Нитро приставка в химии что значит
НИТРОСОЕДИНEНИЯ
НИТРОСОЕДИНEНИЯ (С-нитросоединения), содержат в молекуле одну или неск. нитрогрупп, непосредственно связанных с атомом углерода. Известны также N- и О-нитро-соединения (см. Нитрамины и Нитраты органические).
Нитрогруппа имеет строение, промежуточное между двумя предельными резонансными структурами:
Н итросоединения, имеющие хотя бы один а-Н-атом, могут существовать в двух таутомерных формах с общим мезомерным анионом. О-форма наз. аци-нитросоединением или нитроновой к-той:
Назв. нитросоединений производят прибавлением префикса «нитро» к назв. соединения-основы, по необходимости добавляя цифровой указатель, напр. 2-нитропропан. Назв. солей нитросоединений производят из назв. либо С-формы, либо аци-формы, или нитроновой к-ты.
Физические свойства. Простейшие нитроалканы-бесцв. жидкости. Физ. св-ва нек-рых алифатических нитросоединений приведены в таблице. Ароматические нитросоединения-бесцв. или светло-желтые высококипящие жидкости или низкоплавкие твердые в-ва, обладающие характерным запахом, плохо раств. в воде, как правило, перегоняются с паром.
ФИЗИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ АЛИФАТИЧЕСКИХ НИТРОСОЕДИНЕНИЙ
* При 25°С. ** При 24°С. *** При 14°С.
В УФ спектрах алифатических нитросоединений l макс 200-210 нм (интенсивная полоса) и 270-280 нм (слабая полоса); для солей и эфиров нитроновых к-т соотв. 220-230 и 310-320 нм; для гем-динитросоед. 320-380 нм; для ароматических нитросоединений 250-300 нм (интенсивность полосы резко снижается при нарушении копланарности).
3-5), чем соответствующие нитросоединения (рК а
Образование нитроновых к-т в ряду ароматических нитросоединений связано с изомеризацией бензольного кольца в хиноидную форму; напр., нитробензол образует с конц. H 2 SO 4 окрашенный солеобразный продукт ф-лы I, о-нитротолуол проявляет фотохромизм в результате внутримол. переноса протона с образованием ярко-синего О-производного:
Ациклич. алкиловые эфиры нитроновых к-т термически нестабильны и распадаются по внутримол. механизму:
; эту
р-цию можно использовать для получения карбонильных соединений. Более стабильны силиловые эфиры. Об образовании продуктов С-алкилирования см. ниже.
Р-ц и и с р а з р ы в о м с в я з и С—N. Первичные и вторичные нитросоединения при нагр. с минер. к-тами в присут. спиртового или водного р-ра щелочи образуют карбонильные соед. (см. Нефа реакция). Р-ция проходит через промежут. образование нитроновых к-т:
В качестве исходных соед. можно использовать силиловые нитроновые эфиры. Действие сильных к-т на алифатические нитросоединения может приводить к гидроксамовым к-там, напр.:
Метод используют в пром-сти для синтеза СН 3 СООН и гидроксиламина из нитроэтана. Ароматические нитросоединения инертны к действию сильных к-т.
Нуклеоф. замещение группы NO 2 не характерно для нитроалканов, однако при действии тиолат-ионов на третичные нитроалканы в апротонных р-рителях группа NO 2 замещается на атом водорода. Р-ция протекает по анион-радикальному механизму. В алифатич. и гетероциклич. соед. группа NO 2 при кратной связи относительно легко замещается на нуклеофил, напр.:
Р-ц и и п о с в я з и N = O. Одна из важнейших р-ций-вос-становление, приводящее в общем случае к набору продуктов:
При действии Р(III) на ароматические нитросоединения происходит последоват. дезоксигенирование группы NO 2 с образованием высокореакционноспособных нитренов. Р-цию используют для синтеза конденсир. гетероциклов, напр.:
В этих же условиях силиловые эфиры нитроновых к-т трансформируются в силильные производные оксимов. Обработка первичных нитроалканов РСl 3 в пиридине или NaBH 2 S приводит к нитрилам. Ароматические нитросоединения, содержащие в орто-положении заместитель с двойной связью или циклопропильный заместитель, в кислой среде перегруппировываются в о-нитрозокетоны, напр.:
Н итросоединения и нитроновые эфиры реагируют с избытком реактива Гриньяра, давая производные гидроксиламина:
Р-ции по связям O = N О и C = N
О. Нитросоединения вступают в р-ции 1,3-диполярного циклоприсоединения, напр.:
Наиб. легко эта р-ция протекает между нитроновыми эфира-ми и олефинами или ацетиленами. В продуктах циклоприсоединения (моно- и бициклич. диалкоксиаминах) под действием нуклеоф. и электроф. реагентов связи N — О легко расщепляются, что приводит к разл. алифатич. и гетеро-циклич. соед.:
В препаративных целях в р-ции используют стабильные силиловые нитроновые эфиры.
Известны примеры внутримол. С-алкилирования, напр.:
Первичные и вторичные нитросоединения реагируют с алифатич. аминами и СН 2 О с образованием р-аминопроизводных (р-ция Манниха); в р-ции можно использовать предварительно полученные метилольные производные нитросоединений или аминосоед.:
Нитрометан и нитроэтан могут конденсироваться с двумя молекулами метилоламина, а высшие нитроалканы- только с одной. При определенных соотношениях реагентов р-ция может приводить к гетероциклич. соед., напр.: при взаимод. первичного нитроалкана с двумя эквивалентами первичного амина и избытком формальдегида образуются соед. ф-лы V, если реагенты берут в соотношении 1:1:3-соед. ф-лы VI.
Активирующее влияние группы NO 2 на нуклеоф. замещение (особенно по орто-положению) широко используют в орг. синтезе и пром-сти. Р-ция протекает по схеме присоединение-отщепление с промежут. образованием s-комплек-са (комплекс Майзенхаймера). По этой схеме атомы галогенов легко замещаются на нуклеофилы:
Нитрогруппа облегчает перегруппировки ароматич. соед. по механизму внутримол. нуклеоф. замещения или через стадию образования карбанионов (см. Смайлса перегруп-пировка).
Введение второй группы NO 2 ускоряет нуклеоф. замещение. Н итросоединения в присут. оснований присоединяются к альдегидам и кетонам, давая нитроспирты (см. Анри реакции), первичные и вторичные нитросоединения-к соед., содержащим активир. двойную связь (р-ция Михаэля), напр.:
Первичные нитросоединения могут вступать в р-цию Михаэля со второй молекулой непредельного соед.; эту р-цию с послед. транс формацией группы NO 2 используют для синтеза поли-функцион. алифатич. соединений. Комбинация р-ций Анри и Михаэля приводит к 1,3-динитросоединениям, напр.:
Нитроолефины могут выступать в роли диенофилов или диполярофилов в р-циях диенового синтеза и циклоприсое-динения, а 1,4-динитродиены-в роли диеновых компонентов, напр.:
Нитроалканы легко галогенируются в присут. оснований с последоваг. замещением атомов Н при a-С-атоме:
При фотдхйм. хлорировании замещаются более удаленные атомы Н:
При карбоксилировании первичных нитроалканов действием CH 3 OMgOCOOCH 3 образуются a-нитрокарбоновые к-ты или их эфиры.
Нитрогруппа не оказывает существ. влияния на свободно-радикальное алкилирование или арилирование ароматич. соед.; р-ция приводит в осн. к орто- и пара-замещенным продуктам.
Нитроалканы м.б. получены нагреванием ацилнитратов до 200 °С.
a,w-Динитроалканы получают действием алкилнитратов на циклич. кетоны с послед. гидролизом солей a,a’-динитро-кетонов:
Поли-нитросоединения синтезируют деструктивным нитрованием разл. орг. соед.; напр., три- и тетранитрометан получают при действии HNO 3 на ацетилен в присут. ионов Hg(II).
Применение. Поли-нитросоединения, особенно ароматические, применяют в качестве взрывчатых веществ и в меньшей степени как компоненты ракетных топлив. Алифатические нитросоединения используют как р-рители в лакокрасочной пром-сти и в произ-ве полимеров, в частности эфиров целлюлозы; для очистки минер. масел; депарафинизации нефти и др.
Н итросоединения- полупродукты в произ-ве синтетич. красителей, полимеров, моющих препаратов и ингибиторов коррозии; смачивающих, эмульгирующих, диспергирующих и флотац. агентов; пластификаторов и модификаторов полимеров, пигментов и пр. Они находят широкое применение в орг. синтезе и в качестве модельных соед. в теоретич. орг. химии.
Лит.: Химия нитро- и нитрозогрупп, под ред. Г. Фойера, пер. с англ., т. 1-2, М., 1972-73; Химия алифатических и алициклических нитросоединений, М., 1974; Общая органическая химия, пер. с англ., т. 3, М., 1982, с. 399-439; Тартаковский В. А., «Изв. АН СССР. Сер. хим.», 1984, № 1, с. 165-73.
Что значит приставка нитро в химии. Нитросоединения
В зависимости от радикала R, различают алифатические (предельные и непредельные), ациклические, ароматические и гетероциклические нитросоединения. По характеру углеродного атома, с которым связана нитрогруппа, нитросоединения подразделяются на первичные, вторичные и третичные.
Нитросоединения изомерны эфирам азотистой кислоты HNO2 (R-ONO)
При наличии α-атомов водорода (в случае первичных и вторичных алифатических нитросоединений) возможна таутомерия между нитросоединениями и нитроновыми кислотами (аци-формами нитросоединений):
Электрофильное нитрование[править | править исходный текст]
При электрофильном нитровании основным нитрующим агентом является азотная кислота. Безводная азотная кислота подвергается автопротолизу по реакции:
Вода сдвигает равновесие влево, поэтому в 93-95 % азотной кислоте катион нитрония уже не обнаруживается. В связи с этим азотная кислота используется в смеси со связывающей воду концентрированной серной кислотой илиолеумом: в 10%-ном растворе азотной кислоты в безводной серной кислоте равновесие практически полностью сдвинуто вправо.
Кроме смеси серной и азотной кислот используются различные комбинации оксидов азота и органических нитратов с кислотами Льюиса (AlCl3, ZnCl2, BF3). Сильными нитрующими свойствами обладает смесь азотной кислоты с уксусным ангидридом, в которой образуется смесь ацетилнитрата и оксида азота(V), а также смесь азотной кислоты с оксидом серы(VI) или оксидом азота(V).
Процесс проводят либо при непосредственном взаимодействии нитрующей смеси с чистым веществом, либо в растворе последнего в полярном растворителе (нитрометан, сульфолан, уксусная кислота). Полярный растворитель кроме того, что растворяет реагирующие вещества, сольватирует ион + и способствует его диссоциации.
В лабораторных условиях чаще всего используются нитраты и соли нитрония, нитрующая активность которых возрастает в следующем ряду:
Механизм нитрования бензола:
Кроме замещения атома водорода нитрогруппой применяется также заместительное нитрование, когда нитрогруппа вводится вместо сульфо-, диазо- и других групп.
Нитрование алкенов при действии апротонных нитрующих агентов идёт по нескольким направлениям, которое зависит от условий реакции и строения исходных реагентов. В частности, могут протекать реакции отщепления протона и присоединения функциональных групп молекул растворителя и противоионов:
Нитрование аминов приводит к N-нитроаминам. Этот процесс является обратимым:
Заместительное нитрование ацетамидов, сульфамидов, уретанов, имидов и их солей протекает по схеме
Реакцию ведут в апротонных растворителях с использованием апротонных нитрующих агентов.
Спирты нитруются любыми нитрующими агентами; реакция является обратимой:
Нуклеофильное нитрование[править | править исходный текст]
Радикальное нитрование[править | править исходный текст]
Радикальное нитрование применяется для получения нитроалканов и нитроалкенов. Нитрующими агентами являются азотная кислота или оксиды азота:
Параллельно протекает реакция окисления алканов ввиду взаимодействия радикала NO2 с алкильным радикалом по атому не азота, а кислорода. Реакционноспособность алканов возрастает при переходе от первичных к третичным. Реакцию проводят как в жидкой фазе (азотной кислотой при нормальном давлении или оксидами азота, при 2-4,5 МПа и 150-220°C), так и в газовой (пары азотной кислоты, 0,7-1,0 МПа, 400-500°C)
Анион-радикальный механизм нитрования наблюдается при взаимодействии тетранитрометана солей моно-нитросоединений.
Реакция Коновалова(для алифатических углеводородов)
Обычно образуется смесь первичных, вторичных и третичных нитросоединений. Жирноароматические соединения легко нитруются в α-положение боковой цепи. Побочными реакциями являются образование нитратов, нитритов, нитрозо- и полинитросоединений.
R-H + ·ONO2 → R· + HONO2
Нитрование ароматических углеводородов.
Химические свойства[править | править исходный текст]
По химическому поведению нитросоединения обнаруживают определенное сходство с азотной кислотой. Это сходство проявляется при окислительно-восстановительных реакциях.
Восстановление нитросоединений (Реакция Зинина):
Чаще всего при таутомеризации происходит перемещение атомовводорода от одного атома в молекуле к другому и обратно в одном и том же соединении. Классическим примером является ацетоуксусный эфир, представлющий собой равновесную смесь этилового эфира ацетоуксусной (I) и оксикротоновой кислот (II).
Таутомерия сильно проявляется для целого круга веществ, производных циановодорода. Так уже сама синильная кислота существует в двух таутомерных формах:
При комнатной температуре равновесие превращения циановодорода в изоциановодород смещено влево. Показано, что менее стабильный изоциановодород более токсичен.
Таутомерные формы фосфористой кислоты
Аналогичное превращение известно для циановой кислоты, которая известна в трёх изомерных формах, однако таутомерное равновесие связывает только две из них: циановую и изоциановуюкислоты:
Амид-иминольную таутомерию лактамов называют лактам-лактимной таутомерией. Она играет большую роль в химии гетероциклических соединений. Равновесие в большинстве случаев смещено в сторону лактамной формы.
Особенно велик перечень органических загрязняющих веществ. Их разнообразие и большая численность делают практически невозможным контроль за содержанием каждого из них. Поэтому выделяют приоритетные загрязнители (около 180 соединений, объединенные в 13 групп): ароматические углеводороды, полиядерные ароматические углеводороды (ПАУ), пестициды (4 группы), летучие и малолетучие хлорорганические соединения, хлорфенолы, хлоранилины и хлорнитроароматические соединения, полихлорированные и полибромированные бифенилы, металлорганические соединения и другие. Источниками этих веществ являются атмосферные осадки, поверхностные стоки и производственные и коммунально-бытовые СВ.
Восстановление нитросоединений . Все нитросоединения восстанавливаются в первичные амины. Если образующийся амин летуч, его можно обнаружить по изменению окраски индикаторной бумажки:
Для третичных алифатических нитросоединений специфических реакций обнаружения не имеется.
Обнаружение ароматических нитросоединений. Ароматические нитросоединения обычно окрашены в бледно-желтый цвет. При наличии других заместителей интенсивность и глубина окраски часта усиливается. Для обнаружения ароматических нитросоединений их восстанавливают в первичные амины, последние диазотируют и сочетают с β-нафтолом:
ArNO 2 →ArNH 2 → ArN 2 Cl → ArN=N |
OH |
Эта реакция, однако, не является специфической, так как амины образуются при восстановлении не только нитросоединений, но и нитрозо-, азоокси-и гидразосоединений. Для того чтобы сделать окончательный вывод о наличии в соединении нитрогруппы, нужно провести количественное определение.
Качественные реакции N-нитрозосоединений
Реакция с HI. С-Нитрозосоединения можно отличить от N- нитрозосоединений по их отношению к подкисленному раствору йодистого калия: С-нитрозосоединения окисляют иодистоводородную кислоту, N-нитрозосоединения с иодистоводородной кислотой не реагируют.
ArN = O + H 2 N – Ar → Ar – N = N – Ar + H 2 O |
Реакционная смесь окрашивается в розовый цвет; постепенно окраска становится пурпурной.
Качественные реакции нитрилов
В анализе нитрилов RC≡N, ArC≡N используется их способность гидролизоваться и восстанавливаться. Для обнаружения C≡N группы проводят гидролиз:
RC ≡ N + H 2 O → R – CONH 2 |
Иногда удобно гидролиз нитрила прервать на стадии амида, если амид плохо растворим в воде и в спирте. В этом случае реакцию ведут с 2 н. NaOH в присутствии перекиси водорода:
Качественные реакции тиолов (тиоспиртов, тиоэфиров)
2RSH + PbO → (RS) 2 Pb + H 2 O |
Меркаптиды свинца и меди окрашены.
Алкилнитриты имеют более низкие температуры кипения
Нитросоелинения сильно полярны и имеют большой дипольный момент
Алкилнитриты легко омыляются щелочами и минеральными кислотами с образованием соответствующих спиртов и азотистой кислоты или ее соли.
Получение
Химические свойства
При восстановлении нитросоединений образуются первичные амины:
Первичные и вторичные нитросоединения растворимы в щелочах с образованием солей. Водородные атомы при углероде, связанном с нитрогруппой активируются, в результате в щелочной среде ниросоединения перегруппировываются в аци-нитро-форму:
При обработке минеральной кислотой щелочного раствора нитросоединения образуется сильно кислая аци-форма, которая быстро изомеризуется в обычную нейтральную форму:
Первичные и вторичние нитросоединения реагируют с азотистой кислотой, третичные не реагируют:
Щелочные соли нитроловых кислот в растворе имеют красный цвет, псевдонитролы – синий или зеленовато-синий.
Первичные и вторичные ниросоединения конденсируются в присутствии щелочей с альдегидами, образуя нитроспирты (нуклеофильное присоединение):
Аци-формы первичных и вторичных нитросоединений в водных растворах при действии минеральных кислот образуют альдегиды или кетоны:
Первичные нитросоединения при нагревании с 85%-ной серной кислотой переходят в карбоновые кислоты с отщеплением гидроксиламина. Это происходит в результате гидролиза образующейся аци-формы.
(реакция Коновалова- протекает избирательно:
третичный атом С > вторичный >первичный
В реакциях восстановления нитросоединения превращаются в амины.
2. Восстановление в растворе:
а) в щелочной и нейтральной среде получаются амины:
R-NO 2 + 3(NH 4) 2 S RNH 2 + 3S + 6NH 3 +2H 2 O (реакция Зинина )
R-NO 2 + 2Al + 2KOH + 4H 2 O RNH 2 + 2K
б) в кислой среде (железо, олово или цинк в соляной кислоте) получаются соли аминов: R-NO 2 + 3Fe + 7HCl Cl — + 2H 2 O + 3FeCl 2
Строение
Также атом азота имеет два неспаренных электрона, что обуславливает свойства аминов как органических оснований.
КЛАССИФИКАЦИЯ АМИНОВ.
По количеству и типу радикалов, связанных с атомом азота:
АМИНЫ | Первичные амины | Вторичные | Третичные амины |
Алифатические | CH 3 — NH 2 Метиламин | (CH 3 ) 2 NH | (CH 3 ) 3 N Триметиламин |
Ароматические | (C 6 H 5 ) 2 NH Дифениламин |
1. В большинстве случаев названия аминов образуют из названий углеводородных радикалов и суффикса амин . Различные радикалы перечисляются в алфавитном порядке. При наличии одинаковых радикалов используют приставки ди и три .
2. Первичные амины часто называют как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы -NH 2 .
В этом случае аминогруппа указывается в названии приставкой амино- :
Символ N- ставится перед названием алкильного радикала, чтобы показать, что этот радикал связан с атомом азота, а не является заместителем в бензольном кольце.
ИЗОМЕРИЯ АМИНОВ
1) углеродного скелета, начиная с С 4 H 9 NH 2:
3) изомерия между типами аминов – первичный, вторичный, третичный:
ФИЗИЧЕСКИЕ СВОЙСТВА АМИНОВ.
Первичные и вторичные амины образуют слабые межмолекулярные водородные связи:
Это объясняет относительно более высокую температуру кипения аминов по сравнению с алканами с близкой молекулярной массой. Например:
Третичные амины не образуют ассоциирующих водородных связей (отсутствует группа N–H). Поэтому их температуры кипения ниже, чем у изомерных первичных и вторичных аминов:
По сравнению со спиртами алифатические амины имеют более низкие температуры кипения, т.к. в спиртах водородная связь более прочная :
Ароматические амины – бесцветные высококипящие жидкости или твердые вещества.
Амины способны к образованию водородных связей с водой :
Поэтому низшие амины хорошо растворимы в воде.
С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается, т.к. увеличиваются пространственные препятствия образованию водородных связей. Ароматические амины в воде практически не растворяются.
Анилин : С 6 H 5 -NH 2 – важнейший из ароматических аминов:
Он находит широкое применение в качестве полупродукта в производстве красителей, взрывчатых веществ и лекарственных средств (сульфаниламидные препараты).
1. Первичные амины можно получить восстановлением нитросоединений. б) Восстановление: в щелочной и нейтральной среде получаются амины: R-NO 2 + 3(NH 4) 2 S R- NH 2 + 3S + 6NH 3 +2H 2 O (реакция Зинина ) R-NO 2 + 2Al + 2KOH + 4H 2 O R- NH 2 + 2K Восстановлением нитробензола получают анилин. в) в кислой среде (железо, олово или цинк в соляной кислоте) получаются соли аминов: R-NO 2 + 3Fe + 7HCl Cl — + 2H 2 O + 3FeCl 2 Амины из раствора выделяют с помощью щелочи: | |||||||||||
2. Алкилирование аммиака и аминов. При взаимодействии аммиака с алкилгалогенидами происходит образование соли первичного амина, из которой действием щелочи можно выделить сам первичный амин. Этот амин способен взаимодействовать с новой порцией галогеналкана с образованием вторичного амина: Возможно дальнейшее алкилирование до третичного амина. | |||||||||||
3.Восстановление нитрилов с образованием первичных аминов: R–CN + 4[H] R–CH 2 NH 2 Химические свойства аминов. Амины имеют сходное с аммиаком строение и проявляют подобные ему свойства. Как в аммиаке, так и в аминах атом азота имеет неподеленную пару электронов:
|