статическое и динамическое давление вентилятора что это

Что такое статическое и динамическое давление вентилятора в компьютере

Приветствую, уважаемые посетители моего блога! Сегодня давайте обсудим статическое и динамическое давление вентилятора — что это такое в компьютере, как считается и стоит ли заморачиваться с формулами.

статическое и динамическое давление вентилятора что это. Смотреть фото статическое и динамическое давление вентилятора что это. Смотреть картинку статическое и динамическое давление вентилятора что это. Картинка про статическое и динамическое давление вентилятора что это. Фото статическое и динамическое давление вентилятора что это

О том, сколько вентиляторов обязательно нужно иметь в корпусе системного блока, читайте здесь.

Что значит статическое давление

Кулер в компьютере ни конструкцией, ни принципами работы вообще не отличается от обычных вентиляторов, используемых в бытовых климатических системах. К нему применимы те же физические формулы, которые используются при расчетах систем вентиляции.

В характеристиках вентилятора можно увидеть параметр, который называется «Напор», или по-другому «Статическое давление».

Рассчитывается как разница перед крыльчаткой и за ней. Из-за этой разницы воздух циркулирует в корпусе ПК — не только продвигаясь лопастями кулера, но и перемещаясь естественным образом.

Динамическое давление кулера

Проходя сквозь крыльчатку, воздушный поток обретает определенную скорость, создавая скоростной напор. Если установить преграду на пути этого потока, он остановится, немного сжавшись, а его кинетическая энергия трансформируется в потенциальную.

Динамическим называется давление перемещающегося воздушного потока «в идеальном» состоянии, то есть то, которое возникнет, если его резко остановить.

Полное давление — это сумма статического и динамического. Эти характеристики зависят от конструкции кулера и скорости вращения крыльчатки.

Измерить их можно с помощью прибора, который называется дифференциальный манометр. Замеры производятся с помощью специальных трубок Пито-Прадля.

А теперь подумайте сами, стоит ли настолько сильно заморачиваться с измерением параметров воздуха внутри шасси? На мой взгляд, если система охлаждения не справляется с задачей, нужно установить дополнительный кулер или использовать крыльчатки помощнее.

Все-таки мы с вами не инженеры, а продвинутые юзеры, и проектировка систем охлаждения не входит в категорию обычного обслуживания ПК.

Очень сомневаюсь, что этим заморачиваются профессиональные сборщики компьютеров, у которых процесс поставлен на поток.

Также советую почитать «Правильная циркуляция воздуха в компьютерном корпусе». Подписывайтесь на меня в социальных сетях, чтобы не пропустить уведомления о публикации новых интересных статей. До скорой встречи!

Источник

Что такое напор вентилятора и от чего он зависит?

Напор – это одна из основных характеристик вентилятора, которая показывает, как изменяется давление потока воздуха до и после вентилятора. Именно за счёт этого давления воздух «проталкивается» через сеть воздуховодов, повороты, тройники, решетки и другое вентиляционное оборудование.

Различают статический, динамический и полный напоры вентилятора.

После вентилятора воздух имеет более высокое давление, чем до вентилятора. Разность давлений воздуха – это и есть статический напор вентилятора (статическое давление вентилятора).

Кроме того, после вентилятора воздух приобретает некоторую скорость движения – так называемый скоростной напор. Если на пути воздуха поставить стенку, то, очевидно, достигнув стенки, воздух остановится, при этом слегка сжавшись. Возле стенки кинетическая энергия воздуха (скорость) превратится в потенциальную энергию (давление). Именно этот прирост давления и есть скоростной напор вентилятора. Иными словами, динамическое давление вентилятора – это давление, которое мог бы иметь движущийся поток воздуха, если его внезапно остановить.

Полное давление вентилятора – суть сумма статического и динамического давлений вентилятора.

Давление (напор) вентилятора зависит от его конструктива. Наименее напорными являются осевые вентиляторы. Их напор измеряется единицами и десятками паскалей.

Средненапорные вентиляторы – как правило, вентиляторы радиального и центробежного типов. Такие вентиляторы «выдают» сотни паскалей. Именно такие вентиляторы чаще всего применяются в общеобменных системах вентиляции.

Вентиляторы высокого давления создают напор, измеряемый тысячами паскалей. Такие вентиляторы используются в промышленных системах вентиляции для прокачки воздуха через длинные воздуховоды, применяются в качестве дымососов, а также для надува при сжигании топлива.

Несколько иная классификация вентиляторов принята в канальных кондиционерах. Канальные кондиционеры также бывают низкого, среднего и высокого давления. Чем выше напор кондиционера, тем более разветвленную сеть воздуховодов можно к нему подсоединить.

К низконапорным кондиционерам подсоединять воздуховоды не рекомендуется.

Они комплектуются всасывающими и нагнетательными адаптерами, которые имеют отверстия для всасывания и нагнетания воздуха. Средненапорные канальные кондиционеры предусматривают подключение воздуховодов средней длины. Обычно речь идёт о рукавах длиной по нескольку метров. Наконец, высоконапорные канальные кондиционеры способны прокачивать воздух на 10 и более метров.

Источник

Фрагмент № 4В. Основные параметры вентиляторов.

Работа вентиляционного аппарата характеризуется рядам технических параметров. Некоторые параметры соответствуют техническим параметрам насосного оборудования. Поэтому использование теории лопастных насосов для описания рабочего цикла вентиляторов вполне обосновано, так как давление, которое создает движение лопаток вентилятора, невелико, а сжимаемостью газового потока можно пренебречь. Основные формулировки и определения:

Степень повышения давления (ε) – это отношение газового давления на выходе из вентиляционного аппарата (р2) к газовому давлению на входе вентилятора р1 :
ε = р2/р1

Полное вентиляционное давление – это разность давления газа перед вентилятором и за ним (Па):
рv = р2 – р1

Давление динамическое – давление потока газа при выходе из вентилятора, рассчитанное по выходному сечению и средней вентиляционной скорости (Па):

Давление статическое – разность между полным и динамическим давлениями (Па):
psv = pv – pdv

Вентиляционная подача – объемное количество воздуха (газа), который поступает в вентиляционный аппарат в единицу времени, отнесенное к условиям входа в вентилятор, м3/с:

где Dр – диаметр рабочего колеса вентилятора по наружным кромкам его лопастей, м; φп – коэффициент подачи вентилятора, который характеризует его пропускную способность; u – окружная скорость, определяемая по частоте вращения колеса и диаметру Dр:

Таким образом, подача вентилятора определяется по одному геометрическому размеру Dр с введением коэффициента φп, который определяется эмпирическим путём и зависит от аэродинамических и конструктивных особенностей аппарата. Величина коэффициента изменяется от 0,01 до 0,9 единиц.

Полезной мощностью называется энергия, которая сообщается газу от вентиляционного аппарата в единицу времени, (Вт):
Nп = рvQ

Потребляемой мощностью называется мощность на вентиляционном валу без учета потерь мощности в элементах привода и подшипниках (Вт):
N = рvQ/η,

где η – полный КПД вентилятора, который определяется как
η = ηоηгηм,

где ηо – объёмный КПД вентилятора; ηм – механический КПД; ηг – аэродинамический КПД (аналогичный гидравлическому КПД).

Для вентиляторов радиального типа значение КПД составляют: ηо = (0,990…0,999; ηг = 0,6…0,9; ηм = 0,85…0,98; а для осевых вентиляторов – ηо = 1; ηг = 0,75…0,92; ηм = 0,94…0,98; η = 0,7…0,9.

Полный КПД вентилятора равен отношению полезной мощности вентилятора к потребляемой мощности.

Иногда для характеристики вентиляторов используют не полное давление, а лишь его статическую часть. В таких случаях энергетическую эффективность вентиляционного аппарата рассчитывают при помощи статического КПД:
ηs = Q psv/N,
ηs = (0,7…0,8) η.

Удельная быстроходность вентилятора — критерий для оценки пригодности работы вентилятора в режиме, определяемом частотой вращения n и величинами Q, Dp, pv.

Удельная быстроходность nу – частота вращения рабочего колеса вентиляционного аппарата, при которой подача при нормальных условиях составляет 1 куб. м/с и развивается давление величиной в 10 Па при максимальном КПД. Параметр определяется по следующей формуле:

Источник

Фрагмент № 4В. Основные параметры вентиляторов.

Работа вентиляционного аппарата характеризуется рядам технических параметров. Некоторые параметры соответствуют техническим параметрам насосного оборудования. Поэтому использование теории лопастных насосов для описания рабочего цикла вентиляторов вполне обосновано, так как давление, которое создает движение лопаток вентилятора, невелико, а сжимаемостью газового потока можно пренебречь. Основные формулировки и определения:

Степень повышения давления (ε) – это отношение газового давления на выходе из вентиляционного аппарата (р2) к газовому давлению на входе вентилятора р1 :
ε = р2/р1

Полное вентиляционное давление – это разность давления газа перед вентилятором и за ним (Па):
рv = р2 – р1

Давление динамическое – давление потока газа при выходе из вентилятора, рассчитанное по выходному сечению и средней вентиляционной скорости (Па):

Давление статическое – разность между полным и динамическим давлениями (Па):
psv = pv – pdv

Вентиляционная подача – объемное количество воздуха (газа), который поступает в вентиляционный аппарат в единицу времени, отнесенное к условиям входа в вентилятор, м3/с:

где Dр – диаметр рабочего колеса вентилятора по наружным кромкам его лопастей, м; φп – коэффициент подачи вентилятора, который характеризует его пропускную способность; u – окружная скорость, определяемая по частоте вращения колеса и диаметру Dр:

Таким образом, подача вентилятора определяется по одному геометрическому размеру Dр с введением коэффициента φп, который определяется эмпирическим путём и зависит от аэродинамических и конструктивных особенностей аппарата. Величина коэффициента изменяется от 0,01 до 0,9 единиц.

Полезной мощностью называется энергия, которая сообщается газу от вентиляционного аппарата в единицу времени, (Вт):
Nп = рvQ

Потребляемой мощностью называется мощность на вентиляционном валу без учета потерь мощности в элементах привода и подшипниках (Вт):
N = рvQ/η,

где η – полный КПД вентилятора, который определяется как
η = ηоηгηм,

где ηо – объёмный КПД вентилятора; ηм – механический КПД; ηг – аэродинамический КПД (аналогичный гидравлическому КПД).

Для вентиляторов радиального типа значение КПД составляют: ηо = (0,990…0,999; ηг = 0,6…0,9; ηм = 0,85…0,98; а для осевых вентиляторов – ηо = 1; ηг = 0,75…0,92; ηм = 0,94…0,98; η = 0,7…0,9.

Полный КПД вентилятора равен отношению полезной мощности вентилятора к потребляемой мощности.

Иногда для характеристики вентиляторов используют не полное давление, а лишь его статическую часть. В таких случаях энергетическую эффективность вентиляционного аппарата рассчитывают при помощи статического КПД:
ηs = Q psv/N,
ηs = (0,7…0,8) η.

Удельная быстроходность вентилятора — критерий для оценки пригодности работы вентилятора в режиме, определяемом частотой вращения n и величинами Q, Dp, pv.

Удельная быстроходность nу – частота вращения рабочего колеса вентиляционного аппарата, при которой подача при нормальных условиях составляет 1 куб. м/с и развивается давление величиной в 10 Па при максимальном КПД. Параметр определяется по следующей формуле:

Источник

Статическое и динамическое давление вентилятора что это

В давнем споре об основе для подбора вентиляторов, эта статья занимает позицию — «по полному давлению». Автор рассматривает некоторые примеры «ложной логики», которой придерживаются специалисты при проектировании системы вентиляции, а также, приводит аргументы в поддержку своих доводов.

Авторы Alex London, Юлия Захаренко-Березянская: перевод, Георгий Марховский, компания Novenco: техническое редактирование

Правильный выбор вентилятора для системы вентиляции должен основываться на правильной методике.

Это — простое, но важное условие. Однако в настоящий момент в специализированных изданиях, а также научной литературе приводится множество противоречивых методов подбора. Но, несмотря на множество методов, законы аэродинамики расставляют вещи по своим местам, недопуская противоречий.

Графическое изображение аэродинамических составляющих в вентиляционной системе

Графики на рис. 1 и 1a показывают взаимоотношение всех давлений, существующих в работающей системе, где:

F t — полное давление вентилятора — полное сопротивление системы;

F VP 0 — динамическое давление на выходе из вентилятора;

F VPi — динамическое давление на входе в вентилятор;

F s — статическое давление вентилятора;

SP s — полное статическое давление системы;

TP i and TP 0 — полное давление на входе и выходе из системы в точке

SP i и SP 0 — статическое давление на входе и выходе системы в некой точке;

V P i and V P 0 — динамическое давление на входе и выходе системы в некой точке.

статическое и динамическое давление вентилятора что это. Смотреть фото статическое и динамическое давление вентилятора что это. Смотреть картинку статическое и динамическое давление вентилятора что это. Картинка про статическое и динамическое давление вентилятора что это. Фото статическое и динамическое давление вентилятора что это

статическое и динамическое давление вентилятора что это. Смотреть фото статическое и динамическое давление вентилятора что это. Смотреть картинку статическое и динамическое давление вентилятора что это. Картинка про статическое и динамическое давление вентилятора что это. Фото статическое и динамическое давление вентилятора что это

Путаница

Так как статическое давление ни системы ( SP s ), ни вентилятора ( F s ) не показывает то количество энергии, которую должен передать системе правильно подобранный вентилятор, они не в коем разе не являются базой для его подбора.

В руководстве ASHRAE сказано «Полный напор вентилятора является настоящим индикатором энергии, которую передает вентилятор потоку воздуха… Потери энергии в системе воздуховодов могут рассматриваться только как потери полного давления…

Метод подбора вентилятора и проектирования системы воздуховодов на основе показателей полного давления является наиболее верным. Этот метод в равной степени применим как для систем с высокими скоростями потока, так и с малыми» [7].

Однако такой подход явно противоречит, следующему утверждению, приведенном в том же руководстве ASHRAE «Сопротивление системы определяется полным давлением… Величина статического давления, необходимая для подбора вентилятора, когда полное давление известно, находится по следующей формуле:

В таком случае естественно возникают следующие вопросы:

Согласно руководству ASHRAE, при подборе вентилятора необходимо пройти следующие шаги:

Пример расчёта

Процесс выбора вентилятора может быть наглядно продемонстрирован на следующем примере, где для одних и тех же расхода воздуха 5100 м 3 /ч и статического давления F s = 250 Па подобраны два различных типоразмера вентиляторов ( табл. 1, 2 ).

статическое и динамическое давление вентилятора что это. Смотреть фото статическое и динамическое давление вентилятора что это. Смотреть картинку статическое и динамическое давление вентилятора что это. Картинка про статическое и динамическое давление вентилятора что это. Фото статическое и динамическое давление вентилятора что это

статическое и динамическое давление вентилятора что это. Смотреть фото статическое и динамическое давление вентилятора что это. Смотреть картинку статическое и динамическое давление вентилятора что это. Картинка про статическое и динамическое давление вентилятора что это. Фото статическое и динамическое давление вентилятора что это

В первом случае, проектировщик выбирает вентилятор типоразмера 20 PLR. Во втором случае — более дешевый — 12 PLR. ( табл. 2 ). В обоих случаях вентиляторы обладают одинаковыми характеристиками по расходу воздуха и статическому давлению, однако значительно отличающимися значениями полного напора.

На графике рис. 2 показана работа системы в обоих вариантах:

статическое и динамическое давление вентилятора что это. Смотреть фото статическое и динамическое давление вентилятора что это. Смотреть картинку статическое и динамическое давление вентилятора что это. Картинка про статическое и динамическое давление вентилятора что это. Фото статическое и динамическое давление вентилятора что это

Вентилятор 20 PLR, 5 100 м 3 /ч при F s = 250 Па; 1 000 об/мин:

❏ Парабола 0-1-3 показывает характеристику вентиляционной системы с расходом воздуха 5 100 м 3 /ч, при статическом давлении: F s 1 =линия 1-1c = 250 Па.

❏ Парабола 0-1с характеризует динамическое давление на выходе из вентилятора: F VP 01 = линия 1b-1c = 25 Па.

Вентилятор 12 PLR, 5 100 м 3 /ч при F s = 250 Па; 3 200 об/мин:

❏ Парабола 0-2 характеризует вымышленную вентиляционную систему с расходом воздуха 5 100 м 3 /ч, при статическом давлении F s 2 = линия 2-2b = 250 Па.

❏ Парабола 0-2b-3c характеризует динамическое давление на выходе из вентилятора: F VP 02 =линия 2b-1b = 200 Па.

Вентилятор 12 PLR, 5 800 м 3 /ч при F s = 250 Па; 3,200 об/мин:

❏ Парабола 0-1-3 характеризует проектируемую вентиляционную систему с расходом воздуха 5 800 м 3 /ч, при статическом давлении: F s 3 = линия 3-3c = 175 Па.

❏ Парабола 0-2b-3c характеризует динамическое давление на выходе из вентилятора: F VP 03 =линия 3c-3b = 250 Па.

Нюанс первый

В табл 3 представлены вентиляторы из ассортимента производителя для воздухообмена 5 100 м 3 /ч при статическом напоре F s в 250 Па (Точка a на графике рис. 3 ).

статическое и динамическое давление вентилятора что это. Смотреть фото статическое и динамическое давление вентилятора что это. Смотреть картинку статическое и динамическое давление вентилятора что это. Картинка про статическое и динамическое давление вентилятора что это. Фото статическое и динамическое давление вентилятора что это

статическое и динамическое давление вентилятора что это. Смотреть фото статическое и динамическое давление вентилятора что это. Смотреть картинку статическое и динамическое давление вентилятора что это. Картинка про статическое и динамическое давление вентилятора что это. Фото статическое и динамическое давление вентилятора что это

График рис. 3 показывает кривую-характеристику системы для каждого вентилятора из таблицы, которая отличается от нашей проектируемой системы. При этом, парабола 0-а — условная кривая для проектируемой системы вентиляции с расходом воздуха 5 100 м 3 /ч при напоре в 250 Па.

Нюанс второй

Заключение

Примечание редакции

В этой статье высказано одно из мнений на тему о принципах подбора вентиляторов, которая актуальна и для украинских вентиляционщиков. Со своей стороны, обратившись к ним, мы услышали одно уточнение к изложенному выше: статический напор всё-таки используется для подбора вентиляторов — для систем с неким наддуваемым объёмом. Это могут быть системы с переменным расходом воздуха или системы раздачи воздуха через общее подпольное пространство, камеры статического давления и т.д. Так что метод подбора по статическому давлению также имеет право на жизнь. Именно поэтому у некоторых производителей даже можно задавать в расчётных программах принцип подбора: по полному или по статическому давлению. ■

Литература

1. Graham, J. Barrie, «The Importance of Fan Total Pressure», HPAC Engineering, September 1994:78.

2. Williams, P.E., Gerald J. Williams, P.E., «Air System Basics» HPAC Engineering, June 1997:78.

3. London, P.E., Dr. Alex, «Destroy the Beliefs. Understand Fan Total Pressure,» Engineered Systems, August 1997:118.

4. Houlihan, P.E., Tom, «Understanding Fan Static Pressure» Engineered Systems, March 1997.

5. Halko, George, Jeff S. Forman, «The Static Pressure Paradox,» HPAC Engineering, March 2002:57.

6. Forman, Jeff S., «Air Handlers: Sizing and Selection,» HPAC Engineering, January 2003:70.

7. 1983 ASHRAE Handbook — Systems and Equipment, Chapter 3, «Fans.»

8. 2001 ASHRAE Handbook — Fundamentals, Chapter 34.6, «Duct Design».

10. AMCA International, «Fan Testing,» supplement to ASHRAE Journal, November 2001:11.

Последнее обновление ( 26.06.2007 )

Будем благодарны, если воспользуетесь одной из этих кнопок:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *