Обмотки вн и нн что это

Обмотка трансформатора: типы обмоток ВН и НН

ООО «ПТК «Запчастьэнерго» производит и реализует различные обмотки для масляных силовых трансформаторов. Обмотки как правило используются в качестве зап.частей для ремонта масляных силовых ТМ.

Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это

Обмотка трансформатора представляет собой совокупность витков, которая образует электрическую цепь, в которой образуется электродвижущая сила, индуктированная в отдельных витках. Обмотка трансформатора содержит обмоточный провод, изоляционные детали, предусмотренные конструкцией; изоляция создает необходимые каналы для охлаждения, препятствует их смещению под действием электромагнитных сил, защищает от электрического пробоя. Обмотки трансформаторов отличаются количеством витков, типом и направлением намотки, количеством параллельных проводов в витке, схемой присоединения отдельных частей обмотки между собой.

Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это

Алюминиевый и медный провод прямоугольного и круглого сечений по ГОСТ 6324:52, ГОСТ 9761:61 применяют для обмоток силовых трансформаторов. Медные и алюминиевые трансформаторные обмотки применяются для трансформаторов мощностью 20-1000 кВА. Медь, в отличии от алюминия, наделена более высокой теплопроводностью, большей эластичностью, повышенной механической прочностью. Предел прочности при растяжении медных проводов в 3,5 раза больше, чем алюминиевых, поэтому в трансформаторах с высокой мощностью не рекомендуется применять алюминиевую обмотку.

Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это

Так как трансформаторы бывают различными по напряжению, то и обмотки будут отличаться. У них может отличаться тип намотки и ее направление, количество витков и параллельных проводов них, а также схемой соединения отдельных частей в целую систему. Чтобы сделать обмотку масляного трансформатора используют провода с эмалевой или хлопчатобумажной изоляцией. В силовых трансформаторах используют провода из стекловолокна, которое устойчиво к перепаду температур.

По тому, как располагается обмотка, выделяют следующие ее виды:

Обмотки многослойные цилиндрические обмотки

Чтобы сделать данный тип, используют закругленные провода, или провода прямоугольной формы. Они должны располагаться не одним слоем, при этом между каждым необходима изоляция. Если слоев много, то обмотка делится на 2 концентрические катушки, а между ними будет охладительный канал.

Катушечные цилиндрически обмотки из множества слоев

Они состоят из большого количества дисковых катушек и наматываются из круглого провода. Между катушками также могут расположиться каналы для охлаждения. Как правило, данный вид обмотки применяют на стороне ВН.

Цилиндрическая обмотка из одного слоя

Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это

С помощью одного или нескольких проводов их наматывают вверх по линии. Обмотка должна располагаться на торце, по обе его стороны

Цилиндрическая обмотка из двух слоев

Принцип намотки в данном случае такой же, как и в первом варианте, только провод располагается двумя слоями. Оба вида не должны превышать количество 4-х проводов на одном витке. Данный вид используют для напряжения низшего (НН). Мощность трансформатора с обмоткой из двух слоев не должна превышать более 550 киловатт.

Источник

Основные определения и термины, применяемые в трансформаторах

Трансформатор — это статическое электромагнитное устройство, имеющее две или большее число индукционно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока, в том числе для преобразования электрической энергии переменного тока одного напряжения в электрическую энергию другого напряжения.
Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это
Рис. 1. Схема работы однофазного трансформатора при холостом ходе

Работа трансформатора основана на явлении электромагнитной индукции, заключающемся в том, что при изменении во времени магнитного поля, пронизывающего проводящий контур, в последнем наводится (индуцируется) электродвижущая сила (эдс).
Если к концам одной из обмоток однофазного трансформатора (рис. 1), в данном случае АХ обмотки 1У подведено переменное напряжение U1, то по ней протекает ток /х холостого хода, его также называют намагничивающим, он создает магнитное поле, изменяющееся с той же частотой, что и напряжение. При этом вследствие высокой магнитной проницаемости стали большая часть магнитного поля, которая называется основным магнитным нолем ф трансформатора, замыкается через контур магнитной системы, другая часть магнитного поля, называемого полем рассеяния Фр замыкается через воздух, она не связана магнитно с обмоткой 2 и поэтому в трансформировании напряжения (энергии) не участвует. Согласно закону электромагнитной индукции изменяющееся основное магнитное поле Ф, пронизывающее обе обмотки, наводит в них эдс E1 и Е2. Напряжение U2l измеренное вольтметром и подведенное напряжение Uu практически можно считать равными эдс Е2 и Е1 соответственно. Если к концам ах обмотки подсоединить какую-либо электрическую нагрузку, то в ее цепи возникает ток, который одновременно вызовет увеличение тока в обмотке 1.
Таким образом, в рассматриваемом электромагнитном устройстве— трансформаторе происходит трансформация электрической энергии, подведенной к обмотке /, в электромагнитную и далее в электрическую, используемую в цепи нагрузки, подключенной в обмотке 2.
Трансформатор, в магнитной системе 3 которого создается однофазное магнитное поле, называется однофазным, если же создается трехфазное поле, то — трехфазным.
Обмотка, к которой подводится энергия (напряжение) преобразуемого переменного тока, называются первичной; обмотка трансформатора, от которой отводится энергия преобразованного переменного тока, называется вторичной.
Под обмоткой трансформатора подразумевают совокупность витков, образующих электрическую цепь, в которой суммируются электродвижущие силы, наведенные в витках, с целью получения заданного напряжения.
Обмотка трансформатора, к которой подводится электроэнергия преобразуемого или от которой отводится энергия преобразованного переменного тока, называется основной. Силовой трансформатор имеет не менее двух основных обмоток.
Основная обмотка трансформатора, имеющая наибольшее номинальное напряжение, называется обмоткой высшего напряжения (ВН), наименьшее — обмоткой низшего напряжения (НН), а промежуточное между ними — обмоткой среднего напряжения (СН).
Трансформатор с двумя гальванически не связанными обмотками (ВН и НН) называется двухобмоточным, с тремя (ВН, СН и НН) — трехобмоточным. Одна из этих обмоток является первичной, две другие — вторичными. Если у трансформатора первичной является обмотка НН, его называют повышающим, если ВН — понижающим.

Значения вторичной эдс Е2 и соответственно напряжения U2 зависят от числа витков вторичной обмотки. Увеличение числа витков вторичной обмотки приводит к увеличению вторичных эдс и напряжения и наоборот.

Другим расчетным показателем трансформатора является коэффициент трансформации ky равный отношению напряжения на зажимах обмотки высшего напряжения к напряжению на зажимах обмотки низшего напряжения в режиме холостого хода (ненагруженного) трансформатора.
Двухобмоточный трансформатор имеет один коэффициент трансформации, равный отношению высшего напряжения к низшему, трехобмоточный трансформатор — три коэффициента трансформации, равные отношению высшего напряжения к низшему, высшего напряжения к среднему и среднего к низшему.
Для двух обмоток силового трансформатора, расположенных на одном стержне магнитной системы, коэффициент трансформации принимается равным отношению чисел их витков. Поэтому если, например, первичная обмотка с числом витков W\ является обмоткой высшего напряжения, а вторичная с числом витков w2— низшего напряжения, то k=U\fU2=Wi/w2y откуда U\ = kU2, W\ = kw2.
Таким образом, зная коэффициент трансформации и напряжение вторичной обмотки трансформатора, легко определить напряжение первичной обмотки и наоборот. Это относится также к значениям токов и к числам витков.
Для улучшения электрической изоляции токопроводящих частей и условий охлаждения трансформатора обмотки вместе с магнитной системой погружают в бак с трансформаторным маслом. Такие трансформаторы называют маслонаполненным и или масляными.
Некоторые трансформаторы специального назначения вместо масла наполняют негорючей синтетической жидкостью — совтолом. Трансформаторы, у которых основной изолирующей средой служит воздух, газ или твердый диэлектрик, а охлаждающей средой — атмосферный воздух, называют сухими.
Каждый трансформатор характеризуется номинальными данными, основные указывают в прикрепляемой к нему табличке. К ним относятся: мощность, напряжение, ток, частота и др.

Номинальная мощность трансформатора — это мощность, на которую он рассчитан.
Номинальная мощность 5 трансформаторов выражается полной электрической мощностью в киловольт-амперах (кВ-А) или мегавольтамперах (MB-А).

Номинальное первичное напряжение — это напряжение, на которое рассчитана первичная обмотка трансформатора; номинальное вторичное напряжение— напряжение на зажимах вторичной обмотки, получающееся при холостом ходе трансформатора и номинальном напряжении на зажимах первичной обмотки. Номинальные токи определяются соответствующими номинальными значениями мощности и напряжения.
Высшее номинальное напряжение трансформатора — это наибольшее из номинальных напряжений обмоток трансформатора.

Низшее номинальное напряжение — наименьшее из номинальных напряжений обмоток трансформатора.

Среднее номинальное напряжение — номинальное напряжение, являющееся промежуточным между высшим и низшим номинальным напряжением обмоток трансформатора.
Режим, при котором одна из обмоток трансформатора замкнута накоротко, а вторая находится под напряжением, называется коротким замыканием (к. з.). Если короткое замыкание происходит в процессе эксплуатации трансформатора при номинальных напряжениях, в обмотках возникают токи короткого замыкания, в 5—20 раз (и более) превышающие номинальные. При этом резко повышается температура обмоток и в них возникают большие механические усилия. Такое замыкание является аварийным и для предотвращения повреждения трансформатора применяется специальная защита, которая должна отключить его в течение долей секунды.
Если в порядке опыта замкнуть накоротко одну из обмоток трансформатора (рис. 2), в данном случае обмотку НН с числом витков W29 а к другой с числом витков w\ подвести пониженное напряжение и постепенно его повышать, то при определенном значении напряжения С/кз, называемом напряжением короткого замыкания, в обмотках будут проходить токи, соответственно равные номинальным значениям первичной и вторичной обмоток.

Равенство напряжений короткого замыкания параллельно включенных трансформаторов — одно из условий их нормальной работы. Напряжение икз указывают в табличке каждого трансформатора. Оно определено стандартами и зависит от типа и мощности трансформатора: для силовых трансформаторов малой и средней мощности оно составляет 5—7%, для мощных трансформаторов — 6—17% и более.
Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это
Рис. 2. Схема и поля рассеяния однофазного трансформатора в режиме короткого замыкания: а — условного, б — реального

При опыте короткого замыкания в магнитной системе создается незначительное магнитное поле Фк, обусловленное малым намагничивающим током вследствие небольшого подведенного напряжения ик.3. Проходящие по первичной и вторичной обмоткам номинальные токи создают встречнонаправленные мдс, соответственно им поля рассеяния и Фp1 и Фр2, вынуждены замыкаться через воздух и металлические детали трансформатора (см. рис. 2, а). Поля рассеяния в реальном трансформаторе, в котором первичная и вторичная обмотки размещены на одном стержне магнитной системы, изображены на рис. 2 б.
Результирующее поле рассеяния Фр создает в обмотках индуктивное сопротивление, которое при аварийном коротком замыкании ограничивает ток в обмотках, предохраняя их от чрезмерного нагрева и разрушения. Чем больше иш, тем меньше опасность разрушения обмоток при аварийных коротких замыканиях. Однако напряжение короткого замыкания иш при расчете трансформатора ограничивают до определенного значения, в противном случае, поля рассеяния, создавая значительное индуктивное сопротивление, вызовут недопустимо большое реактивное падение напряжения в обмотках, в результате чего снизятся вторичное напряжение и соответственно мощность, получаемая потребителем. Напряжение короткого замыкания определяется для каждой пары обмоток: в двухобмоточном трансформаторе — для обмоток ВН — НН; в трехобмоточном трансформаторе — для обмоток ВН—НН; ВН — СН и СН — НН.

Потери трансформатора — это активная мощность, расходуемая в магнитной системе, обмотках и других частях трансформатора при различных режимах работы.

Потери холостого хода Рхх — это потребляемая трансформатором активная мощность в режиме холостого хода при номинальном напряжении и номинальной частоте первичной обмотки.
При холостом ходе трансформатор не передает электрическую энергию, так как вторичная обмотка разомкнута. Потребляемая им активная мощность тратится на нагревание стали магнитной системы от перемагничивания и вихревыми токами, а также частично первичной обмотки. Эти суммарные потери называют потерями холостого хода трансформатора. Ввиду малого тока холостого хода потери в активном сопротивлении обмотки при этом незначительны (0,3—0,5% номинальной мощности трансформатора), поэтому ими пренебрегают и считают, что мощность расходуется только на потери в стали магнитной системы. Абсолютное значение потерь холостого хода трансформатора незначительно. Однако их стремятся максимально снизить, так как суммарные годовые потери холостого хода трансформатора сравнительно велики.

Потери короткого замыкания Рш — это потребляемая трансформатором активная мощность при опыте к. з., обусловленная потерями в активном сопротивлении первичной и вторичной обмоток и токоведущих частях трансформатора при прохождении номинального тока и добавочными потерями, вызванными полями рассеяния.

Напряжение Uкз, подводимое к трансформатору при опыте короткого замыкания, в зависимости от его конструкции и назначения в 5—20 раз меньше номинального, поэтому магнитное поле в магнитной системе незначительное, соответственно незначительны и потери в активной стали на перемагничивание. Ими пренебрегают, считая, что потребляемая мощность при коротком замыкании расходуется только на потери в активном сопротивлении обмоток и на добавочные потери, вызванные полями рассеяния. Поля рассеяния наводят в обмотках и других токоведущих частях трансформатора (отводы, вводы и др.) вихревые токи, а в стальных конструкциях (стенки бака, ярмовые балки, детали прессовки и др.) кроме вихревых токов создают гистерезисные потери (потери от перемагничивания). Добавочные потери от полей рассеяния вызывают перегревы отдельных частей трансформатора и снижают его коэффициент полезного действия (кпд). Поэтому при расчетах и конструировании трансформаторов поля рассеяния стараются уменьшить до оптимального значения, для этого первичную и вторичную обмотки размещают концентрически она одном стержне магнитной системы, максимально возможно уменьшая канал между ними (рис. 3). Чем ближе обмотки друг к другу, тем меньше поле рассеяния, а следовательно, добавочные потери от вихревых токов и перемагничивания.

Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это
Рис. 3. Размещение обмоток ВН и НН на стержне магнитной системы

При опыте короткого замыкания токи и потери мощности такие же, как и при полной нагрузке трансформатора, поэтому их часто называют нагрузочными потерями. Потери холостого хода и короткого замыкания нормируются стандартом.
Суммарные потери трансформатора при номинальной нагрузке составляют потери холостого хода и короткого замыкания. Зная эти потери и мощность, выдаваемую трансформатором в сеть, можно определить его кпд в процентах. Трансформаторы имеют сравнительно высокий кпд (98,5—99,3%).

Источник

Обмотки силовых трансформаторов. Основные типы обмоток

Обмоткой трансформатора называют совокупность витков, образующих электрическую цепь, в которой складываются эдс, индуктированные в отдельных витках. Обмотки трансформатора состоят из обмоточного провода и изоляционных деталей, предусмотренных конструкцией, которые не только защищают витки от электрического пробоя и препятствуют их смещению под действием электромагнитных сил, но и создают необходимые каналы для охлаждения. Обмотки трансформаторов различных мощностей и напряжений различаются типом намотки, количеством витков, направлением намотки, числом параллельных проводов в витке, схемой соединения отдельных элементов обмотки между собой.

По взаимному расположению на стержне обмотки разделяются на концентрические и чередующиеся. Концентрические обмотки — это обмотки, изготовленные в виде цилиндров и концентрически расположенные на стержне магнитопровода. Чередующиеся обмотки — это обмотки ВН и НН трансформатора, чередующиеся в осевом направлении на стержне. На рисунке 1 показаны концентрическое и чередующееся расположения обмоток на стержне магнитопровода.

Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это

Основным элементом обмоток трансформатора является виток, в котором наводится эдс и который в зависимости от величины тока нагрузки может быть выполнен одним или несколькими параллельными проводами. Ряд витков, намотанных на цилиндрической поверхности, называется слоем. Число витков в одном слое может колебаться от одного до нескольких десятков.

Одно- или многослойная цилиндрическая обмотка получается при намотке одного (или нескольких) слоев из обмоточного провода прямоугольного или круглого сечения. Наиболее простой является однослойная обмотка из прямоугольного провода (рисунок 2, а). Слой обмотки составляют витки, наматываемые по винтовой линии на бумажно-бакелитовый цилиндр. Каждый виток в слое укладывается вплотную к предыдущему в осевом направлении обмотки. Витки цилиндрической обмотки состоят из одного или нескольких параллельных проводов, располагаемых рядом и имеющих одинаковое положение по отношению к полю рассеяния трансформатора. Обычно обмотку из прямоугольного провода наматывают плашмя, но при необходимости возможна намотка и на ребро.

Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это

Для выравнивания винтовой поверхности крайних витков к ним прикрепляют разрезные бумажно-бакелитовые кольца (в виде «клина»), которые придают обмотке форму цилиндра. Эти кольца предохраняют витки от механических повреждений и создают опорную поверхность обмотки.

Между слоями двухслойной цилиндрической обмотки (рисунок 2, б) прокладывают изоляцию из бумаги или электрокартона или равномерно по окружности устанавливают несколько реек, образующих вертикальный охлаждающий канал. Соединение между слоями обычно осуществляют переходом без пайки.

Одно- и двухслойные цилиндрические обмотки из прямоугольного провода обычно применяют в качестве обмоток НН на напряжение до 690 В в трансформаторах мощностью до 630 кВА.

Многослойная цилиндрическая обмотка (рисунок 2, в) наматывается, как правило, из провода круглого сечения. Намотка осуществляется плотной укладкой витков одного к другому с переходами из слоя в слой. Намотку первого слоя обычно производят на бумажно-бакелитовом цилиндре. Между последующими слоями размещают несколько слоев кабельной бумаги. Для увеличения поверхности охлаждения между некоторыми слоями обмотки создается осевой канал, образованный рейками из электрокартона или бука. Такие многослойные обмотки применяют в качестве обмоток ВН для масляных трансформаторов мощностью до 400 кВА при напряжении до 35 кВ.

Винтовая обмотка (ее иногда называют спиральной) состоит из ряда витков, наматываемых по винтовой линии, с каналами между ними. Каждый виток состоит из одного (очень редко) или нескольких одинаковых прямоугольных проводов, располагаемых плашмя вплотную друг к другу в радиальном направлении. Общее число параллельных проводов в винтовых обмотках может достигать 100 и более (в мощных трансформаторах). В зависимости от тока и соответственно числа параллельных проводов винтовая обмотка может выполняться одноходовой, как показано на рисунке 3, а, или многоходовой, т. е. вся обмотка может состоять из двух и более отдельных винтовых обмоток, вмотанных одна в другую в процессе изготовления (рисунок 3, б). Каждый такой «ход» может состоять из 4—40 параллельных проводов.

Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это
а) б)

Винтовые обмотки наматываются на бумажно-бакелитовые цилиндры или специальные оправки. После намотки обмотку снимают с оправки и отправляют на дальнейшую технологическую обработку. Однако в любом случае вертикальный канал вдоль внутренней поверхности винтовой обмотки и каналы между ее витками образуются рейками и прокладками из электрокартона.

Параллельные провода винтовой обмотки расположены концентрически и находятся на разном расстоянии от ее оси. Поэтому, если не принять специальных мер, провода, расположенные ближе к оси, будут короче, а более удаленные от нее — длиннее. Кроме того, положение в магнитном поле рассеяния этих проводов будет различным, т. е. все они будут иметь неодинаковые активные и реактивные сопротивления и, следовательно, распределение тока между ними окажется различным.

Для равномерного распределения тока между параллельными проводами и уменьшения добавочных потерь винтовые обмотки делают с транспозициями (перекладками проводов в процессе намотки). При перекладках стремятся, чтобы транспозиция была совершенной, т. е. чтобы каждый провод попеременно занимал все положения, возможные в пределах одного витка.

В винтовых обмотках применяют различные виды транспозиций. В одноходовой обмотке с числом проводов до 12 обычно применяют комбинацию из двух видов транспозиции (рисунок 4): групповую, когда параллельные провода делятся на две группы и обе эти группы меняются местами, и общую, когда изменяется взаимное расположение всех параллельных проводов. На рисунке 5 схематически показан этот способ перекладки проводов. Каждый виток имеет четыре параллельных провода (1—4), которые на расстоянии 1/4 и 3/4 высоты обмотки разделяются на равные группы, меняющиеся местами (рисунок 4, а); эти транспозиции называют групповыми. В середине обмотки производят общую перекладку, когда все провода меняются местами.

Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это
а – групповая, б – общая (показана часть транспозиции)
Рисунок 4 – Транспозиции проводов в витковых обмотках

Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это
1-4 – провода
Рисунок 5 – Схема транспозиции в винтовой обмотке из четырех параллельных проводов

При числе параллельных проводов более 12 в одноходовой обмотке эффективна и широко применяется транспозиция Бюда; в двухходовой винтовой обмотке часто выполняют равномерно распределенную транспозицию, когда число перестановок в обмотке обычно равно числу параллельных проводов.

Винтовая обмотка имеет значительную торцевую поверхность, позволяющую обеспечить ее устойчивость к осевым усилиям при коротких замыканиях; она обладает хорошей механической прочностью и развитой поверхностью охлаждения. Поэтому ее широко применяют для обмоток НН, имеющих относительно небольшое число витков, при больших токах в трансформаторах мощностью 1000 кВА и выше.

В последнее время все более широкое распространение получают винтовые обмотки из транспонированного провода, где элементарные проводники с лаковой изоляцией меняются местами в процессе изготовления самого провода. Такие обмотки технологичны, имеют низкие добавочные потери и высокую механическую прочность.

Непрерывные обмотки (рисунок 6) особенно широко применяют для трансформаторов. Они состоят из отдельных катушек (секций), намотанных из прямоугольного провода, причем в каждой катушке может быть несколько витков. На рисунке 7 показана часть такой катушки с двумя витками: витки здесь выполнены двумя параллельными проводами. Обмотку такого типа называют непрерывной потому, что ее наматывают без разрывов, т. е. переход из одной катушки в другую производится непрерывно, без паек. Для этого перекладывают витки каждой второй катушки так, чтобы один переход (из катушки в катушку) был снаружи обмотки, а второй — внутри (рисунок 8).

Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это

Рисунок 6 – Непрерывная обмотка

Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это

Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это

В непрерывной обмотке может быть до четырех и даже шести параллельных проводов в витке. В ней тоже производят транспозицию проводов, однако выполняют ее в каждой катушке при переходе проводов из одной катушки в другую. В непрерывных обмотках особенно удобно выполнять ответвления для регулирования напряжения. Их делают обычно от наружных (реже — внутренних) переходов так, чтобы между двумя соседними ответвлениями размещались витки, соответствующие ступени регулирования. Непрерывные обмотки отличаются высокой механической прочностью и надежностью, поэтому их широко применяют как для обмоток НН, так и для обмоток ВН у трансформаторов различных мощностей и напряжений.

Обмотки трансформатора изолируют от заземленных частей (магнитопровода, бака) и от других обмоток. Эту изоляцию обмоток называют главной. Кроме главной имеется продольная изоляция обмоток. Продольной называют изоляцию между отдельными элементами данной обмотки — витками, катушками, слоями и др.; она выполняется при изготовлении обмотки и здесь не рассматривается. Главная изоляция, наоборот, почти вся устанавливается при сборке трансформаторов, поэтому кратко рассмотрим ее основные элементы.

Изоляция обмоток от верхнего и нижнего ярм обеспечивается масляными каналами и барьерами, образуемыми так называемой ярмовой изоляцией, перекрывающей поверхность ярма, обращенную к обмоткам. Ярмовая изоляция представляет собой электрокартонную шайбу (барьер) 1 (рисунок 9) с прикрепленными к ней прокладками 2 из прессованного электрокартона, создающими необходимый масляный промежуток.

Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это

При Т-образном сечении ярма для выравнивания полки ярмовой балки с плоскостью ярма применяют так называемую уравнительную изоляцию, заполняющую промежуток между ярмовой балкой и ярмовой изоляцией; ее выполняют из бука, березы или электрокартона (рисунок 10). Уравнительная изоляция из электрокартона образуется пластинами, имеющими форму подковы и сегмента, к которым с двух сторон прикреплены прокладки.

Обмотки вн и нн что это. Смотреть фото Обмотки вн и нн что это. Смотреть картинку Обмотки вн и нн что это. Картинка про Обмотки вн и нн что это. Фото Обмотки вн и нн что это

В трансформаторах I и II габаритов на напряжение до 15 кВ размер изоляционного промежутка от обмотки до ярм невелик, поэтому у них ярмовая и уравнительная изоляции совмещены и выполнены из деревянных планок или электрокартонных деталей простой формы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *