О каких выражениях говорят что они не имеют смысла в алгебре

Выражение, не имеющее смысла: примеры в математике

Выражение – это самый широкий математический термин. По существу, в этой науке из них состоит все, и все операции проводятся тоже над ними. Другой вопрос, что в зависимости от конкретного вида применяются совершенно разнообразные методы и приемы. Так, работа с тригонометрией, дробями или логарифмами – это три различных действия. Выражение, не имеющее смысла, может относится к одному из двух видов: числовому или алгебраическому. А вот что означает это понятие, как выглядит его пример и прочие моменты будут рассмотрены далее.
О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

Числовые выражения

Если выражение состоит из чисел, скобок, плюсов-минусов и остальных знаков арифметических действий, его смело можно называть числовым. Что довольно логично: стоит только еще разок взглянуть на первый названный его компонент.

Числовым выражением может быть что угодно: главное, чтобы в нем не было букв. А под «чем угодно» в данном случае понимается все: от простой, стоящей одиноко, самой по себе, цифры, до огромного их перечня и знаков арифметических действий, требующих последующего вычисления конечного результата. Дробь – это тоже числовое выражение, если в ней нет всяких a, b, c, d и т.д., ведь тогда это совершенно другой вид, о котором будет рассказано чуть позже.

Условия для выражения, которое не имеет смысла

Когда задание начинается со слова «вычислить», можно говорить о преобразовании. Штука в том, что это действие не всегда целесообразно: в нем не то чтобы сильно нуждаются, если на передний план выходит выражение, не имеющее смысла. Примеры бесконечно удивительны: иногда, чтобы понять, что оно-то нас и настигло, приходится долго и нудно раскрывать скобки и считать-считать-считать.

О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

Главное, что нужно запомнить: не имеет смысла то выражения, чей конечный результат сводится к запретному в математике действию. Если уж совсем по-честному, то тогда бессмысленным становится само преобразование, но для того, чтобы это выяснить, приходится его для начала выполнить. Такой вот парадокс!

Самое знаменитое, но от того не менее важное запретное математическое действие – это деление на ноль.

Потому вот, например, выражение, не имеющее смысла:

Если при помощи нехитрых вычислений свести вторую скобку к одной цифре, то она и будет нулем.

По такому же принципу «почетное звание» дается и этому выражению:

Алгебраические выражения

Это то же самое числовое выражение, если в него добавить запретные буквы. Тогда оно и становится полноценным алгебраическим. Оно также может быть всех размеров и форм. Алгебраическое выражение – понятие более широкое, включающее в себя предыдущее. Но был смысл начинать разговор не с него, а с числового, чтобы было понятнее и разобраться было легче. Ведь имеет ли смысл выражение алгебраическое – вопрос не то чтобы очень сложный, но имеющий больше уточнений.

О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

Почему так?

Буквенное выражение, или выражение с переменными – это синонимы. Первый термин объяснить просто: ведь оно, в конце концов, содержит в себе буквы! Второй тоже не загадка века: вместо букв можно подставлять разные числа, вследствие чего значение выражения будет меняться. Нетрудно догадаться, что буквы в данном случае и есть переменные. По аналогии, числа – это постоянные.

И тут мы возвращаемся к основной тематике: что такое выражение, не имеющее смысла?

Примеры алгебраических выражений, не имеющих смысла

О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

А вот насчет (a+3):(12-4-8) можно смело сказать, что это выражение, не имеющее смысла при любых a.

Типовые задачи по теме «Выражение, не имеющее смысла»

7 класс изучает эту тему по математике в числе прочих, и задания по ней встречаются нередко как непосредственно после соответствующего занятия, так и в качестве вопроса «с подвохом» на модулях и экзаменах.

Вот почему стоит рассмотреть типовые задачи и методы их решения.

Имеет ли смысл выражение:

Необходимо произвести все вычисление в скобках и привести выражение к виду:

Конечный результат содержит деление на ноль, следовательно, выражение не имеет смысла.

Какие выражения не имеют смысла?

Следует вычислить конечное значение для каждого из выражений.

О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

Найти область допустимых значений для следующих выражений:

То есть задание звучит как: найти значения, при которых не будет деления на ноль.

Но на самом деле оно только выглядит страшным и громоздким, потому что на деле содержит в себе то, что уже давно известно: возведение чисел в квадрат и куб, некоторые арифметические действия, такие как деление, умножение, вычитание и сложения. Для удобства, между прочим, можно привести задачу к дробному виду.

Записываем ответ: 3 и 5.

В заключение

Как видно, эта тема очень интересная и не особо сложная. Разобраться в ней не составит труда. Но все-таки отработать пару примеров никогда не помешает!

Источник

Выражения в математике.

Числовые и алгебраические выражения и их преобразования.

Как работать с математическими выражениями?

Допустим, перед вами пример. Хоть простой, хоть суперсложный (уравнение, неравенство, интеграл, производная и т.д….). Допустими, вы не Витя Перестукин и с математикой на «ты». Сможете, глядя на пример, сразу дать ответ?

В 99% случаев — нет. Если вы не гений математической мысли, конечно.)

Почему? А потому, что вам, так или иначе, придётся решать этот пример. Что значит «решать»? Это значит, последовательно, шаг за шагом, этот пример упрощать, добираясь до окончательного ответа. Или, по-другому, преобразовывать. Естественно, все эти фокусы (т.е. преобразования) надо проделывать по определённым правилам математики. Вот насколько успешно вы проведёте эти самые преобразования, настолько вы и сильны в математике.)

Так вот, имейте в виду: если вы не умеете делать правильные преобразования выражений, в математике вы не сможете сделать НИЧЕГО. Вообще ничего. Грустная перспектива? Вот и я так думаю.

Чтобы нас с вами не постигла столь печальная участь, имеет смысл разобраться в этой теме. Тем более тема достаточно простая. Разберёмся?:)

Что такое выражение в математике?

2+3 — это математическое выражение. a 2 b 2 — это математическое выражение. И здоровенная дробь, и интеграл, и даже одно число или одна буковка — это всё математические выражения.

состоит из двух математических выражений, соединённых знаком равенства «=» (равно).

x 2 -4x+4≤0 – это тоже два математических выражения, соединённых знаком «≤» (меньше либо равно).

Короче говоря, термин «математическое выражение» применяется, чаще всего, чтобы не мычать, как корова и не кукарекать, как петух…

Спросят у вас, к примеру, что такое разность квадратов двух выражений. Первый вариант ответа: «Это ммммм… такая фиговина… Может, я лучше напишу разность? Вам какую?»

А человек в теме уверенно и с блеском в глазах ответит: «Разность квадратов двух выражений — это математическое выражение, представляющее собой произведение разности этих выражений и их суммы»!

Или: что такое квадратный корень? Квадратный корень — это математическое выражение, состоящее из подкоренного выражения и знака корня (радикала).

Согласитесь, второй вариант ответа выглядит куда более солидно и научно.)

Вот в таких вопросах фраза «математическое выражение» очень и очень удобна. Чтобы не объясняться на пальцах, как иностранные туристы в экзотической стране.

Гораздо сложнее — это конкретные математические выражения и работа с ними. Это совершенно другое дело.

Дело всё в том, что у каждого вида математических выражений имеется свой набор правил и приёмов, которому необходимо следовать при работе с ними.

У чисел — свой набор, у буквенных выражений — свой, у дробей — свой, у всяких там синусов, логарифмов, производных, интегралов — свои наборы действий. В каких-то наборах эти правила похожи или даже совпадают, а где-то — кардинально отличаются. Но пугаться этих жутких слов не надо. Эти страшные понятия мы с вами обязательно освоим в соответствующих разделах. А здесь мы с вами поработаем только с двумя видами математических выражений. А именно — с числовыми выражениями и с алгебраическими выражениями.

Что такое числовое выражение?

Что такое числовое выражение? Всё проще пареной репы.) Числовое выражение — это какое-то выражение с числами. Да-да, всего-навсего. Математическое выражение, составленное из цифр, знаков действий, скобок, знаков равенства/неравенства — это всё числовые выражения.

10-6 — числовое выражение,

(3-2,1)·0,5 — числовое выражение.

Или даже вот эти монстры:

О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

это всё числовые выражения.

Да, в последнем примере появились специальные математические символы — радикал, значок логарифма и значок синуса. Но в этом выражении тоже нет букв. Только числа! Это самое главное.

Короче говоря, любые числа, дроби, примеры на вычисление без иксов, игреков и прочих буковок — это всё числовые выражения. Намёк понятен?)

В чём главный признак числового выражения? В том, что в нём нет букв. Вообще никаких. Математические значки (если надо) — пожалуйста. А вот букв — нету. Это ключевой признак.)

Что же можно делать с числовыми выражениями? Числовые выражения, как правило, можно (и нужно) считать. Для этого, бывает, приходится менять знаки, раскрывать скобки (или наоборот, заключать в скобки), сокращать, выносить общий множитель, раскладывать на множители т.д. То есть, делать преобразования числовых выражений. Но о преобразованиях выражений — чуть позже. Терпение, друзья.)

А здесь мы с вами разберёмся с одним забавным случаем, когда с числовым выражением делать ничего не надо. Совсем! Эта приятная операция (ничего не делать)) производится, когда числовое выражение не имеет смысла.

Понятное дело, что если мы с вами напишем какую-то белиберду типа 4+)-(=), то делать ничего и не будем. Ибо непонятно, что с этим делать. Ну, разве посчитать количество скобочек.)

Однако, попадаются в математике и внешне вполне себе благопристойные выражения.

О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

Однако это числовое выражение тоже не имеет смысла. Почему? А потому, что если выписать отдельно знаменатель дроби да посчитать, получается ноль. На который делить нельзя. Нет такой операции в математике!

О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

И это выражение тоже не имеет смысла! Догадались? А вы посчитайте, что под корнем получится.) Минус единичка там получится. А извлекать квадратный корень из отрицательных чисел в средней школе не учат (а вот в ВУЗе — пожалуйста). Это тоже запретное действие в (школьной) математике.

Конечно, чтобы сделать такое умозаключение, пришлось потрудиться и посчитать, что в знаменателе да под корнем получится. А в примерах может быть такого понаворочено, что… Тут уж ничего не поделаешь.)

Короче говоря, числовое выражение не имеет смысла тогда, когда в результате преобразований этого самого выражение получается запретное действие. Запретных действий в математике не так уж много: это деление на ноль, извлечение корня чётной степени из отрицательного числа, ограничения в логарифмах, в тригонометрии и в арках. Это обсуждается в соответствующих темах.

Итак, что такое числовое выражение — вникли (надеюсь).

Когда числовое выражение не имеет смысла — осознали.

Пора двигаться на следующий уровень.)

Что такое алгебраическое выражение?

Если в игру дополнительно вступают буквы, то выражение становится… Да! Оно становится алгебраическим выражением!

Понятие алгебраическое выражение — более широкое, чем числовое. Почему? Потому, что в понятие алгебраические выражения входят и все числовые тоже. То есть, любое числовое выражение — это и алгебраическое выражение. Только без букв. Типа всякий русский — россиянин, но не всякий россиянин — русский.)

О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

В выражении х+6, например, буква икс — переменная величина. Или коротко — переменная. В отличие от шестёрки, которая — величина постоянная. Или коротко — постоянная.

Что означает термин «алгебраическое выражение»? Он означает, что, в отличие от арифметики, (которая, как известно, работает только с числами), мы должны использовать законы и правила алгебры. Непонятно? Поясняю на несложном примере:

Что можно сделать? Посчитать и всего делов-то.) Слева шестёрка и справа тоже. А для каких-нибудь других чисел такое выполняется? Тоже можно посчитать и сравнить. Но чисел в математике — бесконечное количество. И что же? Каждый раз считать и сравнивать?!

А вот если мы шагнём из арифметики в алгебру и распишем данное равенство через алгебраические выражения:

то мы сразу решим все вопросы! Для всех чисел махом! Мощная штука — алгебра.)

А когда алгебраическое выражение не имеет смысла? Что такое ОДЗ?

С числовыми выражениями всё ясно. Там на ноль делить нельзя да корни извлекать из отрицательных чисел, ну и некоторые другие логарифмические/тригонометрические фишки. А тут как узнаешь, на что делим или из чего извлекаем…

Очень просто! Точно так же!

Возьмём, к примеру, алгебраическое выражение:

О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

Имеет ли оно смысл? Бэ-то любое число… Любое-то любое… Но есть среди этого бесконечного набора чисел такое значение b, при котором это выражение точно не имеет смысла. Догадались? Да! Это единичка (b=1). Если в знаменателе дроби заменить переменную b (как по-школьному говорят «подставить») на единичку, то в знаменателе нолик получится. На который делить нельзя. Вот и получается, что наше выражение имеет смысл при любом b, кроме единички.

И вот этот самый весь остальной набор чисел, которые можно подставлять в данное выражение, и который не приводит к запретному действию, в математике называется областью допустимых значений (ОДЗ) выражения. В нашем примере областью допустимых значений (ОДЗ) служат все числа, кроме единички.

О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

Видим квадратный корень. Сразу соображаем (из теории, т.е. основ), что корень квадратный извлекается только из положительных чисел и нуля. А вот из отрицательных — ни в какую!

Вот и обезопасим себя вот такой записью:

Таким образом, данный хитрое выражение имеет смысл лишь при иксах, больших (или равных) двойке. Число, скажем, 3, вполне себе прокатит, а вот ноль — никак нет: он меньше двойки. ОДЗ — штука жёсткая!

Уловили принцип? Внимательно смотрим на выражение с переменными, ищем опасные места и смотрим, при каких переменных получается запретная операция. И исключаем эти значения из ОДЗ.

А потом внимательно читаем задание. Чего хотят-то? Внимательное чтение никто не отменял, да… Если в задании спрашивают, при каких значениях переменной выражение имеет смысл, то ответом будут служить все значения, кроме запретных.

Или наоборот: при каких значениях переменных выражение не имеет смысла? Тогда найденные запретные значения и будут служить ответом к заданию. Почувствуйте разницу, что называется.)

А теперь вопрос к размышлению. А зачем нам смысл выражения? Есть он, нет его… Какая разница? Дело всё в том, что это понятие становится крайне важным в старших классах! Да и в ВУЗе тоже. Без этого важного понятия вы не сможете проделывать такие простые операции, как нахождение области определения функции, ОДЗ уравнений, неравенств. Что неизбежно будет приводить к полному провалу и непониманию всех этих серьёзных тем. Увы.)

Итак, самое главное из сегодняшнего урока:

1. Числовое выражение — это выражение с числами (т.е. без букв).

2. Если, помимо чисел, в выражении есть буквы, то оно называется алгебраическим выражением.

3. Как числовое, так и алгебраическое выражение, может иметь смысл, а может и не иметь. При встрече с алгебраическим выражением первым делом ищем его ОДЗ.

4. Все допустимые значения переменной (переменных), не приводящих к запретному действию, составляют Область Допустимых Значений (ОДЗ) алгебраического выражения. При необходимости ищем её!

Ну а в различных видах преобразований выражений мы с вами подробненько разберёмся и плотно поработаем в следующих уроках этого раздела.)

Источник

Область определения, выражение имеет смысл

Допустимые и недопустимые значения переменных

Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.

Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.

Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1:а, если а=, тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут ответ. Иначе говоря, имеют смысл с имеющимися переменными.

Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.

Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.

То есть отсюда следует полное определение

Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.

Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.

Для примера рассмотрим выражение вида 1x-y+z, где имеются три переменные. Иначе можно записать, как x=, y=1, z=2, другая же запись имеет вид (,1,2). Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 1-1+2=11=1. Отсюда видим, что (1,1,2) недопустимы. Подстановка дает в результате деление на ноль, то есть 11-2+1=1.

Алгебраические выражения

Это то же самое числовое выражение, если в него добавить запретные буквы. Тогда оно и становится полноценным алгебраическим. Оно также может быть всех размеров и форм. Алгебраическое выражение – понятие более широкое, включающее в себя предыдущее. Но был смысл начинать разговор не с него, а с числового, чтобы было понятнее и разобраться было легче. Ведь имеет ли смысл выражение алгебраическое – вопрос не то чтобы очень сложный, но имеющий больше уточнений.

Условия для выражения, которое не имеет смысла

Когда задание начинается со слова «вычислить», можно говорить о преобразовании. Штука в том, что это действие не всегда целесообразно: в нем не то чтобы сильно нуждаются, если на передний план выходит выражение, не имеющее смысла. Примеры бесконечно удивительны: иногда, чтобы понять, что оно-то нас и настигло, приходится долго и нудно раскрывать скобки и считать-считать-считать…

О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

Главное, что нужно запомнить: не имеет смысла то выражения, чей конечный результат сводится к запретному в математике действию. Если уж совсем по-честному, то тогда бессмысленным становится само преобразование, но для того, чтобы это выяснить, приходится его для начала выполнить. Такой вот парадокс!

Самое знаменитое, но от того не менее важное запретное математическое действие – это деление на ноль.

Потому вот, например, выражение, не имеющее смысла:

Если при помощи нехитрых вычислений свести вторую скобку к одной цифре, то она и будет нулем.

По такому же принципу «почетное звание» дается и этому выражению:

Типовые задачи по теме «Выражение, не имеющее смысла»

7 класс изучает эту тему по математике в числе прочих, и задания по ней встречаются нередко как непосредственно после соответствующего занятия, так и в качестве вопроса «с подвохом» на модулях и экзаменах.

Вот почему стоит рассмотреть типовые задачи и методы их решения.

Имеет ли смысл выражение:

Необходимо произвести все вычисление в скобках и привести выражение к виду:

Конечный результат содержит деление на ноль, следовательно, выражение не имеет смысла.

Какие выражения не имеют смысла?

Следует вычислить конечное значение для каждого из выражений.

О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

Найти область допустимых значений для следующих выражений:

Область допустимых значений (ОДЗ) — это все те числа, при подставлении которых вместо переменных выражение будет иметь смысл.

То есть задание звучит как: найти значения, при которых не будет деления на ноль.

1) b є (-∞;-17) & (-17; + ∞), или b>-17 & b 25 & b 3 — x 2 y 3 + 13x — 38y)/(12x 2 — y).

Но на самом деле оно только выглядит страшным и громоздким, потому что на деле содержит в себе то, что уже давно известно: возведение чисел в квадрат и куб, некоторые арифметические действия, такие как деление, умножение, вычитание и сложения. Для удобства, между прочим, можно привести задачу к дробному виду.

Числитель у получившейся дроби не радует: (x 3 — x 2 y 3 + 13x — 38y). Это факт. Зато есть другой повод для счастья: его-то для решения задания трогать даже не понадобится! Согласно определению, рассмотренному ранее, делить нельзя на ноль, а что именно на него будет делиться, совершенно неважно. Потому оставляем это выражение в неизменном виде и подставляем пары чисел из данных вариантов в знаменатель. Уже третий пункт идеально вписывается, превращая небольшую скобочку в ноль. Но останавливаться на этом – плохая рекомендация, ведь подойти может еще что-нибудь. И вправду: пятый пункт тоже неплохо вписывается и подходит условию.

Источник

Область определения, выражение имеет смысл

Допустимые и недопустимые значения переменных

Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.

Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.

Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1:а, если а=, тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут ответ. Иначе говоря, имеют смысл с имеющимися переменными.

Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.

Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.

То есть отсюда следует полное определение

Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.

Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.

Для примера рассмотрим выражение вида 1x-y+z, где имеются три переменные. Иначе можно записать, как x=, y=1, z=2, другая же запись имеет вид (,1,2). Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 1-1+2=11=1. Отсюда видим, что (1,1,2) недопустимы. Подстановка дает в результате деление на ноль, то есть 11-2+1=1.

Алгебраические выражения

Это то же самое числовое выражение, если в него добавить запретные буквы. Тогда оно и становится полноценным алгебраическим. Оно также может быть всех размеров и форм. Алгебраическое выражение – понятие более широкое, включающее в себя предыдущее. Но был смысл начинать разговор не с него, а с числового, чтобы было понятнее и разобраться было легче. Ведь имеет ли смысл выражение алгебраическое – вопрос не то чтобы очень сложный, но имеющий больше уточнений.

Условия для выражения, которое не имеет смысла

Когда задание начинается со слова «вычислить», можно говорить о преобразовании. Штука в том, что это действие не всегда целесообразно: в нем не то чтобы сильно нуждаются, если на передний план выходит выражение, не имеющее смысла. Примеры бесконечно удивительны: иногда, чтобы понять, что оно-то нас и настигло, приходится долго и нудно раскрывать скобки и считать-считать-считать…

О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

Главное, что нужно запомнить: не имеет смысла то выражения, чей конечный результат сводится к запретному в математике действию. Если уж совсем по-честному, то тогда бессмысленным становится само преобразование, но для того, чтобы это выяснить, приходится его для начала выполнить. Такой вот парадокс!

Самое знаменитое, но от того не менее важное запретное математическое действие – это деление на ноль.

Потому вот, например, выражение, не имеющее смысла:

Если при помощи нехитрых вычислений свести вторую скобку к одной цифре, то она и будет нулем.

По такому же принципу «почетное звание» дается и этому выражению:

Типовые задачи по теме «Выражение, не имеющее смысла»

7 класс изучает эту тему по математике в числе прочих, и задания по ней встречаются нередко как непосредственно после соответствующего занятия, так и в качестве вопроса «с подвохом» на модулях и экзаменах.

Вот почему стоит рассмотреть типовые задачи и методы их решения.

Имеет ли смысл выражение:

Необходимо произвести все вычисление в скобках и привести выражение к виду:

Конечный результат содержит деление на ноль, следовательно, выражение не имеет смысла.

Какие выражения не имеют смысла?

Следует вычислить конечное значение для каждого из выражений.

О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть фото О каких выражениях говорят что они не имеют смысла в алгебре. Смотреть картинку О каких выражениях говорят что они не имеют смысла в алгебре. Картинка про О каких выражениях говорят что они не имеют смысла в алгебре. Фото О каких выражениях говорят что они не имеют смысла в алгебре

Найти область допустимых значений для следующих выражений:

Область допустимых значений (ОДЗ) — это все те числа, при подставлении которых вместо переменных выражение будет иметь смысл.

То есть задание звучит как: найти значения, при которых не будет деления на ноль.

1) b є (-∞;-17) & (-17; + ∞), или b>-17 & b 25 & b 3 — x 2 y 3 + 13x — 38y)/(12x 2 — y).

Но на самом деле оно только выглядит страшным и громоздким, потому что на деле содержит в себе то, что уже давно известно: возведение чисел в квадрат и куб, некоторые арифметические действия, такие как деление, умножение, вычитание и сложения. Для удобства, между прочим, можно привести задачу к дробному виду.

Числитель у получившейся дроби не радует: (x 3 — x 2 y 3 + 13x — 38y). Это факт. Зато есть другой повод для счастья: его-то для решения задания трогать даже не понадобится! Согласно определению, рассмотренному ранее, делить нельзя на ноль, а что именно на него будет делиться, совершенно неважно. Потому оставляем это выражение в неизменном виде и подставляем пары чисел из данных вариантов в знаменатель. Уже третий пункт идеально вписывается, превращая небольшую скобочку в ноль. Но останавливаться на этом – плохая рекомендация, ведь подойти может еще что-нибудь. И вправду: пятый пункт тоже неплохо вписывается и подходит условию.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *