сверхпроводник в магнитном поле
masterok
Мастерок.жж.рф
Хочу все знать
Хаотичное движение атомов проводника препятствует прохождению электрического тока. Сопротивление проводника уменьшается с уменьшением температуры. При дальнейшем снижении температуры проводника наблюдается полное уменьшение сопротивление и явление сверхпроводимости.
При некоторой температуре (близкой 0 oK) сопротивление проводника резко падает до нуля. Это явление называется сверхпроводимостью. Однако, в сверхпроводниках наблюдается также другое явление — эффект Мейснера. Проводники в сверхпроводящем состоянии обнаруживают необычное свойство. Из объема сверхпроводника полностью вытесняется магнитное поле.
Вытеснение сверхпроводником магнитного поля.
Проводник в сверхпроводящем состоянии, в отличие от идеального проводника, ведет себя как диамагнетик. Внешнее магнитное поле вытесняется из объема сверхпроводника. Тогда если поместить магнит над сверхпроводником, магнит зависает в воздухе.
Возникновение этого эффекта связано с тем, что при внесении сверхпроводника в магнитное поле в нем возникают вихревые токи индукции, магнитное поле которых полностью компенсирует внешнее поле (как в любом диамагнетике). Но индуцированное магнитное поле само также создает вихревые токи, направление которых противоположно токам индукции по направлению и равно по величине. В результате в объеме сверхпроводника отсутствуют и магнитное поле и ток. Объем сверхпроводника экранируется тонким приповерхностным слоем — скин-слоем — на толщину которого (порядка 10-7-10-8 м) проникает магнитное поле и в котором происходит его компенсация.
а — нормальный проводник, обладающий отличным от нуля сопротивлением при любой температуре (1), внесен в магнитное поле. В соответствии с законом электромагнитной индукции возникают токи, которые сопротивляются проникновению магнитного поля в металл (2). Однако если сопротивление отлично от нуля, они быстро затухают. Магнитное поле пронизывает образец нормального металла и практически однородно (3);
б — из нормального состояния при температуре выше Tc есть два пути: Первый: при понижении температуры образец переходит в сверхпроводящее состояние, затем можно наложить магнитное поле, которое выталкивается из образца. Второй: сначала наложить магнитное поле, которое проникнет в образец, а затем понизить температуру, тогда при переходе поле вытолкнется. Выключение магнитного поля дает ту же картинку;
в — если бы не было эффекта Мейснера, проводник без сопротивления вел бы себя по-другому. При переходе в состояние без сопротивления в магнитном поле он бы сохранял магнитное поле и удерживал бы его даже при снятии внешнего магнитного поля. Размагнитить такой магнит можно было бы, только повышая температуру. Такое поведение, однако, на опыте не наблюдается
Как и всякие диамагнетики, сверхпроводники выталкиваются из магнитного поля, при этом эффект выталкивания выражен столь сильно, что появляется возможность удерживать груз в пространстве с помощью магнитного поля.
Напомню вам еще что нибудь научного и интересного: вот смотрите, как Лейкоцит преследует и поглощает бактерию. А знаете ли вы Насколько точен радиоуглеродный метод датирования? или что такое Капля «принца Руперта»
Адский холод, левитация и плазма: прошлое, настоящее и будущее сверхпроводимости
Сверхпроводимость – открытие с незавидной судьбой по сравнению с другими научными прорывами XX века. Результаты последних быстро нашли путь из теоретической в прикладную науку, а затем – в повседневную жизнь. Сверхпроводимость же постоянно требует от учёных достигать и преодолевать какие-то пределы: температурные, химические, материальные. И даже спустя более чем 100 лет после открытия этого явления, мы все ещё боремся с теми же преградами, которые стояли перед учёными в начале прошлого века. Мы — это и Toshiba тоже, и нам есть что рассказать о нашем вкладе в изучение и приручение сверхпроводимости.
Что такое сверхпроводимость и как мы о ней узнали?
Представьте, что вам надо проехать на машине через очень плохую грунтовую дорогу. В тёплое время года, особенно после дождя, она превращается в болото. Колеса вязнут в грязи, скользят, буксуют, машину водит из стороны в сторону. Ваша скорость падает. Зато осенью при первых заморозках грязь твердеет, и вы проезжаете по дороге с ветерком, как будто по шоссе. Вот также и электроны, составляющие электрический ток, проходят через металлы при изменении температуры. Когда вещество нагрето, составляющие его атомные структуры сильно колеблются, затрудняя движение электронов. Атомы выхватывают из потока электроны и рассеивают их. Лишь немногие проходят из точки «А» в точку «Б». Так создается сопротивление.
Однако если металл охлаждать до абсолютного нуля (–273 °С), внутренние колебания вещества («тепловой шум») в нём уменьшаются, и электроны проходят через него без трений, то есть сопротивление падает до нуля. Именно это и называется сверхпроводимостью. Как всё это работает с научной точки зрения, описано в многочисленных статьях в специальных и научно-популярных изданиях, например, в N+1 (с весёлыми картинками).
Голландский физик Хейке Каммерлинг-Оннес в 1911 году об этом явлении ещё не знал, хотя уже был в курсе, что электрическое сопротивление металла снижается при охлаждении. Чтобы проверить, как далеко можно зайти в играх с холодом, металлом и электричеством, голландец использовал ртуть. Именно этот металл в те времена подвергался лучшей очистке от примесей, мешающих движению электронов.
При понижении температуры до 4,15 кельвинов, то есть до –269 °C, сопротивление в ртути полностью исчезло. Правда, Каммерлинг-Оннес в это не поверил, и, проявляя свойственную ученому осторожность, записал в дневнике, что сопротивление «практически исчезло». На самом деле оно полностью отсутствовало, просто измерительные приборы тогда к этому были не готовы, как и сам исследователь.
Впоследствии Каммерлинг-Оннес проверил на сверхпроводимость много металлов и установил, что таким свойством обладают свинец и олово. Также он нашел первый сверхпроводящий сплав, который состоял из ртути, золота и олова. За свои эксперименты с критически низкой температурой ученый получил прозвище «Абсолютный нуль». Но поддерживать это высокое звание было непросто — для экспериментов требовался дефицитный по тем временам жидкий гелий, что не позволило Каммерлингу-Оннесу открыть второе фундаментальное свойство проводников.
Эффект Мейснера: мог ли летать гроб пророка
В средневековой Европе был распространен такой миф: в Мекке, в одном из дворцов парит в воздухе железный (по другим представлениям — медный) гроб с телом пророка Мухаммеда, не поддерживаемый ничем, кроме мощных магнитов. Паломники со всего исламского мира приходят туда, чтобы увидеть это зрелище, и в религиозном экстазе выкалывают себе глаза, потому что верят, будто ничего чудеснее в жизни уже не увидят.
Паломник пал на колени перед левитирующим гробом на фрагменте Каталонского атласа XIV века. Источник: Wikimedia Commons
В действительности погребён пророк был не в Мекке, а в Медине; гроб был сделан из дерева, хотя и богато украшен; никаких магнитов тоже замечено не было, что было проверено в XIX веке. Тогда же было доказано, что ферромагнитное тело в поле постоянных магнитов не может сохранять устойчивое равновесие.
Тем не менее, если бы средневековые хронисты пережили выдуманный миф на один век, то они могли бы получить в распоряжение мощный козырь. В 1933 году немецкие физики Вальтер Мейснер и Роберт Оксенфельд решили проверить, как распределяется магнитное поле вокруг сверхпроводника. И вновь было сделано неожиданное открытие: сверхпроводник, охлажденный до критической температуры, вытолкнул из своего объема внешнее постоянное магнитное поле. Как выяснилось, проходящие через сверхпроводник токи создают своё магнитное поле в тонком поверхностном слое вещества. В сверхпроводящем состоянии сила этого поля равна действующему на него внешнему магнитному полю.
Если бы гроб пророка был создан из магнитов и помещён в пещеру, состоящую из охлажденных до критических температур сверхпроводников, то, возможно, он действительно парил бы в воздухе, как это описывали средневековые европейцы. Во всяком случае, в небольших масштабах и с менее сакральными участниками такой эксперимент уже много раз проводился.
Вот так мог левитировать гроб пророка, если бы при его погребении были учтены все условия эффекта Мейснера. Источник: YouTube-канал Empiric School
Открытие эффекта Мейснера также помогло нам понять, что не все сверхпроводники одинаковы. Помимо немногочисленных чистых металлов, сверхпроводимость возникает и у сплавов. Однако если у чистых веществ эффект Мейснера проявляется полностью (сверхпроводники I рода), то у сплавов — частично, ведь они не однородны (сверхпроводники II рода). В них магнитное поле выталкивается не полностью, а заполняет пространство вдоль идущих через проводник сверхтоков. Именно с их открытия началось практическое применение сверхпроводников в виде магнитов.
Тесла бы гордился: как Toshiba создала самый мощный в мире сверхпроводящий магнит
В погоне за снижением критической температуры к 1960-м годам человечество открыло много сверхпроводников второго вида, которые уже можно было использовать в промышленных целях и масштабах. Первой логичной задачей на этом пути стало создание сверхпроводящих магнитов, которые должны были заменить изобретенные еще в XIX веке электромагниты, основанные на использовании обычных металлов.
Сверхпроводящий магнит позволял создавать гораздо более устойчивые и мощные поля при более эффективном использовании электричества. В 1962 году были разработаны первые сверхпроводящие провода из ниобия и титана, и в том же году был создан первый крупный сверхпроводящий магнит. Его сконструировали специалисты General Electric. Мощность генерируемых им полей достигала 10 тесла. Для сравнения: большинство больничных магнитно-резонансных томографов сегодня генерируют поле с индукцией от 1 до 10 Тл.
Правда, несмотря на очевидный научно-технический успех, первый сверхпроводящий электромагнит оказался совершенно убыточным. Вместо предусмотренных контрактом с Bell Laboratories 75 тыс. долл., детище General Electric обошлось в 200 тыс. долл. Тем не менее, в гонку за индуктивностью полей в 1970-е гг. вступили многие инновационные компании, в том числе и Toshiba.
Основной задачей тогда было понять, насколько сильное поле может создать сверхпроводящий магнит, потому что чем выше эта величина, тем быстрее теряется сверхпроводимость. Именно тогда Toshiba совместно с Университетом Тохоку создала новый мощнейший в мире на тот момент сверхпроводящий магнит. Он генерировал поле с индукцией 12 Тл. В университете Тохоку его использовали в материаловедении.
Однако обычные электромагниты все еще были способны превзойти своих «потомков» в генерации электромагнитных полей. К концу 1970-х старое поколение этих устройств могло создать поле с индукцией до 23,4 Тл, тогда как сверхпроводящие магниты — только 17,5 Тл.
В 1983 году инженеры Toshiba на базе своей прежней разработки создали гибридный электромагнит: обычный резистивный электромагнит был помещён внутрь сверхпроводящего магнита, и скрещивание их полей дало индукцию величиной 31 Тл в 1986 году.
Когда стало ясно, что мы можем достичь очень высокой мощности электромагнитных полей, встал вопрос, а как использовать то, что мы уже имеем? В 1980-е Toshiba, как и многие другие компании, решила коммерциализировать технологию на «медицинском полигоне».
Лучи добра: как сверхпроводники Тошибы помогают лечить онкологические заболевания
В 1980-е стало ясно, что магнитно-резонансная томография, использующая электромагнитные поля сверхпроводников, может давать намного более четкую диагностику, чем недавно разработанная технология компьютерной томографии и более старые рентгеновские лучи. Это осознали и в Toshiba. С тех пор компания стала поставщиком сверхпроводящих магнитов производителям медицинского оборудования и остаётся им до сегодняшнего дня.
Один из первых сверхпроводниковых магнитов Toshiba, разработанный для аппаратов МРТ. Источник: Toshiba
Однако современные медицинские установки становятся гибридными: они не только диагностируют, но и лечат, как, к примеру, аппараты терапии с использованием тяжелых частиц.
Их суть в том, что они генерируют лучи с ускоренным движением тяжелых частиц, которые направляются на опухоли в человеческом теле. Чтобы точно направлять пучки таких частиц, необходимо мощное магнитное поле. Раньше такие машины уже использовались, но они не могли контролировать путь генерируемых частиц, из-за чего пациентам постоянно приходилось менять положение, чтобы подставлять пораженные участки тела под излучение, что непросто для больных онкологическими заболеваниями.
Тогда инженеры Toshiba внедрили в гентри — подвижную кольцевую часть излучателя, похожую на портал, — сверхпроводящие магниты, которые были способны быстро менять силу магнитных полей. Это позволило более прицельно направлять лучи, а движение гентри позволило пациентам сохранять покой во время терапии.
Аппарат терапии тяжелыми частицами. Во вращающемся гентри — сверхпроводниковый электромагнит Toshiba. Источник: Toshiba
Что в будущем: топ-3 перспективных применений сверхпроводников
Помимо медицины, сверхпроводники сегодня используются в науке, энергетике, транспорте. Каковы их перспективы в ближайшем будущем?
Провода на высокотемпературных сверхпроводниках
С самых первых лет открытия сверхпроводимости человечество задумывалось о том, как передавать ток с помощью сверхпроводников. Обычные воздушные высоковольтные линии занимают много пространства, а также теряют 6-10% передаваемой энергии.
Сначала не подходили, собственно, сверхпроводящие металлы, чьи химические свойства не позволяли сделать из них провода. Затем с открытием сверхпроводников II рода встал вопрос об их охлаждении, для которого требовался дорогой гелий. Только в 1986 году была открыта высокотемпературная сверхпроводимость, то есть были найдены сверхпроводники с критической температурой выше 30 кельвинов. Это позволило использовать для охлаждения более дешёвый азот, однако теперь встал вопрос о том, как поддерживать высокопроводящее состояние, то есть низкую (высокую) температуру на очень больших отрезках.
Сейчас в России, Китае, Японии, Южной Корее, Европе и США есть проекты по созданию сверхпроводящих кабелей длиной от одного до десяти километров. Успеха добились российские инженеры — в прошлом году завершились испытания самой протяженной сверхпроводящей кабельной линии постоянного тока. Опытный образец на основе сверхпроводника Bi2Sr2Ca2Cu3O10+x длиной 2,5 км с критической температурой –165 °С планируется ввести в эксплуатацию в 2020 году соединит две подстанции в Санкт-Петербурге.
Высокоскоростной транспорт
Способность сверхпроводников создавать мощное и устойчивое магнитное поле нашла применение в транспорте. В начале 1970-х был создан первый прототип поезда на магнитной подушке (германский Transrapid 02), а в 1984 году первый коммерческий маглев (от словосочетания «магнитная левитация») начал курсировать между терминалом аэропорта Бирмингема и железнодорожной станцией города (проработал до 1995-го).
Суть технологии проста: состав удерживается над дорожным полотном силой электромагнитного поля. Она же толкает состав вперед — включение одинаковых по полюсам магнитов отталкивает состав от дороги, а разных — притягивает. Быстрое попеременное включение таких магнитов создает постоянный зазор между полотном со сверхпроводящими электромагнитами и поездом. Благодаря отсутствию трения маглевы способны разгоняться до 500-600 км/ч.
Однако несмотря на относительную простоту технологии, она не получила широкого распространения. Дело в том, что она слишком дорогая. Скажем, шанхайский маглев-аэроэкспресс (в коммерческой эксплуатации с 2004-го года) приносит ежегодный убыток в 93 млн долл.
Поэтому более перспективным применение электромагнитных полей сверхпроводников может быть в дорогостоящих космических проектах. Тот же принцип магнитной левитации предполагается использовать для вывода в космос грузовых кораблей. К примеру, разработчики проекта Startram (ориентировочная стоимость 20 млрд долл.), заявляют, что снизят стоимость отправки одного килограмма космических грузов до 40 долл., построив разгонный туннель, направленный на околоземную орбиту (против нынешних 2500 долл. у SpaceX на Falcon-9).
Разгонный тоннель в проекте Startram. Источник: Сайт проекта Startram
Термоядерные реакторы
Еще одна перспективная область применения сверхпроводниковых магнитов — термоядерные реакторы. Они нужны для создания так называемой магнитной ловушки, для удержания вырабатываемой реактором плазмы. Заряженные частицы вращаются вокруг силовых линий магнитного поля. По сути, намагниченная плазма становится диамагнетиком, который стремится покинуть магнитное поле. Соответственно, если окружить плазму сверхпроводниковыми магнитами, генерирующими мощные поля, плазма будет удерживаться в заданном объеме и не сможет разрушить стенки реактора.
Именно такая технология используется для строительства термоядерного реактора ИТЕР во Франции. В этом проекте принимает участие и Россия, причем именно она была ответственна за поставку во Францию сверхпроводящих кабелей для создания того самого электромагнитного поля, «укрощающего» плазму. Как предполагается, опробованы магниты будут во время первого запуска реактора в 2025 году.
Ученые объяснили нестыковки в теории «грязной» сверхповодимости
Электричество без потерь
Сверхпроводниками называют материалы, в которых, при определенных условиях, полностью пропадает сопротивление. Это означает, что электрический ток может протекать по проводам из такого материала без потерь: в обычных проводах немалая часть энергии рассеивается в тепло как раз из-за сопротивления. Сверхпроводимость открыли в начале XX века, но первую феноменологическую теорию, объяснявшую многие ее свойства, Лев Ландау и Виталий Гинзбург разработали только в 1950-м. Спустя семь лет американцы Гарри Бардин, Леон Купер и Джон Шриффер создали общую теорию сверхпроводимости (так называемая теория БКШ), которая немедленно удостоилась Нобелевской премии – настолько очевидна была колоссальная значимость явления.
Сверхпроводники в магнитном поле
В числе прочего, теория БКШ предсказывала, как должны вести себя сверхпроводники в магнитном поле. Когда поля небольшие, такие вещества «выталкивают» их из себя, оставаясь при этом сверхпроводящими – это фундаментальное свойство называется эффектом Мейснера. Но если продолжать увеличивать поле, в какой-то момент сверхпроводящие свойства резко пропадают. Значение, при котором магнитное поле «выключает» в материале сверхпроводимость, называют критическим магнитным полем, и оно зависит от температуры: чем холоднее, тем критическое поле больше. Другими словами, когда сверхпроводник нагрет до температур близких к критическому значению Tc (в зависимости от материала оно меняется от единиц до десятков градусов Кельвина), достаточно даже небольших магнитных полей, чтобы вывести его из сверхпроводящего состояния. Чтобы «убить» холодный сверхпроводник, требуются значительно бОльшие поля. Однако при очень сильном охлаждении (до 1/5 от Tc и ниже) эта закономерность исчезает, и критическое магнитное поле перестает зависеть от температуры. Теперь, чтобы вывести материал из сверхпроводящего состояния, требуется прикладывать магнитное поле одной и той же величины – неважно, останется ли сверхпроводник при этой температуре или еще охладится.
«Эта классическая картина зависимости не выполняется для «очень грязных» сверхпроводников, – объясняет заведующий сектором квантовой мезоскопии ИТФ имени Ландау профессор Михаил Фейгельман. – Этим термином обозначают сверхпроводники, сделанные из сплавов металлов с сильно нарушенной кристаллической решеткой, практически аморфных. Критическое магнитное поле продолжает примерно линейно увеличиваться при понижении температуры до сколь угодно низких значений, которые можно достичь в эксперименте. Этот факт был известен давно, но никакого внятного объяснения у него не было».
Нетипичность «очень грязных» сверхпроводников
В новой экспериментально-теоретической работе ученые смогли понять, какова природа нетипичного поведения «очень грязных» сверхпроводников. Ключевым
экспериментом, который позволил это понять, стало измерение еще одного важнейшего параметра сверхпроводников – критического тока. Это максимальное значение незатухающего тока, который может протекать в сверхпроводнике без потерь энергии на рассеяние в тепло. При бОльших токах вещество теряет сверхпроводящие свойства, то есть в нем появляется сопротивление и образец вещества начинает нагреваться. Авторы нового исследования измеряли, как критический ток в сверхпроводящей пленке из оксида индия зависит от магнитного поля. Ученые пропускали ток через пленку, находящуюся в магнитном поле, значение которого было чуть меньше критического, и наблюдали, при каком значении тока в образце разрушится сверхпроводящее поведение.
В чем уникальность новой работы
Подобные эксперименты проводились и раньше. Уникальность этой работы в том, что зависимость максимального сверхпроводящего тока от магнитного поля в «очень грязных» сверхпроводниках была измерена при магнитных полях, близких к критическим, и очень низких температурах. «И неожиданно оказалось, что критический ток очень простым образом зависит от того, насколько магнитное поле близко к критическому значению. Это степенная зависимость, степень равна 3/2», – говорит Фейгельман. Кроме того, ученые определили, как критическое поле в пленке оксида индия зависит от температуры.
«Глядя на результаты этих двух экспериментов, мы смогли понять, как они взаимосвязаны, – рассказывает Фейгельман. – Стабильное повышение критического магнитного поля при низких температурах в «очень грязных» сверхпроводниках происходит из-за того, что в сверхпроводящем состоянии, которое реализуется в сильном магнитном поле, существуют тепловые флуктуации так называемых абрикосовских вихрей (квантовые вихри сверхтока, которые появляются в сверхпроводниках под воздействием внешнего магнитного поля, которое именно таким образом проникает в сверхпроводник). И мы нашли способ, как описать эти флуктуации». Предсказания созданной авторами работы теории хорошо описывают полученные экспериментальные данные.
Модная тема
«Очень грязные» сверхпроводники, они же сильно неупорядоченные сверхпроводники, – одна из самых «модных» тем в сверхпроводящей физике. Обычно, чем больше «беспорядка» в металле, тем хуже он проводит электрический ток. При понижении температуры неупорядоченные металлы немного «исправляются» – в том смысле, что их проводимость улучшается. «Очень грязные» сверхпроводники ведут себя иначе. В обычном состоянии они являются слабыми диэлектриками и при охлаждении проводят ток все хуже и хуже. Но по достижении некой критической температуры они скачкообразно превращаются в сверхпроводники. «Сверхпроводник и диэлектрик – противоположные по свойствам состояния, и именно поэтому удивительно, что в таких веществах они могут переходить одно в другое, – поясняет Фейгельман. – Но хотя «очень грязные» сверхпроводники изучают уже 25 лет, полноценной теории, которая бы объясняла все их «странности», до сих пор нет».
В последние годы интерес к неупорядоченным сверхпроводникам дополнительно возрос, благодаря появлению новых областей, где такие вещества оказались очень востребованными. Например, «очень грязные» сверхпроводники идеально подходят для изоляции от всевозможных помех сверхпроводящих квантовых битов – элементарных вычислительных единиц квантового компьютера. Удобнее всего «отключить» их от внешнего мира при помощи элементов с очень высокой индуктивностью – электрической «инерцией». Она определяет, насколько силен будет магнитный поток, создаваемый протекающим в системе электрическим током. Индуктивность вещества тем больше, чем меньше в нем плотность проводящих элементов. А этот параметр уменьшается с ростом «грязи» в сверхпроводниках.
Магнитное поле сверхпроводников
Вы будете перенаправлены на Автор24
Вплоть до 1933 года считали, что сверхпроводники в магнитном отношении ведут себя как хорошие проводники, то есть тела с высокой электропроводностью.
Магнитные свойства идеальных проводников
В проводнике с идеальной проводимостью, магнитный поток сквозь любой контур, перемещающийся вместе с проводником, сохраняется.
Все сверхпроводники являются твердыми веществами. Если сверхпроводник неподвижен, то контур считают неподвижным и он недеформируем.
Предположим, что выделенный нами контур, является бесконечно малым. Тогда из сохранения величины:
Рисунок 1. Сверхпроводник. Автор24 — интернет-биржа студенческих работ
Готовые работы на аналогичную тему
Так, внешние параметры: температура и магнитная индукция внешнего поля не задают однозначно состояние сверхпроводника. Сверхпроводник способен перейти в каждое из состояний в зависимости от способа перехода.
Эффект Мейсснера
На самом деле сверхпроводники ведут себя иным образом, чем идеальные проводники в магнитных полях. В 1933 году В. Мейсснер вместе с Оксенфельдом показали, что в состоянии сверхпроводимости магнитное поле внутри сверхпроводника равно нулю ($\vec B=\vec H=0$).
Эффектом Мейсснера называют явление вытеснения магнитного поля из сверхпроводника в состоянии сверхпроводимости.
Позднее выяснилось, что не все сверхпроводники ведут себя в соответствии с эффектом Мейсснера.
Виды сверхпроводников
Позднее выяснилось, что не все сверхпроводники ведут себя в соответствии с эффектом Мейсснера.
это сверхпроводники 2-го рода.
В сверхпроводнике отсутствует магнитное поле в его объеме, значит, плотность электрических токов равна нулю ($ \vec j=0$). Это можно увидеть из теоремы о циркуляции:
Все токи вынуждены течь по поверхности сверхпроводника. Данные поверхностные токи компенсируют своими магнитными полями внешнее поле. Таким является схема отображающая вытеснение магнитного поля из сверхпроводника в эффекте Мейсснера.
На самом деле, ток у границы сверхпроводника течет в слое конечной толщины. В этот же слой проникает и магнитное поле.
Одним из значимых фактов, которые определяют поведение сверхпроводника, служит поверхностная энергия, которую связывают с границей раздела нормальной и сверхпроводящей фазами. Данная энергия аналогична энергии поверхностного натяжения на границе раздела. Но в случае сверхпроводников эта энергия может быть, как больше нуля, так и меньше его.
Наличие сверхпроводников второго рода предсказал в 1957 году А.А. Абрикосов.
Демонстрация эффекта Мейсснера
Данный эффект наглядно можно продемонстрировать в парении магнита над поверхностью сверхпроводника.
Например, на поверхность тарелки из сверхпроводника при температуре ниже критической опускают маленький магнит. В тарелке появляются токи индукции. Индукционные токи отталкивают магнит, и он парит над тарелкой.
Если магнит положить на тарелку, а потом систему охладить до температуры ниже критической, то парение будет наблюдаться. При вытеснении магнитного поля из объема проводника, происходит изменение потоков магнитной индукции, а значит, что возбуждаются токи индукции. Данные токи:
Критическое магнитное поле, критический электрический ток.
Если увеличивать магнитное поле, в котором находится сверхпроводник выше некоторого предела, то состояние сверхпроводимости разрушается, то есть вещество приходит в «нормальное» состояние, магнитное поле проникает внутрь вещества.
Минимальная величина такого поля называется критической ($B_k$).
$B_k$ зависит от температуры. Критическое магнитное поле можно определить как такое внешнее магнитное поле, которое при заданной температуре сверхпроводящая и нормальная фазы приходят в состояние равновесия друг с другом.
Сверхпроводимость может разрушаться электрическим током, если он превышает некоторый предел. Такой ток называют критическим. Но данный эффект является простым следствием наличия критического магнитного поля. Ток, протекая по сверхпроводнику, порождает магнитное поле, если оно достигнет критической величины, нарушается сверхпроводимость.
При увеличении внешнего магнитного поля сверхпроводники первого и второго рода ведут себя по-разному. При достижении магнитным полем критического значения, у сверхпроводников первого рода сверхпроводящая фаза становится термодинамически неустойчивой и весь образец переходит в наиболее устойчивую фазу – нормальную. При этом дробления сверхпроводника на нормальные и сверхпроводящие домены отсутствует, поскольку образование границ между ними требует дополнительных затрат энергии.
У сверхпроводников второго рода поверхностная энергия отрицательна. Имеется возможность понижения полной свободной энергии системы при дроблении образца на домены с нормальными и сверхпроводящими свойствами. Данное дробление связано с внутренними свойствами сверхпроводников второго рода.
Состояние сверхпроводника, когда он существует в виде совокупности разных доменов, называют смешанным состоянием.
Диаграмма состояния для сверхпроводника 2-го рода изображена на (рис.2):
Рисунок 2. Диаграмма состояния для сверхпроводника 2-го рода. Автор24 — интернет-биржа студенческих работ
Сверхпроводники 2-го рода используются как соленоиды, для генерации сильных магнитных полей (около 100 к Гс). Сверхпроводники 1-го рода для выполнения этой задачи не годятся, поскольку у них низкие значения критических магнитных полей.