Объясните что такое усеченная пирамида
Что такое усеченная пирамида? Свойства и формулы. Пирамиды индейцев майя
Одним из симметричных полиэдров, свойства которого изучает стереометрия, является пирамида. В данной статье рассмотрим подробнее следующие вопросы: что такое пирамида усеченная, как ее можно получить и какими свойствами она характеризуется.
Полная пирамида
Прежде чем раскрывать вопрос, что такое пирамида усеченная, следует дать определение пирамиды в общем случае.
Под пирамидой в геометрии понимают фигуру в трехмерном пространстве, которая состоит из n треугольных граней и одной n-угольной стороны, которая называется основанием. Представить себе пирамиду достаточно просто: необходимо мысленно соединить все углы n-угольника с некоторой одной точкой в пространстве. Рисунок ниже показывает фигуру, которая при этом получается.

Здесь мы видим, что углы четырехугольного основания соединены отрезками с одной точкой, которая называется вершиной пирамиды. Боковая поверхность фигуры образована четырьмя разными треугольниками.
Если все треугольники боковой поверхности будут одинаковыми и равнобедренными, то такая фигура называется прямой пирамидой. Если к тому же основание будет представлять правильный n-угольник, например, квадрат, то говорят о пирамиде правильной.
Усеченная пирамида
Рассмотренная выше фигура называется полной пирамидой. Теперь покажем, что такое усеченная пирамида и как ее можно получить из полной.
Пусть у нас имеется полная фигура с пятиугольным основанием. Она показана ниже на рисунке слева.
Заметим, что в данном случае мы выбрали секущую плоскость, которая параллельна основанию исходной фигуры. Полученная из правильной фигуры с помощью параллельного сечения усеченная пирамида также будет называться правильной.
Рисунок также показывает, что основания усеченной пирамиды (пятиугольники в примере) образованы подобными правильными многоугольниками, при этом размер верхнего будет всегда меньше, чем нижнего. Боковая поверхность этой фигуры, в отличие от полной пирамиды, образована равнобедренными трапециями.
Если в основании усеченной пирамиды лежит n-угольник, тогда она имеет 2 × n вершин, 3 × n ребер и n + 2 стороны.
Двумя важными геометрическими параметрами рассматриваемой фигуры являются площадь ее поверхности и объем.
Поверхность пирамиды усеченной
Рассмотрев, что такое усеченная пирамида, перейдем к изучению ее поверхности. Под последней понимают совокупность всех граней, образующих фигуру. Проще всего свойства поверхности изучать на примере развертки. Рисунок ниже показывает развертку для пирамиды с пятиугольными основаниями.
Чтобы вычислить площадь всей ее поверхности, необходимо сложить площадь двух оснований и площадь всех трапеций. Соответствующая формула имеет вид:
S = So1 + So2 + 1/2 × (Po1 + Po2) × Ap.
Например, для случая с четырехугольной правильной усеченной пирамидой эта формула перепишется в виде:
S4 = B2 + b2 + 2 × (B + b ) × Ap.
Объем усеченной пирамиды
Для определения объема рассматриваемой фигуры необходимо знать ее высоту h, а также площади обоих оснований So1 и So2. Если указанные характеристики известны, тогда для определения объема усеченной пирамиды следует воспользоваться формулой:
V = 1/3 × h × (So1 + So2 + √ (So1 × So2)).
Например, для четырехугольной правильной фигуры, длины сторон оснований которой равны B и b, приходим к следующему выражению для объема:
V = 1/3 × h × (B2 + b2 + B × b).
Пример решения задачи
Рассмотрев, что такое усеченная пирамида, а также разобравшись с необходимыми для описания ее характеристик формулами, покажем, как их использовать на практике.
Предположим, что имеется шестиугольная усеченная фигура, которая показана ниже.
Необходимо рассчитать ее объем, если известны стороны оснований B и b и апофема Ap.
Для начала рассчитаем площадь каждого из оснований, которая соответствует площади правильного шестиугольника. Имеем:
Для определения объема необходимо вычислить через Ap высоту h фигуры. Рассматривая изображенный на рисунке прямоугольный треугольник и применяя теорему Пифагора, получаем:
Тогда объем этой шестиугольной усеченной пирамиды будет равен:
Пирамиды индейцев майя
Если египетские пирамиды с точки зрения геометрии представляют собой правильные полные четырехугольные фигуры, то аналогичные сооружения индейцев майя являются четырехугольными усеченными пирамидами.
Эти памятники культуры, сохранившиеся до наших дней, некогда выполняли двойную роль для своих жителей: с одной стороны, они служили гробницей вождям, с другой же стороны, на их верхнем основании располагался храм, где жрецы поклонялись богам.
Геометрические фигуры. Усеченная пирамида.
Усеченной пирамидой является многогранник, заключенный меж основанием пирамиды и секущей плоскостью, которая параллельна ее основанию.
Или другими словами: усеченная пирамида — это такой многогранник, который образован пирамидой и ее сечением, параллельным основанию.
Сечение, которое параллельно основанию пирамиды делит пирамиду на 2 части. Часть пирамиды меж ее основанием и сечением — это усеченная пирамида.
Это сечение для усеченной пирамиды оказывается 1-ним из оснований этой пирамиды.
Расстояние меж основаниями усеченной пирамиды является высотой усеченной пирамиды.
Усеченная пирамида будет правильной, когда пирамида, из которой она была получена, тоже была правильной.
Высота трапеции боковой грани правильной усеченной пирамиды является апофемой правильной усеченной пирамиды.
Свойства усеченной пирамиды.
1. Каждая боковая грань правильной усеченной пирамиды является равнобокими трапециями одной величины.
2. Основания усеченной пирамиды являются подобными многоугольниками.
3. Боковые ребра правильной усеченной пирамиды имеют равную величину и один наклонен по отношению к основанию пирамиды.
4. Боковые грани усеченной пирамиды являются трапециями.
5. Двугранные углы при боковых ребрах правильной усеченной пирамиды имеют равную величину.
Формулы для усеченной пирамиды.
Для произвольной пирамиды:
Объем усеченной пирамиды равен 1/3 произведения высоты h (OS) на сумму площадей верхнего основания S1 (abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.
h — высота усеченной пирамиды.
Площадь боковой поверхности 
Для правильной усеченной пирамиды:
Правильная усеченная пирамида — многогранник, который образован правильной пирамидой и ее сечением, которое параллельно основанию.
Площадь боковой поверхности правильной усеченной пирамиды равна ½ произведения суммы периметров ее оснований и апофемы.
φ — двугранный угол у основания пирамиды.
CH является высотой усеченной пирамиды, P1 и P2 — периметрами оснований, S1 и S2 — площадями оснований, Sбок — площадью боковой поверхности, Sполн — площадью полной поверхности:
Сечение пирамиды плоскостью, параллельной основанию.
Сечение пирамиды плоскостью, которое параллельно ее основанию (перпендикулярной высоте) разделяет высоту и боковые ребра пирамиды на пропорциональные отрезки.
Сечение пирамиды плоскостью, которое параллельно ее основанию (перпендикулярной высоте) – это многоугольник, который подобен основанию пирамиды, при этом коэффициент подобия этих многоугольников соответствует отношению их расстояний от вершины пирамиды.
Площади сечений, которые параллельны основанию пирамиды, относятся как квадраты их расстояний от вершины пирамиды.
Усечённая пирамида
Усечё́нная пирами́да — многогранник, образованный пирамидой и её сечением, параллельным основанию.
Содержание
Произвольная усечённая пирамида
Формулы для усечённой пирамиды
Объём пирамиды 


Площадь боковой поверхности 
Правильная усечённая пирамида
Определение
Правильная усечённая пирамида — многогранник, образованный правильной пирамидой и её сечением, параллельным основанию.














Многогранники


















