше главного, в зависимости от расположения выбранного участка на карте.
Чтобы добавить символ градуса ( ° ) – нажмите Альт+248 (цифрами в правой цифровой панели клавиатуры; в ноутбуке – с нажатой спец.кнопкой Fn или включив NumLk). Так делается в операционных системах Windows и Linux, а в ОС Mac – с помощью клавиш Shift+Option+8
Координаты широты всегда указываются перед координатами долготы (и печатая на компьютере, и записывая на бумаге).
Задача. Определить длину параллели на заданной широте, например, 50°
с помощью таблиц длин дуг (референц-эллипсоид Красовского)
Решение. Из таблицы («Длина дуги параллели в 1°»), для широты 50 градусов, находим соответствующее значение для дуги 1° – 71697 метров.
В окружности – 360 градусов, поэтому, умножаем табличное значение на 360
В сервисе maps.google.ru, поддерживаемые форматы определяются правилами
Примеры, как будет правильно:
Полная форма записи угла (градусы, минуты, секунды с долями):
Сокращённые формы записи угла:
Градусы и минуты с десятичными долями –
Десятичные градусы (DDD) –
Сервис Гугл-мап имеет онлайн-конвертер для преобразований координат и перевода их в нужный формат.
В качестве десятичного разделителя числовых величин, на сайтах в Интернет и в компьютерных программах – рекомендуется использовать точку.
Числовое значение большой экваториальной полуоси – a
современных земных эллипсоидов и референц-эллипсоида Красовского
Референц-эллипсоид Ф.Н.Красовского, применявшийся в СССР (с 1942 года)
в системах отсчета СК-42 и в РФ (СК-42/95, до 1 января 2017 г.)
a= 6 378 245
ГСК-2011 – эллипсоид и Российская геодезическая система координат 2011 года,
для осуществления геодезических и картографических работ.
a= 6 378 136.5
WGS-84 – современный Международный общеземной эллипсоид отсчетной системы,
почти идентичен ITRF(2008)
a= 6 378 137
Таблицы дуг в 1°, 1′, 1″
Чтобы убедиться, что таблица рассчитана по Красовскому,
посчитаем для нулевой широты (экватор), зная числовое значение
большой экваториальной полуоси для референц-эллипсоида Красовского
a= 6 378 245 метров
Приведённые на странице таблицы, будут ещё актуальны, в качестве учебных материалов (к имеющимся учебникам), при использовании старых, советских времён, карт и для приблизительных вычислений.
Длина дуги параллели в 1°, 1′ и 1″ по долготе (по линии запад-восток), метров
Широта, градус | Длина дуги параллели в 1° по долготе, м | Длина дуги паралл в 1′,м | Длина дуги пар. в 1″,м |
---|---|---|---|
111321 | 1855 | 31 | |
1 | 111305 | 1855 | 31 |
2 | 111254 | 1854 | 31 |
3 | 111170 | 1853 | 31 |
4 | 111052 | 1851 | 31 |
5 | 110901 | 1848 | 31 |
6 | 110716 | 1845 | 31 |
7 | 110497 | 1842 | 31 |
8 | 110245 | 1837 | 31 |
9 | 109960 | 1833 | 31 |
10 | 109641 | 1827 | 30 |
11 | 109289 | 1821 | 30 |
12 | 108904 | 1815 | 30 |
13 | 108487 | 1808 | 30 |
14 | 108036 | 1801 | 30 |
15 | 107552 | 1793 | 30 |
16 | 107036 | 1784 | 30 |
17 | 106488 | 1775 | 30 |
18 | 105907 | 1765 | 29 |
19 | 105294 | 1755 | 29 |
20 | 104649 | 1744 | 29 |
21 | 103972 | 1733 | 29 |
22 | 103264 | 1721 | 29 |
23 | 102524 | 1709 | 28 |
24 | 101753 | 1696 | 28 |
25 | 100952 | 1683 | 28 |
26 | 100119 | 1669 | 28 |
27 | 99257 | 1654 | 28 |
28 | 98364 | 1639 | 27 |
29 | 97441 | 1624 | 27 |
30 | 96488 | 1608 | 27 |
31 | 95506 | 1592 | 27 |
32 | 94495 | 1575 | 26 |
33 | 93455 | 1558 | 26 |
34 | 92386 | 1540 | 26 |
35 | 91290 | 1522 | 25 |
36 | 90165 | 1503 | 25 |
37 | 89013 | 1484 | 25 |
38 | 87834 | 1464 | 24 |
39 | 86628 | 1444 | 24 |
40 | 85395 | 1423 | 24 |
41 | 84137 | 1402 | 23 |
42 | 82852 | 1381 | 23 |
43 | 81542 | 1359 | 23 |
44 | 80208 | 1337 | 22 |
45 | 78848 | 1314 | 22 |
46 | 77465 | 1291 | 22 |
47 | 76057 | 1268 | 21 |
48 | 74627 | 1244 | 21 |
49 | 73173 | 1220 | 20 |
50 | 71697 | 1195 | 20 |
51 | 70199 | 1170 | 19 |
52 | 68679 | 1145 | 19 |
53 | 67138 | 1119 | 19 |
54 | 65577 | 1093 | 18 |
55 | 63995 | 1067 | 18 |
56 | 62394 | 1040 | 17 |
57 | 60773 | 1013 | 17 |
58 | 59134 | 986 | 16 |
59 | 57476 | 958 | 16 |
60 | 55801 | 930 | 16 |
61 | 54108 | 902 | 15 |
62 | 52399 | 873 | 15 |
63 | 50674 | 845 | 14 |
64 | 48933 | 816 | 14 |
65 | 47176 | 786 | 13 |
66 | 45405 | 757 | 13 |
67 | 43621 | 727 | 12 |
68 | 41822 | 697 | 12 |
69 | 40011 | 667 | 11 |
70 | 38187 | 636 | 11 |
71 | 36352 | 606 | 10 |
72 | 34505 | 575 | 10 |
73 | 32647 | 544 | 9 |
74 | 30780 | 513 | 9 |
75 | 28902 | 482 | 8 |
76 | 27016 | 450 | 8 |
77 | 25122 | 419 | 7 |
78 | 23219 | 387 | 6 |
79 | 21310 | 355 | 6 |
80 | 19394 | 323 | 5 |
81 | 17472 | 291 | 5 |
82 | 15544 | 259 | 4 |
83 | 13612 | 227 | 4 |
84 | 11675 | 195 | 3 |
85 | 9735 | 162 | 3 |
86 | 7791 | 130 | 2 |
87 | 5846 | 97 | 2 |
88 | 3898 | 65 | 1 |
89 | 1949 | 32 | 1 |
90 |
Упрощённая формула расчёта дуг параллелей (без учета искажений от полярного сжатия):
l пар = l экв * cos(Широта).
Длина дуги меридиана в 1°, 1′ и 1″ по широте (по линии север-юг), метров
Широта, градус | Длина дуги меридиана в 1° по широте, м | в 1′, м | 1″,м |
---|---|---|---|
110579 | 1843 | 31 | |
5 | 110596 | 1843 | 31 |
10 | 110629 | 1844 | 31 |
15 | 110676 | 1845 | 31 |
20 | 110739 | 1846 | 31 |
25 | 110814 | 1847 | 31 |
30 | 110898 | 1848 | 31 |
35 | 110989 | 1850 | 31 |
40 | 111085 | 1851 | 31 |
45 | 111182 | 1853 | 31 |
50 | 111278 | 1855 | 31 |
55 | 111370 | 1856 | 31 |
60 | 111455 | 1858 | 31 |
65 | 111531 | 1859 | 31 |
70 | 111594 | 1860 | 31 |
75 | 111643 | 1861 | 31 |
80 | 111677 | 1861 | 31 |
85 | 111694 | 1862 | 31 |
90 |
Рисунок. 1-секундные дуги меридианов и параллелей (упрощённая формула).
Практический пример использования таблиц. Например, если на карте не указан численный масштаб и нет масштабной линейки, но есть линии градусной картографической сетки – можно графически определить расстояния, из расчёта, что один градус дуги соответствует числовой величине протяжённости, полученной из таблицы. В направлениях «север-юг» (между горизонтальными линиями географической сетки на карте) – значения длин дуг меняются, от экватора до полюсов Земли, незначительно и составляют, приблизительно, 111 километров в одном градусе. Далее, вычислив, сколько содержится в сантиметровом отрезке, можно определить протяжённость произвольного профиля.
Список использованной литературы и ссылки на Интернет-ресурсы
Андреев Н.В. Топография и картография: Факультативный курс. М., Просвещение, 1985
Учебник по математике. Формулы для вычисления длины окружности по её диаметру или радиусу.
Длина дуги параллелей и меридианов на эллипсоиде Красовского,
с учетом искажений от полярного сжатия Земли
Для определения расстояния по туристической карте, в километрах между пунктами, число градусов умножают на длину дуги 1° параллели и меридиана (по долготе и широте, в системе географических координат), точные расчётные значения которых берутся из таблиц. Приблизительно, с определённой погрешностью, их можно посчитать по формуле, на калькуляторе.
Пример из школьного урока географии (по старому учебнику и из учебного пособия для факультативного курса)
Определить частный масштаб мелкомасштабной (1:1 000 000, 1:6000000, 1:20000000 и мельче) карты земной поверхности (атлас для VI класса) в районе Казани и Свердловска (ныне – Екатеринбург, смотреть список переименованных городов). Оба эти города располагаются, приблизительно, на широте 56° СШ.
Долгота Казани – 49° ВД, Екатеринбурга – 60°ВД.
Расстояние между ними на карте – 1,1 см (определяется с помощью измерительного циркуля и линейки с миллиметровыми делениями).
Длина дуги параллели в 1° для широты 56°СШ – равна 62394 метров.
m = 1 / (68 633 400 / 1,1)
Ответ: частный масштаб (m) – в 1 см 624 км.
Главный масштаб (подписанный в зарамочном
оформлении этой карты) – 1 / 75 000 000 (1 см 750км).
Частный м-б может быть и больше и меньше главного, в зависимости от расположения выбранного участка на карте.
Пример перевода числовых значений географических координат из десятых долей в градусы и минуты.
Приближенная долгота города Свердловска – 60.8° (шестьдесят целых и восемь десятых градуса) восточной долготы.
8 / 10 = X / 60
X = (8 * 60) / 10 = 48 (из пропорции находим числитель правой дроби).
Итог: 60.8° = 60° 48′ (шестьдесят градусов и сорок восемь минут).
Чтобы добавить символ градуса ( ° ) – нажмите Альт+248 (цифрами в правой цифровой панели клавиатуры; в ноутбуке – с нажатой спец.кнопкой Fn или включив NumLk). Так делается в операционных системах Windows и Linux, а в ОС Mac – с помощью клавиш Shift+Option+8
Координаты широты всегда указываются перед координатами долготы (и печатая на компьютере, и записывая на бумаге).
Задача. Определить длину параллели на заданной широте, например, 50°
с помощью таблиц длин дуг (референц-эллипсоид Красовского)
www.kakras.ru/mobile/book/dlina-dugi.html
Решение. Из таблицы («Длина дуги параллели в 1°»), для широты 50 градусов, находим соответствующее значение для дуги 1° – 71697 метров.
В окружности – 360 градусов, поэтому, умножаем табличное значение на 360
71697 * 360 = 25 810 920 метров
В сервисе maps.google.ru, поддерживаемые форматы определяются правилами
Примеры, как будет правильно:
Полная форма записи угла (градусы, минуты, секунды с долями):
41° 24′ 12.1674″, 2° 10′ 26.508″
Сокращённые формы записи угла:
Градусы и минуты с десятичными долями – 41 24.2028, 2 10.4418
Десятичные градусы (DDD) – 41.40338, 2.17403
Сервис Гугл-мап имеет онлайн-конвертер для преобразований координат и перевода их в нужный формат.
В качестве десятичного разделителя числовых величин, на сайтах в Интернет и в компьютерных программах – рекомендуется использовать точку.
Числовое значение большой экваториальной полуоси – a
современных земных эллипсоидов и референц-эллипсоида Красовского
Референц-эллипсоид Ф.Н.Красовского, применявшийся в СССР (с 1942 года)
в системах отсчета СК-42 и в РФ (СК-42/95, до 1 января 2017 г.)
a= 6 378 245
ГСК-2011 – эллипсоид и Российская геодезическая система координат 2011 года,
для осуществления геодезических и картографических работ.
a= 6 378 136.5
WGS-84 – современный Международный общеземной эллипсоид отсчетной системы,
почти идентичен ITRF(2008)
a= 6 378 137
Таблицы дуг в 1°, 1′, 1″
Чтобы убедиться, что таблица рассчитана по Красовскому,
посчитаем для нулевой широты (экватор), зная числовое значение
большой экваториальной полуоси для референц-эллипсоида Красовского
a= 6 378 245 метров
1 градус дуги параллели на широте 0°(экватор) =
= ( 2 * 3,14159. * 6378245 ) / 360 = 111321
Приведённые на странице таблицы, будут ещё актуальны, в качестве учебных материалов (к имеющимся учебникам), при использовании старых, советских времён, карт и для приблизительных вычислений.
Длина дуги параллели в 1°, 1′ и 1″ по долготе (по линии запад-восток), метров
Широта, градус | Длина дуги параллели в 1° по долготе, м | Длина дуги паралл в 1′,м | Длина дуги пар. в 1″,м |
---|---|---|---|
0 | 111321 | 1855 | 31 |
1 | 111305 | 1855 | 31 |
2 | 111254 | 1854 | 31 |
3 | 111170 | 1853 | 31 |
4 | 111052 | 1851 | 31 |
5 | 110901 | 1848 | 31 |
6 | 110716 | 1845 | 31 |
7 | 110497 | 1842 | 31 |
8 | 110245 | 1837 | 31 |
9 | 109960 | 1833 | 31 |
10 | 109641 | 1827 | 30 |
11 | 109289 | 1821 | 30 |
12 | 108904 | 1815 | 30 |
13 | 108487 | 1808 | 30 |
14 | 108036 | 1801 | 30 |
15 | 107552 | 1793 | 30 |
16 | 107036 | 1784 | 30 |
17 | 106488 | 1775 | 30 |
18 | 105907 | 1765 | 29 |
19 | 105294 | 1755 | 29 |
20 | 104649 | 1744 | 29 |
21 | 103972 | 1733 | 29 |
22 | 103264 | 1721 | 29 |
23 | 102524 | 1709 | 28 |
24 | 101753 | 1696 | 28 |
25 | 100952 | 1683 | 28 |
26 | 100119 | 1669 | 28 |
27 | 99257 | 1654 | 28 |
28 | 98364 | 1639 | 27 |
29 | 97441 | 1624 | 27 |
30 | 96488 | 1608 | 27 |
31 | 95506 | 1592 | 27 |
32 | 94495 | 1575 | 26 |
33 | 93455 | 1558 | 26 |
34 | 92386 | 1540 | 26 |
35 | 91290 | 1522 | 25 |
36 | 90165 | 1503 | 25 |
37 | 89013 | 1484 | 25 |
38 | 87834 | 1464 | 24 |
39 | 86628 | 1444 | 24 |
40 | 85395 | 1423 | 24 |
41 | 84137 | 1402 | 23 |
42 | 82852 | 1381 | 23 |
43 | 81542 | 1359 | 23 |
44 | 80208 | 1337 | 22 |
45 | 78848 | 1314 | 22 |
46 | 77465 | 1291 | 22 |
47 | 76057 | 1268 | 21 |
48 | 74627 | 1244 | 21 |
49 | 73173 | 1220 | 20 |
50 | 71697 | 1195 | 20 |
51 | 70199 | 1170 | 19 |
52 | 68679 | 1145 | 19 |
53 | 67138 | 1119 | 19 |
54 | 65577 | 1093 | 18 |
55 | 63995 | 1067 | 18 |
56 | 62394 | 1040 | 17 |
57 | 60773 | 1013 | 17 |
58 | 59134 | 986 | 16 |
59 | 57476 | 958 | 16 |
60 | 55801 | 930 | 16 |
61 | 54108 | 902 | 15 |
62 | 52399 | 873 | 15 |
63 | 50674 | 845 | 14 |
64 | 48933 | 816 | 14 |
65 | 47176 | 786 | 13 |
66 | 45405 | 757 | 13 |
67 | 43621 | 727 | 12 |
68 | 41822 | 697 | 12 |
69 | 40011 | 667 | 11 |
70 | 38187 | 636 | 11 |
71 | 36352 | 606 | 10 |
72 | 34505 | 575 | 10 |
73 | 32647 | 544 | 9 |
74 | 30780 | 513 | 9 |
75 | 28902 | 482 | 8 |
76 | 27016 | 450 | 8 |
77 | 25122 | 419 | 7 |
78 | 23219 | 387 | 6 |
79 | 21310 | 355 | 6 |
80 | 19394 | 323 | 5 |
81 | 17472 | 291 | 5 |
82 | 15544 | 259 | 4 |
83 | 13612 | 227 | 4 |
84 | 11675 | 195 | 3 |
85 | 9735 | 162 | 3 |
86 | 7791 | 130 | 2 |
87 | 5846 | 97 | 2 |
88 | 3898 | 65 | 1 |
89 | 1949 | 32 | 1 |
90 | 0 |
Упрощённая формула расчёта дуг параллелей (без учета искажений от полярного сжатия):
l пар = l экв * cos(Широта).
Длина дуги меридиана в 1°, 1′ и 1″ по широте (по линии север-юг), метров
Широта, градус | Длина дуги меридиана в 1° по широте, м | в 1′, м | 1″,м |
---|---|---|---|
0 | 110579 | 1843 | 31 |
5 | 110596 | 1843 | 31 |
10 | 110629 | 1844 | 31 |
15 | 110676 | 1845 | 31 |
20 | 110739 | 1846 | 31 |
25 | 110814 | 1847 | 31 |
30 | 110898 | 1848 | 31 |
35 | 110989 | 1850 | 31 |
40 | 111085 | 1851 | 31 |
45 | 111182 | 1853 | 31 |
50 | 111278 | 1855 | 31 |
55 | 111370 | 1856 | 31 |
60 | 111455 | 1858 | 31 |
65 | 111531 | 1859 | 31 |
70 | 111594 | 1860 | 31 |
75 | 111643 | 1861 | 31 |
80 | 111677 | 1861 | 31 |
85 | 111694 | 1862 | 31 |
90 |
Рисунок. 1-секундные дуги меридианов и параллелей (упрощённая формула).
Практический пример использования таблиц. Например, если на карте не указан численный масштаб и нет масштабной линейки, но есть линии градусной картографической сетки – можно графически определить расстояния, из расчёта, что один градус дуги соответствует числовой величине протяжённости, полученной из таблицы. В направлениях «север-юг» (между горизонтальными линиями географической сетки на карте) – значения длин дуг меняются, от экватора до полюсов Земли, незначительно и составляют, приблизительно, 111 километров в одном градусе. Далее, вычислив, сколько содержится в сантиметровом отрезке, можно определить протяжённость произвольного профиля.
Международная морская миля (действует с 1929 года), применяемая в географии и в навигационных расчётах, для определения расстояний, равна 1852 метра, что, примерно, соответствует одной минуте дуги земного меридиана на сороковых широтах.
Список использованной литературы и ссылки на Интернет-ресурсы
Андреев Н.В. Топография и картография: Факультативный курс. М., Просвещение, 1985
Учебник по математике. Формулы для вычисления длины окружности по её диаметру или радиусу.
Туристический минисправочник по прикладной топографии – определение расстояния между двумя соседними параллелями по «размеру градуса». Здесь можно найти ответ на вопрос из задачи – сколько километров в одном градусе по линии долготы?
- огромная квартира во сне
- проект квартир дома квартир