стекируемый коммутатор что это
Стекирование коммутаторов
Для современного бизнеса необходимы современные инструменты. Поэтому важность ИТ департамента невозможно переоценить. Сетевая структура является основой любого предприятия или объединения людей, занятых одним общим делом. Именно она помогает в реализации комплекса коммуникационных задач, использовании общих ресурсов сети и нуждается в грамотном управлении. От выбора ключевого подхода при организации сетевой структуры будет напрямую зависеть долгосрочная финансовая отдача, эффективность персонала и последующие вложения в поддержание безотказного функционирования системы.
Чем продуманней изначально будет архитектура сети, тем меньше потребуется затрат на поддержание и масштабирование при последующей долгой эксплуатации.
Эталоном де факто при построении сетей любого уровня является оборудование компании Cisco. Функционал, качество и поддержка – вот основные достоинства данного вендора.
Коммутаторы доступа – это неотъемлемая часть любой сети, будь то небольшой офис из 10 сотрудников или же распределённая корпорация с тысячами работников. Именно коммутаторы объединяют всех пользователей и их оборудование в единую корпоративную сеть. Решения Cisco по коммутации представлены на рисунке ниже:
Для увеличения количества портов, удобства управления и мониторинга применяется технология стекирования. Суть в том, что массив коммутаторов превращается с точки зрения администратора в один большой виртуальный коммутатор. С общими таблицами коммутации для устройств 2-го уровня и таблицами маршрутизации для устройств 3-го уровня. Всем устройствам стека, как правило, присваивается единый IP-адрес.
Как видно из Рис.1, существует множество платформ со своими разновидностями реализации технологии стекирования. Перечислим их по возрастанию стоимости поддерживающего оборудования:
Рассмотрим данные технологии подробнее.
Технология FlexStack
Протокол связи FlexStack работает подобно протоколу Ethernet, обеспечивая передачу пакетов внутри стека согласно таблице коммутации каждого коммутатора либо на порты доступа, либо на порты стекирования.
Технология FlexStack Plus
Данная технология является развитием предыдущей. Поддерживается линейкой как 2960X, так и 2960S. Основным отличием является увеличение числа коммутаторов в стеке до 8 шт. и удвоении пропускной способности до 80 Гбит/с. Поддерживается обратная совместимость с FlexStack. Т.е. в одном стеке могут работать как 2960X так и 2960S, но по протоколу FlexStack с его ограничением на коммутатор 40 Гбит/с. Тонкость: коммутаторы 2960XR, стекируемые только между собой по FlexStack Plus.
Технология StackWise
Данная технология поддерживается моделями 3750 и 3750G. Позволяет создать стек из 9 устройств. Для объединения используется специальный кабель. У каждого коммутатора имеется 4 порта под данные кабели. Полный стек состоит из двух колец с пропускной способностью по 16 Гбит/с, что обеспечивает пропускную способность стека на уровне 32 Гбит/с. Реализован алгоритм работы Source Stripped, при котором каждый пакет, приходящий на коммутатор стека, проходит по всему кольцу, даже если точка выхода – тот же самый коммутатор.
Технология StackWise Plus
Данная технология внедрена в коммутаторы серии 3750E и 3750X. Обеспечивает удвоенную пропускную способность по сравнению с StackWise. Составляет 64 Гбит/с. Отличается поддержкой алгоритма Destination Stripped, при котором пакет покидает кольцо, как только достигает точки выхода (порта нужного коммутатора). Данная технология допускает объединение в стек любых моделей 3750. При этом коммутаторы 3750E и 3750X перейдут на технологию StackWise, обеспечивая обратную совместимость и коммутируя пакеты только по своим портам, не отправляя их в стековое кольцо.
Технология StackWise-160
Эта технология способна объединить до 9 коммутаторов линейки 3650. Объединение производится с помощью специального комплекта, поставляющегося отдельно. В него входит модуль стекирования C3650-STACK= и кабель-адаптер STACK-T2-50CM= (50 см, 1 м и 3 м) см. Рис.9. Протокол работы схож со StackWise, однако данная технология стекирования несовместима с другими, обеспечивает обмен данными на скорости до 160 Гбит/с.
Технология StackWise-480
Данная технология реализована в коммутаторах Cisco 3850. Алгоритм аналогичен применяемому в Cisco 3750X (destination stripping). Но обратной совместимости нет. Поддерживается до 9 коммутаторов в стеке. Возможен auto-upgrade образов IOS. Особенность – можно добавлять новые единицы оборудования в стек на “горячую”, т.е. не прерывая функционирование остальных. Максимальная пропускная способность – 480 Гбит/с.
Технология Virtual Switching System (VSS)
Линейки модульных коммутаторов 4500, 6500, 6800 требуют отдельного подхода в организации стека. Это продиктовано областью их применения. Данные коммутаторы могут быть разнесены в пространстве на большие расстояния. Поэтому технология их объединения основывается на Ethernet. Таким образом, используя волоконно-оптическую связь, можно покрыть расстояния до 40 км. По сути, это технология виртуального стекирования (VSS). Позволяет осуществлять управление виртуальным устройством с одного коммутатора (control plane). При этом обработка данных (data plane) и коммутация (switch fabric) – доступна на обоих устройствах. Отказоустойчивость и время аварийной реакции контролируется постоянной репликацией данных управления на обоих коммутаторах стека. Пропускная способность между коммутаторами ограничена полосой канала и типом применяемых оптических модулей. При условии использования 40 Гбит/с модулей, пропускная способность будет до 320 Гбит/с. А при использовании 10 Гбит/с модулей и 8 каналов – до 80 Гбит/с. Общая же пропускная способность всей фермы может быть более 4 Тбит/с. (для линейки 6500).
Для более наглядного представления характеристик и возможностей кластеризации для рассмотренных технологий и серий коммутаторов обратимся к рисунку ниже:
Стоит также упомянуть, что у других производителей имеются похожие технологии, в зависимости от уровня оборудования и его цены. Довольно часто применяется технология стекирования при помощи разъёмов и кабелей HDMI. (Allied Telesys, D-Link и прочие). Данный стандарт позволяет передавать данные на скоростях до 5 Гбит/с и является недорогим в реализации.
Таким образом, в данной статье рассмотрены различные технологии стекирования для линеек коммутаторов Cisco. Приведены основные характеристики и отличительные особенности способов объединения коммутаторов в стек.
Стекирование коммутаторов Cisco. Часть 2
Всех приветствую!
В первой части данной статьи мы рассмотрели достаточно старые технологии стекирования для семейства коммутаторов Cisco 3750, а именно StackWise и StackWise Plus. Сегодня предлагаю продолжить рассмотрение остальных технологий. Напомню, у нас остались StackWise-160, StackWise-480, FlexStack и FlexStack Plus.
Технология StackWise-160 возникла с появлением коммутаторов серии 3650. С другими версиями технологий стекирования она не совместима. Основные алгоритмы работы позаимствованы у StackWise Plus. При этом есть отличия. Первое – это новая архитектура самого коммутатора, построенная на базе новых ASIC’ов (Unified Access Data Plane (UADP) ASIC).
Новые ASIC’и наделены достаточной интеллектуальностью для обеспечения функций коммутации. Из-за этого в отличии от 3750E/3750X больше нет выделенной коммутационной фабрики. Интересный момент заключается в том, что коммутация трафика между портами, обслуживаемыми разными ASIC’ами, обеспечивается через стековый интерфейс.
Хотел бы напомнить, что в старых ASIC’ах (в коммутаторах 3750E/3750X) элементы, отвечающие за обработку входящих пакетов, и элементы, отвечающие за обработку исходящих пакетов, разделены. Они не имеют общей шины внутри ASIC’а. Поэтому даже если пакет передаётся между портами, обслуживаемыми один и тем же ASIC’ом, этот пакет обязательно попадает на коммутационную фабрику.
Второе отличие StackWise-160 – увеличенная пропускная способность стековой шины. Пропускная способность стекового кабеля теперь равна 40 Гбит/с (full duplex). Таким образом, пропускная способность всей стековой шины для технологии StackWise-160:
40 Гбит/с * 2 (в каждую сторону) * 2 (количество портов) = 160 Гбит/с
Стоит отметить, что в отличии от серии коммутаторов 3750, стековый комплект для 3650 покупается отдельно.
Для технологии StackWise-160 изменена общая схема работы стека на программном уровне. Теперь для обеспечения отказоустойчивости используется схема Stateful Switch Over (SSO). Как мы помним, в предыдущих технологиях (StackWise и StackWise Plus) используется более простая схема восстановления после отказа. Один из коммутаторов выбирается в качестве мастера (stack master). Он выполняет логические операции (control-plane) для всего стека. Между коммутаторами стека синхронизируются только аппаратные таблицы (MAC-таблицы и таблиц CEF (FIB/Adj)). Остальные таблицы, в том числе таблица маршрутизации, на новом мастере заполняются заново. Т.е. control-plane запускается с нуля. На коммутаторах 3650 для обеспечения отказоустойчивости стала использоваться более продвинутая схема — Nonstop Forwarding with Stateful Switchover (NSF/SSO). Больше нет такого понятия как мастер. Теперь используется схема Active-Standby. Один из коммутаторов выбирается основным (Active), ещё один — его горячим резервом (Standby), синхронизирующим с основным всю необходимую информацию (L2 и L3). Control-plane теперь работает в режиме Active-Standby. Это обеспечило минимизацию времени, необходимого на восстановления в случае отказа основного коммутатора.
Давайте теперь посмотрим на технологию StackWise-480. С помощью неё можно объединить в стек коммутаторы серии 3850.
Коммутаторы 3650 и 3850 очень похожи. Обе эти серии построены на базе UADP ASIC. Соответственно алгоритмы работы стека StackWise-480 и StackWise-160 сходны. Правда есть отличие. В технологии StackWise-480 используется три физических стековых кольца. Достигается это тем, что внутри одного стекового кабеля для коммутаторов 3850, находится три провода (Рис. 6). Каждый с пропускной способностью 40 Гбит/с (full duplex).
Пропускная способность всей стековой шины для технологии StackWise-480:
40 Гбит/с * 2 (в каждую сторону) * 3 (количество проводов) *2 (количество портов) = 480 Гбит/с
На логическом уровне стек представлен шестью путями (по два логических пути на один провод). Пакеты по трём логическим путям «крутятся» в одну сторону, а по трём другим — в другую (Рис. 7).
Выбор пути осуществляется так же, как и раньше, с помощью токенов.
На этом с обзором технологий стекирования семейства Stackwise предлагаю закончить. Давайте теперь посмотрим на семейство коммутаторов 2960 и технологии стекирования FlexStack и FlexStack Plus.
Стекирование для 2960 появилось впервые на коммутаторах 2960-S. Для объединения коммутаторов по технологии FlexStack используется стековый модуль и специализированные кабели с пропускной способностью 10 Гбит/с (full duplex). Каждый стековый модуль имеет два порта. Коммутаторы при объединении соединяются в кольцо (хотя это и не обязательно). Общая пропускная способность всей стековой шины равна:
10 Гбит/с * 2 (в каждую сторону) * 2 (количество портов) = 40 Гбит/с.
Для стека FlexStack передача пакетов между коммутаторами происходит устройство-за-устройством. Коммутатор для каждого пакета определяет, куда его отправить: на обычный или на стековый порты. Такое взаимодействие напоминает работу нескольких коммутаторов, подключённых друг к другу по протоколу Ethernet. Разница в том, что связь между коммутаторами стека обеспечивает протокол FlexStack. Выбор того, через какой из стековых портов отправить пакет, определяется специальным алгоритмом, напоминающим работу OSPF. Т.е. выбирается кратчайший путь до коммутатора в стеке, на котором находится порт назначения. Если происходят какие-то изменения (например, отказал один из коммутаторов или отключился стековый кабель) данный алгоритм пересчитывает пути заново.
Отдельно нужно отметить механизм предотвращения зацикливания трафика. Речь идёт о трафике, где нет точного получателя (broadcast, multicast, unknown unicast). Так как этот трафик попадает на все коммутаторы стека, должен быть механизм, который предотвращает его зацикливание в случае, если коммутаторы соединены в кольцо (задействованы все стековые порты). Для этого используется механизм пассивных соединений (Passive link). Для каждого коммутатора в стеке выбирается стековое соединение, находящееся максимально далеко от рассматриваемого коммутатора. Это соединение становится пассивным. У каждого коммутатора в стеке будет своё такое соединение. При проходе через него отбрасывается весь broadcast, multicast и unknown unicast трафик, который попал в стек через коммутатор, для которое это соединение является пассивным. Т.е. у нас просто размыкается кольцо. Но в отличие от STP для каждого коммутатора в стеке кольцо размыкается в разных местах. Это даёт более эффективную передачу трафика, чем в случае классического STP.
На программном уровне схема работы FlexStack напоминает StackWise/StackWise Plus. Один из коммутаторов выбирается мастером и control-plane запускается только на нём.
Стек FlexStack Plus отличается от своего предшественника тем, что в стек можно объединить до 8 коммутаторов (для FlexStack эта цифра равна 4) и пропускная способность по специализированному кабелю увеличена до 20 Гбит/с. Таким образом, общая пропускная способность стековой шины составляет – 80 Гбит/с.
В заключение хотелось бы отметить несколько моментов.
Все рассмотренные технологии позволяют объединять коммутаторы в стек, находящиеся рядом друг с другом. Максимальная длина стекового кабеля 3 метра. Это, конечно, не очень удобно. Правда, Cisco и не позиционирует данные серии коммутаторов для построения распределённых стеков. Для этого в частности предлагается технология виртуализации коммутаторов Virtual Switching System (VSS). Её поддержка начинается на коммутаторах Cisco серии 4k.
Судя по временным характеристикам восстановления после сбоя, технологии StackWise более быстрые, нежели технологии FlexStack. Частично обусловлено это тем, что FlexStack все типы отказов отрабатывает программно. В принципе это не удивительно, так как серия Cisco 2960 младше. Наиболее интересными из рассматриваемых являются Stackwise-160 и 480, так как они поддерживают «взрослый» SSO.
На коммутаторах 3750X и 3850 появился ещё один тип стека – стек по питанию (StackPower). Он предназначен для перераспределения «лишних» мощностей между блоками питания коммутаторов, объединённых в данный тип стека. Это позволяет обеспечить работу коммутатора стека, в случае выхода из строя его локального блока питания. Или же предоставить дополнительный бюджет PoE.
Из практики могу сказать, что чаще приходилось сталкивать именно со стеками Stackwise (и его продолжениями). Особых проблем с их работой не было. Есть примеры, где такие стеки прекрасно отработали 5-7 лет в качестве ядра сети в сравнительно больших сетях. FlexStack на практике встречается реже. Правда и с ними особых проблем не было.
С версии IOS XE 16.3.3 появилась поддержка технологии StackWise Virtual. Она позволяет объединить в стек два коммутатора 3850-48-XS. С другими версиями StackWise данная технология не совместима. В качестве стековой шины используются обычные порты Ethernet (10 Гбит/с или 40 Гбит/с). Можно задействовать до четырёх портов. StackWise Virtual поддерживает SSO/NSF (переключение с сохранением состояния и передачей пакетов в момент переключения). StackWise Virtual в плане работы похожа на технологию VSS.
Стекирование Extreme Summit
Введение
Существуют разные технологии объединения коммутаторов в стек, которые широко и не очень используются в операторских сетях. Стековые коммутаторы упрощают администрирование и управление. Увеличивают надежность за счет резервирования линков на разные ноды стека.
Технологии стеков
В таблице 1 приведены основные различия между двумя описанными технологиями стеков.
Таблица №1
Характеристики | «Стек» с управлением по одному IP-адресу | «Настоящий» стек |
Единое управление группой коммутаторов по одному адресу | Да | Да |
Конфигурирование VLAN | Для каждого коммутатора отдельно | Для всех коммутаторов |
Пересылка трафика | Обычно только коммутация L2 | Коммутация L2 и L3 |
Зеркальное отображение трафика на порт | Для каждого коммутатора отдельно | Для всего стека |
Объединение каналов | Для каждого коммутатора отдельно | Для всего стека |
Каналы для соединения в стек | Как правило, на базе обычного Ethernet | Как правило, специальные |
SummitStack
Разработанная компанией Extreme Networks технология SummitStack может эффективно использоваться в операторских сетях, обеспечивая высокую масштабируемость, гибкость и удобство управления. Она позволяет соединять в логически единый блок (стек) до восьми отдельных коммутаторов Summit X440, Summit X460, Summit X480, Summit X650 и Summit X670, Summit X770.
Возможность управления группой коммутаторов как единым устройством с одним IP-адресом и одной точкой аутентификации значительно упрощает обслуживание сети.
Стек SummitStack, состоящий из коммутаторов Extreme Summit, можно рассматривать как виртуальное шасси. Каждый узел (коммутатор) функционирует так, как будто он установлен в слот такого шасси и контролируется его блоком управления. Высокоскоростные каналы, соединяющие коммутаторы в стек, работают как объединительная панель модульного коммутатора. В одном стеке SummitStack можно установить разные модели коммутаторов –Summit X440, Summit X460, Summit X480, Summit X650, Summit X670 и Summit X770, получая нужное число требуемых портов, включая различные варианты медных (в том числе с поддержкой функции Power over Ethernet, PoE) и оптических интерфейсов Ethernet/Fast Ethernet, Gigabit Ethernet, 10G Ethernet и 40G Ethernet. Технология SummitStack дает возможность на базе коммутаторов с фиксированной конфигурацией просто и гибко строить хорошо масштабируемые конвергентные сети. Она поддерживает различные сетевые топологии, не требуя для этого привлечения каких-либо дополнительных аппаратных средств, и позволяет заказчикам в любой момент нарастить число портов, контролируя свои расходы.
Объединяя необходимое
Безболезненное внедрение новых технологий (по мере появления надобности в них) – важная и непростая задача. Технология SummitStack позволяет плавно перевести сеть с каналов Gigabit Ethernet на 10-гигабитные подключения, не добавляя сложностей, связанных с управлением коммутаторами двух типов, и не замораживая инвестиции. Как часто случается, когда часть портов 10G долгое время используется на скорости 1 Гбит/с. При установке в стек SummitStack разных моделей коммутаторов сохраняются функции управления всем стеком как единым модульным устройством. Объединяя в стек модели Summit X670, Summit X480 и Summit X460, можно получить высокопроизводительное и экономически эффективное решение ядра сети, конфигурируемое с нужным числом портов Gigabit Ethernet и 10G Ethernet.
Extreme Summit x480
Extreme Summit x460
В Slot B коммутатора можно установить модуль XGM3-4sf, имеющий 4 порта 10G SFP+, однако технология SummitStack на них не поддерживается.
Extreme Summit x670V-48x (x770)
Коммутатор x670V/x770 имеет слот для установки интерфейсного модуля VIM4-40G4X. Данный модуль обладает 4-мя портами 40G QSFP+. Каждый порт может работать как один порт на 40G или как 4 порта 10G (через переходник). Для организации стека могут быть использованы два порта данного модуля по технологии SummitStack-V80. Оставшиеся два порта могут быть использованы как обычные линейные 40G порты. Или могут быть использованы все четыре порта для организации стека SummitStack-V320. ниже в таблице представлены коммутаторы и поддерживаемые ими методы стекирования.
Stack with | X250e | X450e | X440* | X440-10G | X450a | X460 | X480 | X650 | X670 | X670V | X770 |
X250e | 40G | 40G | 40G | — | 40G | 40G | 40G | 40G | — | — | — |
X450e | 40G | 40G,V | 40G | V | 40G,V | 40G,V | 40G,V | 40G,V | V | V | — |
X440* | 40G | 40G | 40G | — | 40G | 40G | 40G | 40G | — | — | — |
X440-10G | — | V | — | V | V | V | V | V | V | V | V |
X450a | 40G | 40G,V | 40G | V | 40G,V | 40G,V | 40G,V | 40G,V, V80 | V | V | — |
X460 | 40G | 40G,V | 40G | V | 40G,V | 40G,V,V80 | 40G,V,V80 | 40G,V, V80 | V | V,V80 | V |
X480 | 40G | 40G,V | 40G | V | 40G,V | 40G,V,V80 | 40G,V, V80,128G, V160,V320 | 40G,V, V80, 128G, V160, V320 | V | V,V80, V160, V320 | V,V160, V320 |
X650 | 40G | 40G,V | 40G | V | 40G,V | 40G,V,V80 | 40G,V, V80,128G,V160,V320 | 40G,V, V160, V320,256G, 512G | V | V,V160,V320 | — |
X670 | — | V | — | V | V | V | V | V | V | V | V |
X670V | — | V | — | V | V | V,V80 | V,V80 | V | V,V80, V160, V320 | V,V160, V320 | |
X770 | — | V | — | V | V | V | V | V | V,V160,V320 | V,V160, V320 |
Топология SummitStack
На рисунке 1 показана топология стека. Топология стека, это непрерывный набор нод, включенных и связанных друг с другом. Например, на рисунке 1 коммутатор №8 не является частью топологии т.к. обесточен.
Активная топология это непрерывный набор нод в активном состоянии. Активная нода – включенный коммутатор, сконфигурированный для работы в стеке, связанный с другими активными нодами. На рисунке 1 коммутатор №5 в состоянии failed, на коммутаторах №6 и №7 стек отключен, на коммутаторе №8 отключено питание, поэтому активная топология состоит из коммутаторов №1, №2, №3 и №4.
Рисунок 1. Топология стека.
Кольцевая топология
Ноды в SummitStack должны быть соединены друг с другом в кольцо. В кольцевой топологии линки используются для соединения с соседними нодами и образуют кольцо. Для нормальной работы стека настоятельно рекомендуется использовать кольцевую топологию. На рисунке 2 показано максимальное кольцо из восьми активных нод.
Рисунок 2. Графическое представление кольцевой топологии
Кольцевая топология существует (работает) только тогда, когда существует физическое подключение всех нод и все ноды в стеке находятся в активном состоянии.
Рисунок 3. Соединение коммутаторов серии Summit в топологии кольцо.
Топология Daisy Chain
Стекируемые коммутаторы могут быть соединены по топологии daisy-chain, это последовательное включение коммутаторов в стек, крайние имеют один не используемый стековый линк. Или когда в кольцевой топологии один из линков отключен или неработоспособен. Стек можно перевести в daisy-chain при перезагрузке одной из нод или проблеме со связностью между нодами.
Для нормальной работы стека категорически не рекомендуется использовать данную топологию.
На рисунке 4 показана топология daisy-chain при разрыве соединения между двумя нодами.
Рисунок 4. Топология daisy chain
Топология daisy chain необходима при добавлении новой ноды в стек, удалении ноды из стека, объединения двух стеков в один. При её использовании значительно возрастает риск возникновения ситуации с двумя master нодами в стеке.
Нумерация портов, конфигурационные файлы и параметры конфигурации стека
Таблица 4. Перечень основных параметров конфигурации стека, которые задаются на каждом узле
параметр | когда применяется | значение по-умолчанию |
Stacking Mode | во время загрузки | Disabled |
номер слота | во время загрузки | 1 |
Master-Capable | во время загрузки | Да |
ограничение лицензии | во время загрузки | не задано |
приоритет | при следующем выборе мастера | автоматически |
Основной и альтернативные IP-адреса в Mgmt | сразу же | не задано |
Stack MAC | во время загрузки | не задано |
Stacking protocol | во время загрузки | Standard |
Параметры, такие как режим, № слота, и т.п. могут быть настроены на коммутаторе не подключенном в стек. Эти параметры хранятся в NVRAM каждого узла. Большинство же параметров стекирования хранятся НЕ в NVRAM, а в файле конфигурации. Параметры, хранящиеся в NVRAM из числа тех, которые понадобятся коммутатору до того, как файл конфигурации станет доступен. При перезагрузке стека используется конфигурационный файл коммутатора, который стал мастером сразу же после перезагрузки.
Переподписка стекового соединения
Каждая нода в стеке работая с full duplex пропускной способностью обладает следующими лимитами по стеку:
128 Gbps: Summit X480 с модулем VIM2-SummitStack128
Несмотря на то, что доступны два стековых линка, они могут быть не полностью утилизированы. Например, возьмем кольцо из 8 нод, каждая нода имеет номер от 1 до 8, пропускная способность стекового порта 10G full duplex в каждую сторону. Нода 1 хочет отправить 10Гб/с трафика к нодам 2 и 3. Весь трафик пойдет коротким путем через линк нода1-нода2, в том числе до ноды3, а доступная емкость линка всего 10Гб/с. В случае если нода1 отправляет 10Г ноде2 и ноде8, трафик пойдет разными каналами и емкость стека составит 20Гб/с.
В кольце из 8 активных нод, между двумя любыми узлами используется только один канал (трафик не балансируется по направлениям). Если коммутаторы содержит 48 портов 1G Ethernet, переподписка между нодами составит 5:1.
Исключением является ситуация когда есть равнозначные «расстояния» между нодами. В этом случае, если обе ноды имеют по 48 портов, они группируются в две группы по 24 порта (by hardware), что позволяет использовать оба направления.
Конфигурирование
Самый простой и быстрый способ сконфигурировать стек, это запустить команду configure stacking easy-setup
Её запуск эквивалентен запуску команд:
enable stacking
configure stacking slot-number automatic
configure stacking mac-address
configure stacking redundancy minimal
configure stacking protocol
reboot stack-topology
Что минимально необходимо для начала работы стека.
Если топология стека daisy chain, дополнительно отрабатывает:
configure stacking redundancy none
Альтернативные порты для организации стека.
Таблица 5. Поддержка альтернативных стековых портов на коммутаторах Summit
Summit Switch Model Number | Summit Switch Option Card | Alternate Port for Stack Port | Alternate Port for Stack Port | Stacking- Support Option Control | Stacking Port Selection Control 2 |
X440-24t-10G X440-24p-10G | None | 25 | 26 | Yes | Yes |
X440-48t-10G X440-48p-10G | 49 | 50 | Yes | Yes | |
X460-48t X460-48p | XGM3-2sf with either the XGM3 SummitStack V80 or XGM3 SummitStack module or neither | S1c | S2c | No | Yes |
X460-24t X460-24x X460-24p | S1c | S2c | No | Yes | |
X460-48x | S1c | S2c | No | Yes | |
X480-48t X480-48x | VIM2-10G4X | S3 | S4 | Yes | No |
VIM2-SummitStack | N/A | N/A | N/A | N/A | |
VIM2-SummitStack- V80 | N/A | N/A | N/A | N/A | |
VIM2-SummitStack128 | N/A | N/A | N/A | N/A | |
None | N/A | N/A | N/A | N/A | |
X480-24x | VIM2-10G4X | S3 | S4 | Yes | No |
VIM2-SummitStack | 25 | 26 | No | Yes | |
VIM2-SummitStack- V80 | 25 | 26 | No | Yes | |
VIM2-SummitStack128 | 25 | 26 | No | Yes | |
None | 25 | 26 | Yes | No | |
X670-48x | None | 47 | 48 | Yes | Yes |
X670V-48x X670V-48t | VIM4-40G4X | 47 | 48 | Yes | Yes |
X770-32q | None | 103 – 10G | 104 – 10GКоманды просмотра настроек и рабочего состояния стекаПолучение статистики утилизации и ошибок на портах стекированияshow ports stack-ports utilization [ bandwidth | bytes | packets ] Включение режима стекированияНастройка параметров стекированияВключение/отключение режима стекированияУправление уровнем лицензийКоммутаторы, которые являются узлами стека, могут иметь разный уровень лицензий ExtremeXOS. От уровня лицензий зависит перечень возможностей, которые доступны на узле. Возможности всего стека ограничены возможностями коммутатора, который является мастером. Если уровень лицензии мастера отличается (превосходит) от оного у бекапов, то возможна ситуация, когда бекап, не сможет полноценно заменить мастера в случае необходимости. Чтобы исключить такую возможность, нужно настроить ограничения лицензий по уровню, которым обладают все узлы, потенциально способные стать мастером в стеке. configure stacking < node-address | slot >license-level Для применения изменений требуется перезагрузка. На узлах non-master capable уровень лицензий не учитывается. Т.е. например, на master и backup нодах Core лицензия, на non master capable достаточно будет Edge. Выбор протокола стекированияЕсли предполагается использовать стек как маршрутизатор MPLS, на всех узлах в качестве протокола стекирования необходимо задать Enhanced Stacking Protocol. Кроме того, в этом случае в стеке могут присутствовать только модели Summit X460, X480, X670, X770. configure stacking protocol Для применения изменений требуется перезагрузка. Задание номера слота у узлаСтек не может (и не должен) динамически назначать номер слота у узлов. Номера задаются исключительно конфигурированием и должны быть уникальными для каждого узла в стеке. Допустимые значения 1-8. Настройка Master-Capabilityconfigure stacking redundancy < none | minimal | maximal >— сразу на всех узлах Задание ролей узлов в стекеconfigure stacking Если коммутатор с более бедным чем мастер функционалом становится backup’ом, то в случае отказа мастера он не сможет обслуживать стек на прежнем уровне. Чтобы сравнять перечень возможностей для коммутаторов, которые потенциально могут стать мастером, рекомендуется: использовать одинаковые коммутаторы в стеке; на более (менее) функциональном убрать master-capability, чтобы он не мог стать мастером. В случае, когда несколько одинаковых коммутаторов пытаются стать мастером или бекапом, в рассмотрение берётся значение priority. Чем больше priority, тем выше шансы стать мастером или бекапом. В случае отказа мастера, бекап становится на его место, а в стеке инициируется процесс выборов нового бекапа. Перевыборы бекапа происходят в моменты отказа мастера или бекапа. Можно либо вручную задать priority у узлов, либо установить автоматический режим. Автоматический режим применяется, если в стеке ни у одного узла не задан приоритет вручную. Тогда считается, у всех приоритет 0. В этом случае приоритет отдаётся коммутатору с более мощным процессором или с более функциональной лицензией ExOS. В случае, когда максимальный приоритет обнаружен у двух и более коммутаторов, выбор делается на основе номера слота. Меньший номер побеждает. Если в выборе мастера хочется учитывать только критерий номера слота, нужно задать на всех узлах одинаковый приоритет. Разрешение ситуации с двумя мастерами происходит исходя из критерия времени проведённом в роли мастера, а не на основе приоритета. Назначение MAC-адреса представляющего стекshow stacking configuration Задание альтернативного IP-адреса и шлюза в mgmt-вланеЭто адреса в сети управления (влан mgmt), доступные в портах управления разных узлов. Используются для непосредственного подключения к отдельным узлам через management-port. configure stacking alternate-ip-address [automatic] Альтернативный адрес во влане управления Mgmt должен быть в той же подсети, что и основной ip-адрес управления стека. Выяснить текущие адреса позволяют команды show vlan mgmt Порядок операций со стекомПорядок настройки нового стекаВключить стек на всех узлах командой enable stacking (выполнять на желаемом мастере). Можно воспользоваться easy-setup или же задать параметры стекирования вручную позже. Если необходимо, настроить ограничения лицензии по минимальному уровню для всех узлов с включённым Master-Capability. Ограничение должно быть настроено так, чтобы все узлы, способные стать мастером, имели возможность (по уровню лицензии) заменять друг друга в случае отказа действующего мастера. configure stacking license-level Если предполагается использовать MPLS, на всех узлах задать Enhanced Stacking Protocol в качестве протокола стекирования. configure stacking protocol в стеке должны быть только модели Summit X460, X480, X670. Каждому узлу назначить номер слота. configure stacking node-address slot-number Назначить MAC-адрес стеку. configure stacking mac-address (на мастере, если задаётся его MAC) Настроить приоритеты стекирования (priority) на каждом узле. configure stacking node-address priority Снять master capability на узлах, которые не должны становиться мастером и участвовать в выборах Backup. configure stacking < node-address | slot >master-capability [on | off] Перезапустить стек командой При входе в режим стекирования будет применена дефолтная конфигурация. Зайти на мастер и проверить состояние стекирования: Все узлы должны быть видимы в стеке. Все узлы должны быть в состоянии active. После определения ролей, в стеке должен наблюдаться 1 master, 1 backup (если присутствует) и группа из standby. show stacking [detail] Убедиться, что мастером стал желаемый коммутатор. Настроить IP-сеть управления во влане mgmt (для всего стека). configure vlan Mgmt ipaddress /24 Настроить альтернативные IP-адреса управления и шлюза по-умолчанию (для отдельных узлов). Настроить представленный стеком виртуальный модульный коммутатор желаемым образом (VLAN, IP-подсети, транк-группы, маршрутизация. ). Замена узла коммутатором такой же моделиПри замене коммутаторов одинаковой модели можно использовать текущую конфигурацию стека. Применяемые команды: show switch, show licenses, show stacking configuration. Отключить линки стекирования от удаляемого узла. Заменить узел коммутатором той же модели. Замена узла коммутатором другой моделиПри замене узла коммутатором другой модели нельзя использовать существующую конфигурацию стека.
|