специфичность действия ферментов чем обусловлена
Специфичность действия ферментов
Специфичность действия ферментов
Ферменты обладают более высокой специфичностью действия по сравнению с неорганическими катализаторами. Различают специфичность по отношению к типу химической реакции, катализируемой ферментом, и специфичность по отношению к субстрату. Эти два вида специфичности характерны для каждого фермента.
Специфичность по отношению к субстрату – это предпочтительность фермента к субстрату определенной структуры в сравнении с другими субстратами.
Различают 4 вида субстратной специфичности ферментов:
1. Абсолютная специфичность – способность фермента катализировать превращение только одного субстрата. Например – глюкокиназа фосфорилирует только глюкозу, аргиназа расщепляет только аргинин, уреаза – мочевину.
2. Относительная специфичность – фермент катализирует превращение нескольких субстратов, имеющих один тип связи. Например – липаза расщепляет сложноэфирную связь в триацилглицеролах.
3. Относительная групповая специфичность – фермент катализирует превращение нескольких субстратов, имеющих один тип связи, но требуется наличие определенных функциональных групп, входящих в состав субстратов. Например, все протеолитические ферменты расщепляют пептидную связь, но пепсин – образованную аминогруппами ароматических аминокислот, химотрипсин – образованную карбоксильными группами этих же аминокислот, трипсин – пептидную связь, образованную карбоксильной группой лизина, аргинина.
4. Стереохимическая специфичность – фермент катализирует превращение только одного стереоизомера. Например, бактериальная аспартатдекарбоксилаза катализирует декарбоксилирование только L-аспартата и не действует на D-аспарагиновую кислоту.
Специфичность по отношению к реакции
Каждый фермент катализирует одну реакцию или группу реакций одного типа. Часто одно и то же химическое соединение выступает как субстрат для разных ферментов, причем каждый из них катализирует специфическую для него реакцию, приводящую к образованию разных продуктов. Специфичность по типу реакции лежит в основе единой классификации ферментов.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
МЕСТО ДЕЙСТВИЯ — АФРИКА
МЕСТО ДЕЙСТВИЯ — АФРИКА Заглянем в 1924 год и выясним, что так внимательно рассматривает профессор Раймонд Дарт, стоя возле только что распакованных ящиков, которые привезли его ученики из известкового карьера Таунг, что в Бечуаналенде. В руках у профессора из
Микробы — продуценты ферментов
Микробы — продуценты ферментов Мы уже знаем, что ферменты — это биологические катализаторы, то есть вещества, способствующие осуществлению многих химических реакций, которые-происходят в живой клетке и необходимы для получения питательных веществ и построения ее
Механизм действия нервной системы
Механизм действия нервной системы Теперь, вероятно, следует присмотреться к механизму действия этой сложной структуры, начав с простого примера. Если направить в глаза яркий свет, зрачок человека сужается. Эта реакция зависит от целой серии событий, которые начинаются в
Глава 3. Ферменты. Механизм действия ферментов
Глава 3. Ферменты. Механизм действия ферментов Ферментами или энзимами называют специфические белки, входящие в состав всех клеток и тканей живых организмов и выполняющие роль биологических катализаторов.Общие свойства ферментов и неорганических катализаторов:1. Не
Структура молекулы ферментов
Структура молекулы ферментов По строению ферменты могут быть простыми и сложными белками. Фермент, являющийся сложным белком называют холоферментом. Белковая часть фермента называется апоферментом, небелковая часть – кофактором. Различают два типа кофакторов:1.
Механизм действия ферментов
Глава 4. Регуляция активности ферментов. Медицинская энзимология
Глава 4. Регуляция активности ферментов. Медицинская энзимология Способы регуляции активности ферментов:1. Изменение количества ферментов.2. Изменение каталитической эффективности фермента.3. Изменение условий протекания реакции.Регуляция количества
Применение ферментов в медицине
Применение ферментов в медицине Ферментные препараты широко используют в медицине. Ферменты в медицинской практике находят применение в качестве диагностических (энзимодиагностика) и терапевтических (энзимотерапия) средств. Кроме того, ферменты используют в качестве
Глава 13. Особенности действия гормонов
Глава 13. Особенности действия гормонов Гормоны гипоталамуса ЦНС оказывает регулирующее действие на эндокринную систему через гипоталамус. В клетках нейронов гипоталамуса синтезируются пептидные гормоны двух типов. Одни через систему гипоталамо-гипофизарных сосудов
Диапазон действия экологических факторов
Диапазон действия экологических факторов Все живые организмы способны воспринимать только определенный диапазон интенсивности воздействий любого экологического фактора, что определяется нормой реакции генотипа. Этот диапазон выработался в процессе
6.4. Возрастающая специфичность морфического резонанса в процессе морфогенеза
6.4. Возрастающая специфичность морфического резонанса в процессе морфогенеза Энергетический резонанс не является процессом типа «все или ничего»: система резонирует в ответ на диапазон частот, более или менее близких к ее естественной частоте, хотя максимальный отклик
Как наши действия рассказывают нам о мире
Как наши действия рассказывают нам о мире Для мозга между восприятием и действиями существует тесная связь. Наше тело служит нам, чтобы познавать окружающий мир. Мы взаимодействуем с окружающим миром посредством своего тела и смотрим, что из этого выйдет. Этой
Программа действия
Программа действия Выбор или создание программы действия непосредственно предшествует двигательному акту. В подавляющем большинстве случаев ни человек, ни животные не разрабатывают программу действия, а используют ту, которая уже применялась ранее при схожей
2.2. Общая характеристика пищеварительных ферментов
2.2. Общая характеристика пищеварительных ферментов Обращает на себя внимание принципиальное сходство, а иногда и поразительное совпадение ферментных систем, реализующих пищеварение у различных организмов. Поэтому те характеристики, которые будут представлены ниже,
Изменение активности некоторых Ферментов крови и печени крыс при экспериментальном голодании А. А. ПОКРОВСКИЙ, Г. К. ПЯТНИЦКАЯ (Москва)
Изменение активности некоторых Ферментов крови и печени крыс при экспериментальном голодании А. А. ПОКРОВСКИЙ, Г. К. ПЯТНИЦКАЯ (Москва) Проблема влияния голодания на разные показатели обменных процессов в организме животных и человека продолжает привлекать внимание
Влияние голодания на активность ферментов пентозофосфатного пути в печени и мозге крыс Ю. Л. ЗАХАРЬИН (Москва)
Влияние голодания на активность ферментов пентозофосфатного пути в печени и мозге крыс Ю. Л. ЗАХАРЬИН (Москва) В последние годы в клинике часто применяется с лечебными целями, в частности, для лечения психических заболеваний, полное голодание. Не вызывает сомнения, что
Механизм действия ферментов. Специфичность.
Надо помнить, что при осуществлении каталитической функции, сам катализатор не меняет своей химической природы. Это утверждение справедливо и для ферментов.
В любой каталитической реакции, осуществляемой ферментами, различают три стадии.
1. Образование фермент-субстратного комплекса. На этой стадии активный центр фермента, связывается с субстратами за счет слабых связей, обычно водородных. Особенностью этого этапа является полная обратимость, так как фермент-субстратный комплекс легко может распадаться на фермент и субстраты. На этой стадии возникает благоприятная ориентация молекул субстратов, что способствует ускорению их взаимодействия.
2. Эта стадия проходит с участием каталитического участка активного центра. Сущность этого этапа состоит в снижении энергии активации и ускорении реакции между субстратами. Результатом этого этапа является образование нового продукта.
3. На этой стадии происходит отделение готового продукта от активного центра с освобождением фермента, который вновь готов для осуществления своей функции.
В клетке ферменты, катализирующие многостадийные процессы часто объединяются в комплексы, называемые мультиферментными системами.Чаще всего эти комплексы встроены в биомембраны или связаны с органоидами клеток. Такое объединение ферментов делает их работу более эффективной.
В некоторых случаях белки-ферменты содержат небелковый компоненты, участвующие в катализе. Такие небелковые элементы называются коферментами.Большинство коферментов в своем составе содержатвитамины.
Важнейшим свойством ферментов является их высокая специфичность. В биохимии существует правило: одна реакция – один фермент.Различают два вида специфичности: специфичность действия и специфичность субстратная.
Субстратная специфичность – это способность фермента действовать только на определенные субстраты.
Субстратная специфичность бывает абсолютная и относительная.
При абсолютной специфичности фермент катализирует превращения только одного субстрата.
От чего зависит скорость ферментативных реакций?
В основе химических реакций лежит энергия активации. Если энергия активации высокая, то вещества не могут вступить в реакцию или скорость их взаимодействия будет низкой. Ферменты снижают порог энергии активации.
Скорость ферментативных реакция существенно зависит от многих факторов. К ним относятся концентрации веществ участников ферментативной реакции, а также условия среды, в которых протекает реакция.
Показано, что чем выше концентрация фермента, тем выше скорость реакции. Это объясняется тем, что концентрация фермента намного ниже концентрации субстрата.
При низких концентрациях субстрата скорость прохождения реакции прямо пропорциональна концентрации субстратов. Однако по мере возрастания концентрации субстрата она начинает замедляться и, наконец, достигнув максимальной скорости, перестает расти. Это связано с тем, что по мере увеличения концентрации субстрата количество свободных активных центов становится ограничивающим фактором.
Температура влияет на ферментативные реакции своеобразно. Дело в том, что ферменты – это белки, а это значит, что при высоких температурах (выше 80 градусов), они полностью теряют активность. Поэтому для ферментативных реакций существует понятие температурного оптимума. Таким оптимумом для большинства ферментов является температура тела 37 – 40 градусов. При низких температурах ферменты также неактивны.
Еще одним фактором, определяющим активность ферментов, является рН среды. Здесь для каждого фермента существует свой рН-оптимум. Например ферменты желудочного сока имеют рН-оптимум в кислой среде (рН – 1,0 до 2,0), а ферменты поджелудочной железы предпочитают щелочную среду (рН – 9,0 – 10,0).
Помимо указанных выше факторов на скорость ферментативных реакций оказывают различные вещества – ингибиторы и активаторы.
Ингибиторы –это, чаще всего, низкомолекулярные вещества, тормозящие скорость реакции. Ингибитор связывается с ферментом, мешая ему осуществлять свою функцию.
Активаторы – вещества, избирательно повышающие скорость ферментативных реакций.
Гормоны могут выступать и активаторами, и ингибиторами ферментов.
Скорость ферментативных реакций зависит и от ряда других факторов:
Ферменты микроорганизмов
Enzymes of microorganisms
Содержание:
Простые и сложные белки
Питание и дыхание всех микроорганизмов, в том числе бактерий, как физиолого-биохимические процессы осуществляются благодаря наличию в клетке различных ферментов. Микробные клетки, как и клетки высших организмов, оснащены достаточно активным ферментным аппаратом. Ферменты микроорганизмов обладают теми же свойствами и функциями, что и ферменты высших организмов.
На основании строения ферменты подразделяются на два больших класса: простые белки и сложные белки.
К простым белкам относятся гидролитические ферменты. Второй – более многочисленный класс, объединяет ферменты, управляющие окислением и катализирующие реакции переноса всевозможных химических групп.
Характерным признаком сложных белков является присутствие в строении небелковой группы (кофактора), определяющего активность фермента. Белковая часть сложного белка носит название – апофермент.
По отдельности белковая и небелковая часть таких соединений лишены ферментативной активности и приобретают ее только при соединении. Комплекс апофермента с кофактором носит название – «голофермент».
Классификация ферментов
Название фермента образуется от названия вещества, на которое он оказывает действие или вещества, связанного с природой катализируемой им химической реакции, путем прибавления окончания «- аза». Второй вариант является основой современной классификации и номенклатуры ферментов.
В настоящее время известно более двух тысяч ферментов. Они разделены на шесть классов, каждый из которых в свою очередь делится на соответствующие подклассы и подпод классы. Микроорганизмы, в том числе бактерии, располагают всем набором энзимов (ферментов). В микробной клетке одновременно могут находиться десятки различных ферментов.
Выделяют следующие классы ферментов:
Согласно современной классификации каждому ферменту присваивается шифр из четырех цифр. Первая обозначает класс, вторая – подкласс, третья – подподкласс, четвертая – порядковый номер фермента в данном подподклассе.
В частности карбамидамидогидролазе (уреазе) присвоен шифр КФ 3.5.1.5., поскольку она относится к третьему главному классу – гидролазы.
КоА синтетаза имеет шифр КФ 6.2.1.1, что обозначает, что данный фермент относится к шестому классу (лигазы, ко второму подклассу (образование С–связи) и к первому подподклассу (место образования связи в карбоксильной группе), последняя цифра – порядковый номер фермента.
Кроме того, ферменты в зависимости от реакции на условия среды делят на:
По связи с бактериальной клеткой различают:
Функции ферментов
В настоящее время установлено, что ферменты ускоряют химические реакции в организмах, путем понижения свободной энергии активации (количество энергии необходимое для перевода при данной температуре всех молекул одного моля вещества в активное состояние).
Все обменные процессы в клетках микроорганизмов идут с участием ферментов. Они являются биокатализаторами всех химических процессов бактериальной клетки. Данные соединения значительно ускоряют химические реакции. При этом они не расходуются и не входят в состав конечных продуктов.
Ферменты в клетках бактерий присутствуют в незначительных концентрациях, но все они обладают высокими числами оборачиваемости, которые указывают на возможность молекулы фермента катализировать следующие одна за другой реакции тысяч молекул субстрата в минуту.
Установлено, что каждый фермент катализирует только одну реакцию, что обусловливает его специфичность. Обменные процессы микробов протекают с помощью ферментов, набор которых генетически детерминирован и специфичен для каждого вида.
В то же время количество того или иного фермента, содержащееся в бактериальной клетке изменчиво. Приспосабливаемость бактерий к изменяющимся условиям среды обитания сопровождается согласованными изменениями процессов анаболизма и катаболизма. Поскольку регуляция обменных процессов осуществляется с помощью ферментов, то и регуляторные (амфиболические) ферменты воспринимают разнообразные метаболические сигналы и в соответствии с ними изменяют свою каталитическую активность. Выделяют три уровня регуляции ферментативных реакций с учетом потребности клеток в энергии:
Абсолютное количество определенного фермента определяется скоростью его синтеза (Ks) и скоростью распада (Kd) по схеме, приведенной на фото 2.
Количество фермента увеличивается за счет возрастания Ksили уменьшения Kd или уменьшается при соответствующем соотношении данных процессов.
Изменение каталитической активности фермента вызывается:
Изменение ферментативной активности микроорганизмов, в том числе бактерий, положено в основу фенотипической идентификации (фенотипические критерии систематики). Для использования спектра ферментов у прокариот используются дифференциально-диагностические питательные среды.
Оптимальные условия действия ферментов
Активность ферментов в большей степени зависит от температуры и величины рН.
Установлено, что оптимальная температура действия ферментов: + 40°C–+ 50°C. Для некоторых +58°C–+60°C. При температуре + 100°Cферменты разрушаются.
Максимальная активность ферментов бактерий, растущих в кислой среде (ацидофилы), наблюдается при рН 4,8. В нейтральной или близкой к нейтральной – при рН 7,2. Однако у бактерий способных расти в широком диапазоне рН, данный показатель практически не влияет на активность ферментов.
Определение и особенности ферментов: сущность, функции, механизмы действия, использования на практике
Определение и особенности ферментов
Сущность и функции ферментов
Что такое ферменты?
Ферменты — это молекулы белка, синтезируемые живыми клетками, которые являются также катализаторами химических реакций, протекающих в организме.
Исходя из определения фермента, можно утверждать, что в любом организме регулярно продуцируется различные ферменты — их количество может достигать несколько сотен. Ферменты играют огромную роль в обеспечении жизнедеятельности организма. В частности, ускоряют химические реакции. В этом плане ферменты выступают биологическими катализаторами, ускоряя и упрощая процесс протекания химической реакции.
Но ферменты — это не то же самое, что химические катализаторы, так как не меняют направление химической реакции и не расходуются в ходе ее протекания.
Так что такое фермент?
Ферменты выступают в качестве биокатализаторов, то есть веществ, облегчающих протекание химической реакции и провоцирующих увеличение ее скорости.
Одна из функций ферментов — поддержание жизнеспособности организмов.
Яркий пример работы ферментов — сладковатый вкус во рту, который возникает при пережевывании продуктов, содержащих крахмал. Этот вкус появляется благодаря ферменту амилазе — этот фермент есть в слюне и помогает расщеплять крахмал. Сам по себе крахмал не имеет вкуса, однако продукты его распада — декстрина, глюкоза и мальтоза — дают сладковатый привкус.
У всех ферментов наблюдается глобулярная структура, но кроме того — еще и третичная, и четвертичная.
Также сложные ферменты могут иметь в составе белковую и небелковую части. Белковая часть — это апофермент, добавочная часть — кофермент. Коферментам могут выступать витамины групп Е, К и В.
Механизмы действия ферментов
У всех ферментов одни и те же принципы и механизмы действия. Взаимодействие с субстратом у фермента происходит посредством отдельного активного центра, а не всей молекулы. Результатом такого взаимодействия является фермент или субстратный комплекс. По завершении реакции происходит достаточно быстрый распад этого комплекса. Фермент, это то, что важно, остается неизменным, поэтому он может вступать во взаимодействие с новой молекулой.
Ферменты участвуют в образовании молекулы пептидной связи. Это происходит в результате взаимодействия между собой двух молекул в активном центре фермента. Далее новое вещество, называемый дипептидом, уходит из активного центра фермента, так как структурно уже ему не соответствует.
Высокая степень специфичности действия — одна из особенностей фермента. Отдельный фермент отвечает за ускорение одного типа реакции.
Специфичность ферментов обусловлена их особенной формой — такое предположение высказал в 1890 году ученый Э. Г. Фишер. Эта форма максимально точно подбирается к форме молекулы субстрата, из-за чего сама гипотеза получила название «ключ и замок».
Факторы, влияющие на активность ферментов
Есть несколько факторов, влияющих на активность ферментов:
Все это, соответственно, приводит к увеличению шансов, что между молекулами пройдет реакция. Температура, повышающая активность фермента, называется оптимальной.
При выходе температуры реакции за границы оптимального диапазона снижается скорость реакции и происходит процесс денатурации белка. Скорость реакции снижается при снижении температуры и причина этого — в инактивации фермента.
Чтобы продукты хранились дольше, используется способ быстрого замораживания. При таком замораживании рост и развитие микроорганизмов прекращается, а ферменты внутри микроорганизмов — инактивируются. Это предотвращает разложение продуктов питания.
Есть ферменты, способные работать в кислой среде (пепсин). Этот фермент находится в сильнокислой среде желудка.
Согласно устоявшейся классификации, все ферменты делятся на 6 групп и имеют довольно сложные названия. Для облегчения их использования ферменты стали называть по имени субстрата, добавляя к названию окончание —аза.
К примеру, есть субстрат лактоза. Фермент его будет называться лактаза.
Фермент способен к преобразованию вещества. В случае субстрата сахарозы ферментом, который его расщепляет, является сахараза. По этой же логике ферменты, расщепляющие протеины, называются протеиназы.
Использование ферментов в практических целях
Ферменты нашли практическое применение почти во всех областях и сферах человеческой деятельности. Даже вне живых клеток они способны проявлять свои уникальные свойства. В медицине активно используют такие ферменты как амилаза, липаза, протеаза — они включаются в состав комбинированных препаратов (фестала, панзинорма), лечащих заболевания желудочно-кишечного тракта. Ферменты также применяют для устранения тромбов в кровеносных сосудах и в процессе лечения гнойных ран.
В случае лечения онкологических заболеваний повсеместно используется энзимотерапия и ферментотерапия.
В пищевой промышленности используют амилазу, которая помогает расщеплять крахмал. В этой же области используют протеиназу, которая участвует в процессе расщепления белков, и липазу, которая расщепляет жиры.
Кажется, что ферменты обладают исключительно полезными свойствами. Однако они могут приносить и вред — когда их слишком много или мало. Пример — энзимопатология или взаимосвязь между болезнью и недостаточным синтезом какого-либо фермента.
Причина фенилкетонурии — утрата клетками печени способности синтезировать фермент, который катализирует превращение фенилаланина в тирозин.
Это краткий ответ на вопрос, что такое ферменты в биологии.
Ферменты микроорганизмов
Enzymes of microorganisms
Содержание:
Простые и сложные белки
Питание и дыхание всех микроорганизмов, в том числе бактерий, как физиолого-биохимические процессы осуществляются благодаря наличию в клетке различных ферментов. Микробные клетки, как и клетки высших организмов, оснащены достаточно активным ферментным аппаратом. Ферменты микроорганизмов обладают теми же свойствами и функциями, что и ферменты высших организмов.
На основании строения ферменты подразделяются на два больших класса: простые белки и сложные белки.
К простым белкам относятся гидролитические ферменты. Второй – более многочисленный класс, объединяет ферменты, управляющие окислением и катализирующие реакции переноса всевозможных химических групп.
Характерным признаком сложных белков является присутствие в строении небелковой группы (кофактора), определяющего активность фермента. Белковая часть сложного белка носит название – апофермент.
По отдельности белковая и небелковая часть таких соединений лишены ферментативной активности и приобретают ее только при соединении. Комплекс апофермента с кофактором носит название – «голофермент».
Классификация ферментов
Название фермента образуется от названия вещества, на которое он оказывает действие или вещества, связанного с природой катализируемой им химической реакции, путем прибавления окончания «- аза». Второй вариант является основой современной классификации и номенклатуры ферментов.
В настоящее время известно более двух тысяч ферментов. Они разделены на шесть классов, каждый из которых в свою очередь делится на соответствующие подклассы и подпод классы. Микроорганизмы, в том числе бактерии, располагают всем набором энзимов (ферментов). В микробной клетке одновременно могут находиться десятки различных ферментов.
Выделяют следующие классы ферментов:
Согласно современной классификации каждому ферменту присваивается шифр из четырех цифр. Первая обозначает класс, вторая – подкласс, третья – подподкласс, четвертая – порядковый номер фермента в данном подподклассе.
В частности карбамидамидогидролазе (уреазе) присвоен шифр КФ 3.5.1.5., поскольку она относится к третьему главному классу – гидролазы.
КоА синтетаза имеет шифр КФ 6.2.1.1, что обозначает, что данный фермент относится к шестому классу (лигазы, ко второму подклассу (образование С–связи) и к первому подподклассу (место образования связи в карбоксильной группе), последняя цифра – порядковый номер фермента.
Кроме того, ферменты в зависимости от реакции на условия среды делят на:
По связи с бактериальной клеткой различают:
Функции ферментов
В настоящее время установлено, что ферменты ускоряют химические реакции в организмах, путем понижения свободной энергии активации (количество энергии необходимое для перевода при данной температуре всех молекул одного моля вещества в активное состояние).
Все обменные процессы в клетках микроорганизмов идут с участием ферментов. Они являются биокатализаторами всех химических процессов бактериальной клетки. Данные соединения значительно ускоряют химические реакции. При этом они не расходуются и не входят в состав конечных продуктов.
Ферменты в клетках бактерий присутствуют в незначительных концентрациях, но все они обладают высокими числами оборачиваемости, которые указывают на возможность молекулы фермента катализировать следующие одна за другой реакции тысяч молекул субстрата в минуту.
Установлено, что каждый фермент катализирует только одну реакцию, что обусловливает его специфичность. Обменные процессы микробов протекают с помощью ферментов, набор которых генетически детерминирован и специфичен для каждого вида.
В то же время количество того или иного фермента, содержащееся в бактериальной клетке изменчиво. Приспосабливаемость бактерий к изменяющимся условиям среды обитания сопровождается согласованными изменениями процессов анаболизма и катаболизма. Поскольку регуляция обменных процессов осуществляется с помощью ферментов, то и регуляторные (амфиболические) ферменты воспринимают разнообразные метаболические сигналы и в соответствии с ними изменяют свою каталитическую активность. Выделяют три уровня регуляции ферментативных реакций с учетом потребности клеток в энергии:
Абсолютное количество определенного фермента определяется скоростью его синтеза (Ks) и скоростью распада (Kd) по схеме, приведенной на фото 2.
Количество фермента увеличивается за счет возрастания Ksили уменьшения Kd или уменьшается при соответствующем соотношении данных процессов.
Изменение каталитической активности фермента вызывается:
Изменение ферментативной активности микроорганизмов, в том числе бактерий, положено в основу фенотипической идентификации (фенотипические критерии систематики). Для использования спектра ферментов у прокариот используются дифференциально-диагностические питательные среды.
Оптимальные условия действия ферментов
Активность ферментов в большей степени зависит от температуры и величины рН.
Установлено, что оптимальная температура действия ферментов: + 40°C–+ 50°C. Для некоторых +58°C–+60°C. При температуре + 100°Cферменты разрушаются.
Максимальная активность ферментов бактерий, растущих в кислой среде (ацидофилы), наблюдается при рН 4,8. В нейтральной или близкой к нейтральной – при рН 7,2. Однако у бактерий способных расти в широком диапазоне рН, данный показатель практически не влияет на активность ферментов.