что можно измерить тахеометром
Как пользоваться, работать с тахеометром
• горизонтальная и вертикальная съемка;
• вынос в натуру участков, дуги дорог;
• разбивка строительных осей (по ссылке рассказано → о способах разбивки зданий на местности);
• архитектурные промеры;
• вычисление площадей и объемов земляных работ;
• определение недоступных расстояний и многое другое.
Устройство тахеометра
Как и → теодолит (по ссылке рассказано как работать теодолитом), электронный тахеометр устанавливается на штативе. Винтами подставки (треггера) инструмент выводится в рабочее положение горизонтально земной поверхности. Для этого на инструменте предусмотрены пузырьки уровней в двух плоскостях, некоторые модели оборудованы электронным уровнем.
Инструмент оборудован системой компенсаторов, которые выравнивают устройство при неточной центрировке. Если тахеометр установлен неточно, или в процессе работы произошло нарушение горизонтальности, автоматика прекратит набирать отсчеты, и выдаст предупреждающее сообщение.
Для работы тахеометра необходим аккумулятор, емкости которого обычно хватает на 6 часов непрерывной съемки. Для условий Крайнего Севера существуют морозоустойчивые модели, так как в обычном исполнении электроника инструмента может давать сбой при температуре ниже – 15 °C.
Отражающая веха для работы с тахеометром
Включаем тахеометр, выставляем и центрируем его над точкой при помощи оптического окуляра отвеса. С помощью прицела зрительной трубы визируем цель, зажимными винтами закрепляем корпус, после чего берем отсчёт. В моделях с полноценной клавиатурой к каждой съемочной точке можно давать короткие пояснительные комментарии. Так как тахеометр – старший брат теодолита, практически у всех моделей самый первый режим работы – режим угловых измерений. Чтобы измерить угол между двумя точками, наводим центр сетки нитей зрительной трубы на первую точку, «обнуляем» угол специальной кнопкой, затем наводим зрительную трубу на вторую точку, при этом на дисплее высвечивается значение градусов и минут. Кнопкой записываем значения в память устройства.
Тахеометрическая съемка
Использовать столь сложный инструмент в качестве простого теодолита не совсем рационально, ведь зная как работать с тахеометром, кроме угловых измерений, можно сразу вычислить и расстояние между точками. Для этого съемку необходимо вести на специальную геодезическую веху.
Веха служит для визуализации точки съёмки, имеет пузырёк уровня и может выдвигаться на высоту 2,6 метра для работы в стеснённых условиях.
Перед началом работы инструмент программируется – вводятся координаты и высоты известных точек, и высота самого инструмента, которая определяется, прислонив веху к уровню инструмента (рис). Получить координаты третьей точки можно, опираясь на минимум две исходные.
Существует два способа начала работы тахеометром и определение его местоположения – стояние на точке с известными координатами или установка инструмента между точками с известными координатами (обратная засечка).
Угол установки инструмента при обратной засечке должен быть отличным от 180°; если это несколько точек, они должны находиться примерно на одинаковых расстояниях. Снимаем точки и дальше вопрос как пользоваться тахеометром отступает на второй план, поскольку в действие вступает электроника, которая и вычисляет положение инструмента. В случае ошибки измерений или недопустимых невязок, система блокирует работу, поэтому ошибиться в случае использования электронного тахеометра достаточно сложно.
После установки инструмента и ввода его высоты в компьютер, можно начинать набор пикетов (съёмку точек); если с одной точки снять весь участок невозможно, инструмент переставляется на одну из пикетажных съемок, после чего работа продолжается. Если таких точек съёмки более двух, имеет смысл проконтролировать точность тахеометрического хода, взяв отсчёт на точку с известными координатами. Специальное программное обеспечение инструмента вычисляет невязку, сравнивает её с допустимой, и, если всё в порядке, самостоятельно вводит допустимые поправки в полученные значения координат и высот. Прочитав инструкцию к тахеометру станет понятно как пользоваться компьютером, вводить необходимые значения координат, переносить аппарат с точки на точку.
Съемка ведётся обычно двумя людьми. Первый стоит за инструментом и берёт отсчёт, а второй с вехой передвигается по участку, ведя абрис полевых измерений.
Установка и определение координат инструмента обычной засечкой и обратной засечкой
Результат работы записывается в память инструмента в виде:
• номер точки,
• координата X,
• координата Y,
• координата Z,
• пояснение.
При соединении тахеометра с компьютером, посредством COM или USB порта полученный файл измерений можно использовать для работы в векторных графических редакторах.
Значения съёмок тахеометром загружаются в специальную программу и могут быть использованы для работы в векторном редакторе
При обработке полученных значений поле точек, скачанных с тахеометра, в специальной программе соединяется условными знаками, что на выходе нам даёт → план участка (по ссылке рассказано как сделать схему участка).
Знакомство с электронным тахеометром, установка станции и пикета (видео)
Оставляйте ваши советы и комментарии ниже. Подписывайтесь на новостную рассылку. Успехов вам, и добра вашей семье!
Как это работает. Тахеометр
Холдинг «Швабе» сохраняет ведущие позиции в области производства геодезических приборов. Самым востребованным из них на сегодняшний день считается тахеометр. С появлением этого универсального измерительного устройства многие геодезические задачи значительно упростились, и сегодня любая компания, занимающаяся строительством или земляными работами, обязательно использует тахеометры.
Созданием оборудования для геодезии в холдинге «Швабе» занимается Уральский оптико-механический завод им. Э.С. Яламова, в линейке которого есть тахеометры для любых задач. О том, как устроен и работает этот важный прибор – в нашем материале.
Улыбнитесь, Земля, вас снимают!
Часто на улицах города можно встретить рабочих с необычными устройствами, похожими на кино- или фотокамеру на штативе. Рабочие долго стоят на одном месте, как бы снимая длинный кадр. Если проследить, куда направлен объектив устройства, то, скорее всего, вы увидите еще одного человека с тростью-отражателем в руках.
Так работают геодезисты, они измеряют расстояния и углы между объектами, чтобы в дальнейшем превратить эти данные в план местности или исполнительный чертеж, которые станут основой для земляных работ, строительства или дополнят кадастровые списки.
Прибор, который мы с вами приняли за кинокамеру, называется тахеометром. Без него сегодня не обходится ни одна компания, связанная со строительством, земляными работами или кадастровой деятельностью. С помощью прибора можно выполнять топографическую съемку, межевание, вынос границ земельных участков, разбивку осей и многое другое.
Электронные тахеометры – это сложные многофункциональные приборы, появившиеся не так давно – около 40 лет назад. Однако в основе тахеометра лежит теодолит – устройство для определения горизонтальных и вертикальных углов, история которого значительно более долгая. С помощью теодолита, изобретенного в 1785 году английским ученым Джесси Рамсденом, была создана карта Южной Британии, а прообразы этого устройства появились еще в XVI столетии. Теодолиты были основным рабочим инструментом геодезистов до конца XX века, когда их постепенно заменили более функциональные тахеометры.
Кроме того, с появлением тахеометров в прошлое ушел и такой прибор, как светодальномер, измерявший расстояние по времени прохождения его светом. Как только технологии позволили сделать теодолит и светодальномер компактными и объединить их в одном универсальном устройстве, необходимость в отдельных приборах практически отпала. Но стоит отметить, что и оптические, и электронные теодолиты все еще используются геодезистами, особенно в сложных условиях, где нужен, условно говоря, менее требовательный прибор.
Устройство тахеометра
Итак, каким же образом устроен современный тахеометр, позволяющий решать целый круг геодезических задач? Как уже говорилось, прибор напоминает съемочную камеру, то есть в нем применяется оптика. В системе наведения с одной стороны расположен глазок-окуляр, с другой – объектив, которые связывает зрительная труба. Эта часть устройства досталась тахеометру от теодолита. От него же перешли вертикальный и горизонтальный лимбы – специально размеченные круги, определяющие углы.
Светодальномерное устройство в составе тахеометра позволяет измерять и вычислять линейные величины. Преимуществом электронных тахеометров является светодальномер с инфракрасным светодиодом фазового и импульсного способа измерения расстояний и передачей их на жидкокристаллический дисплей.
Ориентировать тахеометр в пространстве помогает комплекс из механических узлов, разного вида уровней, отвесных приспособлений, компенсаторов и механизмов крепления.
В систему управления устройством включены рабочая панель с дисплеем и клавиатурой, электронно-вычислительное и программное обеспечение. С помощью панели вводятся необходимые данные, выбирается режим работы, запускаются команды, обрабатывается и сохраняется информация, а на дисплее отображаются меню и ход работ.
Более дорогие модели тахеометров отличаются высоким уровнем автоматизации действий и способностью к сложным расчетам. В качестве дополнительных функций может присутствовать радиоуправление, GPS-модуль для геопозиционирования, фотоаппарат.
Что может «быстромер»
«Тахеос» по-древнегречески значит «быстрый». И действительно, главная задача тахеометра – быстро и качественно проводить измерения на местности. С помощью светового или лазерного луча тахеометр определяет расстояние до объекта. Для этого может использоваться как специальный отражатель (как раз та трость, с которой ходит геодезист), так и сам объект. Измеряемое расстояние при этом может достигать 5 км в отражательном режиме и 1,5 км в безотражательном. Оптика современных тахеометров оснащается сильным зумом в 25-35 крат.
С помощью тахеометра можно выполнить съемку любого участка в плане и по высоте, получить полноценную картину рельефа с минимальными погрешностями. В зависимости от комплектации прибор можно использовать для создания плана рельефа, выноса осей здания при строительстве, наблюдения за деформациями или смещениями крупных природных объектов и недвижимости, для подсчета площади.
Сфера применения тахеометров не ограничивается строительством. Приборы также используются в геодезии, при проведении маркшейдерских работ в горной инженерии, при межевании участков. Под разные задачи существуют разные виды тахеометров.
Уральская точность
В составе Ростеха производством высококлассных геодезических приборов занимается Уральский оптико-механический завод им. Э.С. Яламова (УОМЗ), расположенный в Екатеринбурге. Завод входит в холдинг «Швабе» и производит оборудование для геодезии с 1956 года. Здесь выпускаются нивелиры, теодолиты, тахеометры и многочисленные аксессуары для работы с ними. Оборудование УОМЗ признано не только в России – завод поставляет изделия в 75 стран.
Фото: УОМЗ
В линейке уральских тахеометров – семь моделей, отличающихся набором функций и областями применения. При помощи прикладных программ все устройства могут в полевых условиях решать сложные геодезические и инженерные задачи.
В 2020 году уральское предприятие Ростеха представило арктическую версию тахеометров. В новом исполнении устройства могут работать при температуре –40 °C. Время работы без подзарядки при этом увеличено до 20 часов. Такие возможности появились у тахеометров благодаря подогреву радиоэлементов и другим техническим решениям. Обновленные приборы востребованы при изысканиях в условиях Заполярья, где они могут заменить зарубежное оборудование. Российских аналогов у «полярных» тахеометров УОМЗ не существует, а с импортными они успешно конкурируют по цене.
События, связанные с этим
Как это работает. Инкубатор для новорожденных
Танкеры в небе: история и развитие самолетов-заправщиков
Как это работает. Тахеометр
Путешествия с Ростехом: Вологда
«Нервы» современной армии: разработки Ростеха для войск связи
Электронный тахеометр инструкция как пользоваться
Главная страница » Электронный тахеометр инструкция как пользоваться
Электронный тахеометр – устройство, конструктивно представляющее комбинацию приборов теодолит и дальномер. Система позволяет определять координаты отражателя путём совмещения перекрестия инструментов на отражателе и одновременного измерения вертикальных/горизонтальных углов и наклонных (откосных) расстояний. Используемый в составе электронной схемы устройства микропроцессор обеспечивает запись показаний в память, а также необходимые вычисления. Полученные данные легко переносятся на компьютер для последующего использования под создание геодезической карты.
Как применяется электронный тахеометр на практике?
Для того чтобы правильно использовать на практике электронный тахеометр, необходимо знать и понимать:
В полевых условиях всё это объединяется воедино, включая планирование и внимательные наблюдения. Если электронный тахеометр оборудован регистратором данных, необходимо организовать соединение регистратора данных с компьютером, передачу данных и работу с данными на компьютере. Умение распознавать ошибки в работе, а также исправлять эти ошибки — очень важный аспект профессиональной работы.
Несмотря на то, что электронные устройства тахеометры способны выполнять точные измерения, полевые условия не всегда позволяют получить требуемую точность, просто направив инструмент на цель с последующим снятием показаний. Не исключаются системные ошибки, например:
Конечно же, вполне допустимы и ошибки оператора, которые уже не устраняются непосредственно прибором. Геодезисты разработали процедуры съёмки, которые обычно включают многократное снятие показаний в «нормальном» и «обратном» положениях инструмента.
Фундаментальные измерения электронным тахеометром
При наведении на соответствующую цель, электронный тахеометр измеряет три параметра:
Все остальные значения, которые также может предоставить пользователю электронный прибор тахеометр, получают на основе этих трёх базовых измерений.
Измерение горизонтального угла
Горизонтальный угол отсчитывается от нулевого направления по горизонтальной шкале (или горизонтальному кругу). Когда пользователь впервые настраивает инструмент, выбирается нулевое направление — Север инструмента. Пользователь волен установить ноль (Север) в направлении длинной оси области карты. Или же возможен выбор ориентации инструмента приблизительно по истинному, магнитному или сетчатому Северу.
Нулевое направление необходимо устанавливать так, чтобы иметь возможность восстановления, если инструмент требуется применять в том же месте повторно через какое-то время. Как правило, это делается путём наведения на другую точку отсчёта или удалённого узнаваемого объекта. Применение магнитного компаса для определения ориентации инструмента не рекомендуется, так как ведёт к неточностям.
Большинство эксплуатируемых электронных тахеометров позволяют измерять углы с точностью до 5 секунд (0,0013888°). Соответственно, выровнять инструмент по истинному Северу с учётом возможностей измерений прибора, практически невозможно. Лучшим вариантом применения электронного тахеометра видится установка удобного для пользователя «Севера» с проводкой через съёмку, используя задние точки при перемещении инструмента.
Электронный тахометр + элементная база (одна из конструкций): 1 — система TSshield; 2 — антенна 300 метровой дальности связи; 3 — USB 2.0 интерфейс; 4 — батарейный отсек; 5 — светодиодный индикатор; 6 — клавиатура; 7 — электронная система выравнивания; 8 — графический дисплей; 9 — лазерный отвес; 10 — захват цели; 11 — триггерная кнопка; 12 — система углового датчика; 13 — 500 мм диапазон без призмы
Внутри электронного устройства тахеометра имеется градуированный стеклянный круг, полосами градации которого определяется класс точности прибора. С одной стороны стеклянного круга расположен светодиод, тогда как с другой стороны имеются два фотодиода (схема оптопары). Цепь работы оптопары прерывается, когда полосы градации закрывают путь излучению светодиода. Таким образом, количеством прерываний определяется величина поворота инструмента.
Полосы градации часто делаются ежеминутными (21600 градуировок). Секунды интерполируются по силе сигнала, принимаемого двумя фотодиодами. Это достигается размещением третьего фотодиода на одной линии со светоизлучающим диодом с целью обеспечить опорную мощность сигнала. Относительная сила сигнала других диодов позволяет рассчитать количество секунд.
По умолчанию горизонтальные углы измеряются по часовой стрелке, что соответствует нормальному режиму считывания азимутов на компасе. Но есть также устройства, измеряющие горизонтальные углы против часовой стрелки, что в математическом смысле является положительным направлением угла.
Измерение вертикального угла
Вертикальный угол измеряется относительно местного вертикального (отвесного) направления. Вертикальный угол обычно измеряется как зенитный угол (0° по вертикали вверх, 90° по горизонтали, 180° по вертикали вниз). Правда, также предоставляется возможность сделать 0° по горизонтали.
Измерение зенитного угла рассматривается более простым способом. Телескоп направляется вниз для зенитных углов более 90° и вверх для углов менее 90°. Если же делается горизонтальный 0°, в этом случае придётся работать с положительными и отрицательными вертикальными углами, что сопровождается появлением ошибок.
Для измерения вертикальных углов прибор устанавливается строго вертикально. Тахеометры электронного типа содержат внутренний датчик (вертикальный компенсатор). Сенсор обнаруживает небольшие отклонения инструмента от вертикали. Электроника прибора регулирует, соответственно, горизонтальный и вертикальный углы.
Компенсатор, однако, ограничивается малым диапазоном регулировки, поэтому инструмент следует выравнивать тщательно. Если отмечается значительный отход от уровня, электронный тахеометр выдаёт сообщение об ошибке. Вертикальные углы измеряются той же механико-оптической системой, что и горизонтальные углы. Индексирование круга является обычным делом.
Измерение расстояния по откосу
Расстояние от инструмента до отражателя измеряется посредством электронного дальномера. Большинство таких схем имеют диод на основе ареснида галлия — излучатель инфракрасного светового луча. Этот луч обычно модулируется двумя или более разными частотами.
Инфракрасный луч излучается электронным тахеометром, отражается рефлектором, принимается и усиливается схемой. Полученный сигнал сравнивается с опорным сигналом, генерируемым прибором (тем же генератором сигналов, который передаёт микроволновый импульс), после чего определяется фазовый сдвиг. Этот фазовый сдвиг является мерой времени в пути, следовательно, расстоянием между электронным тахеометром и отражателем.
Методика измерения расстояний нечувствителен к фазовым сдвигам, превышающим одну длину волны. Поэтому невозможно определять расстояния между прибором и отражателем, превышающие 1/2 длины волны (прибор измеряет двустороннее расстояние). Например, если длина волны инфракрасного луча составляла 4000 м, тогда если отражатель находился на расстоянии 2500 м, будет получено значение расстояния — 500 метров.
Поскольку измерение с точностью до миллиметра требует очень точных измерений разности фаз, организуется излучение двумя (или более) длинами волн. Одна длина волны, к примеру, составляет 4000 метров, тогда как другая длина волны составляет 20 метров. Большая длина волны позволяет считывать расстояния от 1 метра до 2000 метров с точностью до метра. Вторая длина волны позволяет измерять расстояния от 1 мм до 9,999 метров.
Объединение двух результатов даёт расстояние с точностью до миллиметров. Поскольку два показания перекрываются, значение счётчика каждого показания допускается использовать в качестве теста.
Например, задействованы длины волн λ1 = 1000 м и λ2 = 10 м. Цель расположена на расстоянии 151,51 метра. Расстояние, возвращаемое длиной волны λ1, равно 151 метр. Расстояние, возвращаемое длиной волны λ2, равно 1,51 м. Объединение двух результатов, соответственно, даёт 151,51 метр.
Базовые расчёты при работе электронного тахеометра
Как уже отмечалось, электронные тахеометры измеряют только три параметра:
Все эти измерения имеют некоторую погрешность, однако для демонстрации геометрических расчетов можно предполагать, что показания безошибочные.
Расчёт горизонтального расстояния
Чтобы вычислить координаты или отметки, изначально необходимо преобразовать наклонное расстояние в горизонтальное расстояние. Горизонтальное расстояние (HD) составляет:
HD = SD cos (90° — ZA) = SD sin (ZA)
где SD — наклонное расстояние, ZA — зенитный угол. Горизонтальное расстояние будет использоваться в расчётах координат.
Расчёт вертикального расстояния
Обычно рассматриваются два вертикальных расстояния. Одно расстояние — разница высот (dZ) между двумя точками на земле. Другое расстояние — вертикальная разница (VD) между осью оголовка инструмента и осью наклона рефлектора. Для расчёта перепада высот необходимо знать высоту оси наклона инструмента (IH). То есть высоту центра телескопа и высоту центра отражателя (RH).
Проще расчёт выглядит следующим образом: нужно мысленно представить точку на земле под инструментом:
Результат — полученная разница высот между двумя точками на земле. Формула такого расчёта записывается так:
ED = VD + (IH – RH)
Величины IH и RH измеряются и записываются в полевых условиях. Вертикальный перепад (VD) рассчитывается по вертикальному углу и наклонному расстоянию.
VD = SD sin (90 ° — ZA) = SD cos (ZA)
Подстановкой этого результата в уравнение выше, получается:
dZ = SD cos (ZA) + (IH — RH)
где dZ — изменение высоты над уровнем земли под тахеометром.
Следует обратить внимание: если высота инструмента и отражателя совпадает, указанная часть уравнения не нужна. Если расчёты проводятся вручную, удобно установить высоту отражателя такой же, как высота инструмента. Если инструмент находится на известной высоте (IZ), тогда высота земли под отражателем (RZ) равна:
RZ = IZ + SD cos (ZA) + (IH — RH)
Инструкция пользования прибором стандартно
Установить точку отсчёта конкретного проекта. Как правило, точка отсчёта измеряется посредством конвентационных средств. Отметить точку отсчёта вбитым в грунт маркерным клином.
Установка точки отсчёта и треноги: 1 – маркерный клин; 2 – тренога из комплекта
Подготовить штатив электронного тахеометра, раскрыть штатив и установить над отмеченной точкой отсчёта. Желательно постараться расположить центр штатива по оси вбитого в грунт маркерного клина.
Прикрепить трегер (крепёжную пластину) и уровень грубой настройки к штативу. При необходимости отрегулировать. Используя этот начальный инструмент для измерения курса, установить штатив ровно и прямо над точкой отсчёта.
Установка крепёжной пластины и предварительная настройка: 1 – трегер (крепёжная пластина); 2 – тренога, выровненная по точке отсчёта; 3 — вид через оптический центрир трегера
Поместить электронный тахеометр на крепёжную пластину штатива, стараясь не допустить смещения по центру, закрепить. Подключить аккумулятор и контроллер электронного тахеометра с помощью соответствующих кабелей.
Установка электронного тахеометра + тонкая настройка: 1 — пузырьковый уровень; 2 — монтаж электронного прибора тахеометра на пластину; 3 — функционал тонкой настройки с помощью контроллера
Включить аппарат и открыть функционал уровня тонкой настройки с помощью алгоритмов контроллера. Через уровень тонкой настройки отрегулировать прибор с учётом расположения прямо над маркером обследования на стойке. Необходимо получить идеальный уровень перед тем, как начинать работу.
При помощи информации: PDX