сокет tr4 что это
sTRX4 — это надолго
Выход долгожданных Threadripper несколько омрачила новость о том, что смогут работать с новыми сокетами sTRX4, так что вместе с процессором придется купить еще и материнскую плату. AMD уверяет, что это вложения себя оправдает: sTRX4 — это перспективное обновление, которое полностью раскроет потенциал новых чипов и получит долгосрочную поддержку.
У sTRX4 столько же контактов, как у sTR4, но они расположены иначе, и из-за этого новый процессор на старую материнскую плату поставить не удастся. По словам производиеля, sTRX4 принесет прирост производительности и пропускной способности и сделает возможной установку 64-ядерного процессора на пользовательскую материнскую плату.
Несмотря на обещанные преимущества, некоторые пользователи выразили беспокойство, что регулярное обновление сокетов без обратной совместимости станет ежегодной традицией. AMD поспешила их успокоить и уверила, что sTRX4 останется с нами надолго.
«Смена сокета открывает простор для развития в будущем и масштабирования Threadripper, как в краткосрочной, так и долгосрочной перспективе».
Это заявление дает надежду, что в следующие несколько лет AMD не откажется от sTRX4. Это будет логичным шагом с ее стороны, который привлечет больше покупателей: они охотнее купят новую материнскую плату, зная, что могут рассчитывать на регулярные обновления в будущем.
Socket TR4
Socket TR4 (или Socket SP3r2) – разъем для настольных высокопроизводительных процессоров AMD Ryzen Threadripper первого и второго поколений.
Сокет вышел в августе 2017 года и выполнен в формате LGA, то есть, в разъеме расположены пружинные контакты, к которым прижимается устанавливаемый процессор. Всего таких контактов в разъеме 4094.
По сравнению с большинством других разъемов, сокет TR4 имеет очень большие физические размеры. По структуре он близок к разъёму AMD Socket SP3 для серверов, однако несовместим с ним.
В Socket TR4 устанавливаются процессоры архитектур Zen (ядро Zeppelin) и Zen+ (ядро Colfax), различия между которыми заключаются, главным образом, в техпроцессе изготовления и диапазоне рабочих частот.
Процессоры имеют теплопакет 180 W или 250 W, содержат от 8 до 32 ядер с поддержкой многопоточности, трехуровневую кэш-память (L3 от 16 до 64 MB), четырехканальный контроллер памяти DDR4 (с поддержкой ECC), контроллер PCIe 3.0 (64 линии), а также несколько каналов USB и SATA.
Процессоры архитектуры Zen для Socket TR4 вышли в августе 2017 года, изготовлялись по техпроцессу 14 nm и поддерживают память DDR4 до 2666 MHz. Это процессоры:
Процессоры архитектуры Zen+ для Socket TR4 появились в 2018 году, изготовлялись по техпроцессу 12 nm, поддерживают память DDR4 до 2933 MHz. Это процессоры:
В качестве системной логики в материнских платах с Socket TR4 используется чипсет AMD X399, который в паре с процессором Ryzen Threadripper обеспечивает впечатляющие возможности.
В частности, в процессорах AMD Ryzen Threadripper есть 64 линии PCIe 3.0. Из них 4 линии используются для связи с чипсетом. Остальные 60 линий предназначены для формирования на материнской плате разъемов PCIe, M.2 и др. При этом, 12 из них могут использоваться для конфигурирования в качестве портов SATA (то есть, либо то, либо другое). Таким образом, непосредственно на базе линий PCIe процессора могут создаваться разъемы M.2 и SATA. В процессорах Threadripper есть также контроллер USB 3.0. на 8 портов.
Непосредственно чипсет AMD X399 обеспечивает еще восемь линий PCIe 2.0, восемь портов SATA 3, два порта USB 3.1, шесть портов USB 3.0 и шесть портов USB 2.0. Чипсет поддерживает также возможность создания одного разъема SATA Express.
Кроме того, чипсет AMD X399 поддерживает технологию AMD StoreMI. Она позволяет использовать SSD в качестве кэша для более медленных жестких дисков (HDD). В результате SSD как бы «исчезает» из системы как носитель, а HDD становится больше на ёмкость SSD. При этом, скорость работы жесткого диска значительно возростает. Для ускорения работы запоминающих устройств эта технология может также задействовать часть оперативной памяти.
Чем серверные процессоры AMD EPYC отличаются от Ryzen Threadripper
Содержание
Содержание
Революционная архитектура ядер Zen стала хорошим основанием не только для настольного сегмента, но и для высокопроизводительных систем. Многоядерные процессоры Threadripper и EPYC принесли успех компании в сегменте HEDT и корпоративных решений. Несмотря на то, что они предназначены для совершенно разных задач и платформ, пользователи их часто путают и не понимают, почему одинаковые по стоимости модели так сильно различаются по характеристикам, или, наоборот, процессоры имеют схожие данные, но один из них стоит в два раза больше.
Если раньше сегмент Desktop включал не только простые комплектующие для рядовых задач, но и процессоры из линейки Extreme, то после появления термина HEDT, рынок мощных железок стал сегментироваться четче. Теперь каждый знает, что HEDT — это мощно, горячо и дорого. Однако появилась и другая проблема: некоторые пользователи стали думать, что HEDT и сервер – это практически одно и то же. А после того, как AMD поделила все на Threadripper и EPYC, вопросов на эту тему стало еще больше: как, почему и чем отличается.
Круче Desktop, но еще не Server
HEDT — High End Desktop. Термин стал нарицательным для всех высокоэффективных систем на экспериментальных платформах и сокетах. Работа над такими комплектующими развязывает руки производителям. Инженерам дозволено делать почти все, что хочется: отсыпать два десятка ядер, добавить четыре канала для оперативной памяти, снять ограничение на разгон процессоров и развести на плате штук сто интерфейсных линий PCIe, когда в обычном компьютере их не больше тридцати. В общем, эту платформу можно назвать системой исполнения желаний: хотите двадцать ядер — получите; нужна восьмиканальная память — будет исполнено; хотите, чтобы три видеокарты работали полноценно в x16 каждая — уже готово, пользуйтесь.
Многие считают, что устройства уровня HEDT граничат с серверным сегментом и будут отчасти правы. Вместе с наращиванием ядер и мощности производители размыли границу между экстремальным и серверным железом — особенно в линейке устройств AMD: Threadripper и EPYC — такие разные близнецы.
Что такое Threadripper
Нужно понимать, что Threadripper — это не просто другой процессор: здесь отличаются материнская плата, сокет и вообще система работает иначе. А еще модели этой серии не только мощнее, но и заметно больше своих настольных братьев, поэтому все остальное в этой платформе тоже подверглось гигантизму и сделано по новым стандартам.
Технические характеристики
За все время компания сменила три поколения процессоров: Zen, Zen+ и Zen 2. И, хотя вместе с настольными версиями менялись и HEDT, модельный ряд мощных процессоров будет поскромнее.
Компания рассчитывает, что Threadripper подойдет энтузиастам, создателям и тем, кому нужна самая производительная настольная система в мире. Например, рекордные показатели скорости рендеринга в популярном бенчмарке Cinebench принадлежат линейке Threadripper:
Системы сделаны с огромным запасом мощности, так что даже прошлогодние модели 3990X, 3970X и 3960X будут все еще мощнее, чем самый новый и производительный Ryzen 9 5950X. Более того, даже устаревающий представитель Zen Threadripper 2970X пока легко соревнуется с актуальными моделями за первое место в рабочих задачах.
Материнская плата
Чтобы примкнуть к числу счастливых обладателей HEDT-сегмента, придется подумать о новой материнской плате. Владельцам первых Threadripper в этом смысле повезло: первое и второе поколение использует одну платформу, поэтому переезд на современную и производительную архитектуру Zen+ оказался не таким хлопотным. Под капотом оставили систему на базе чипсета X399 с процессорным гнездом типоразмера TR4.
Достаточно обновить биос и вставить новый камень. Хотя тут уместнее сказать «булыжник». Тут работает обратная совместимость — процессоры сильно похожи в техническом плане и отличаются лишь максимальными частотами ядер и памяти. База устройств, количество линий PCI Express и четырехканальный контроллер памяти остались без изменений.
Зато с выходом Zen 2 все-таки пришлось менять и сокет, и чипсет, чтобы включить поддержку новых аппаратных функций, в том числе PCIe 4.0. Под реконструкцию попали и цепи питания процессоров: чтобы совсем экстремальные 64-ядерные процессоры не устроили фейерверк посреди рабочего дня. Теперь это обновленный разъем TRX4 и набор логики TR40.
Кроме того, что в новой линейке появились процессоры с удвоенным количеством ядер и потоков, поднялась и максимальная тактовая частота. К этому добавился расширенный потенциал для разгона ОЗУ: если платы TR4 официально «знали» только 3600 МГц, то новые TRX4 позволяют работать с частотами под 5 ГГц. И все это, конечно, в четырехканальном режиме. А начиная с Threadripper PRO — в восьмиканальном. За это спасибо EPYC, но об этом чуть позже.
Система охлаждения
Фантастические габариты процессоров Threadripper повлияли на совместимость с системами охлаждения. Теперь не получится просто купить кулер с пометкой 1151/АМ4 Compatible — охлаждение для TR крепится с помощью новой рамки, поэтому список поддерживаемых радиаторов ограничен. Но это оправдано рассеивающей мощностью таких систем: минимальное тепловыделение процессоров начинается со 180 Ватт и ограничено нервами владельца, а потому даже при большом желании простенький кулер в такую сборку не подойдет. Впрочем, эти системы лучше использовать с жидкостным контуром — так тише и прохладнее. А самое главное, не мешает установке восьми модулей оперативной памяти:
Кроме системы крепления, оптимизированные кулеры для процессоров Threadripper имеют и другие конструктивные особенности. Специфическая форма и размер процессоров плохо сочетаются со стандартным охлаждением для настольных систем. Чтобы отвести как можно больше тепла с крышки процессора, теплосъемная плоскость кулера должна накрывать как можно большую ее площадь, поэтому качественные СО имеют широкую подошву.
В остальном, Threadripper — это просто очень мощное настольное железо, которому разрешили вздохнуть полной грудью и показать всю прыть кремния. Эти компьютеры так же разгоняются, настраиваются, имеют знакомый пользователям BIOS и работают с обычными операционными системами.
«Эпичные» процессоры
Мы часто слышим слово «сервер», но не понимаем до конца, что, зачем и почему. Для кого-то это IP-адрес в многопользовательских онлайн-играх. Кто-то работает в большом офисе, где «на сервере» крутится бухгалтерия 1С. В любом случае ни один из этих примеров не объясняет, почему сервер — это сервер, и зачем ему нужно специализированное железо, а не обычный Core i5, Ryzen 7 или Threadripper.
Технические характеристики
На первый взгляд, EPYC это те же Threadripper. Как и HEDT-процессоры, «эпики» работают на ядрах архитектуры Zen и очень похожи основными характеристиками. Это главная причина, почему пользователи задаются вопросом — в чем различие этих процессоров, и зачем брать дорогой серверный EPYC, если есть куда более мощный TR, да еще и в два раза дешевле. А причины кроются в деталях.
Если сравнить сухие цифры, то, от модели к модели, «трэдриппер» и «эпик» имеют одинаковое количество ядер. Однако эти процессоры отличаются несколькими существенными нюансами. Например, у «эпиков» есть восемь каналов ОЗУ, а также в два раза больше линий PCI Express. Более того, серверные процессоры имеют низкие тактовые частоты и заметно сниженный коэффициент тепловыделения.
Threadripper — народу, а EPYC — в бизнес
Преимущества и особенности работы серверных процессоров можно раскрыть на сложном и непонятном обычному пользователю языке, а можно просто взять и перечислить основные моменты по пунктам. Так быстрее и понятнее.
Сервер — это отказоустойчивая платформа, на которой сутками и без остановки выполняются различные задачи. Это может быть как игровой сервер, так и что-то более серьезное. И от размера этой «серьезности» зависит то, какое железо администратор выделит под те или иные задачи.
Например, сервер может делиться с пользователями мощностью в виде дроплетов — виртуальных компьютеров для мелких проектов или небольших сайтов. Так работает виртуализация — мощный сервер с большим количеством ядер и приличным объемом памяти делится на несколько виртуальных систем, которые работают независимо и изолированно.
Конечно, для виртуализации можно использовать и обычный многоядерный процессор. Дело в том, что рабочие задачи в обычных компьютерах и серверах отличаются. Если для Threadripper или Ryzen сильная нагрузка — это час 3D-моделирования (детский лепет), то для сервера это выльется в круглосуточную загрузку всего объема памяти и всех ядер одновременно (будет жарко). Отсюда и разница в максимальных тактовых частотах, и TDP — оптимизированный под серверные задачи процессор меньше греется и дольше работает без потери стабильности.
Процессоры EPYC — это самостоятельные SoC, поэтому им не нужен чипсет для общения с навесным оборудованием. Это значит, что процессор контролирует все самостоятельно: PCIe, накопители, оперативную память, сетевое оборудование, USB-устройства. Threadripper же, несмотря на свою похожесть с «эпиками», не имеет такой структуры, а потому требует наличия контроллера на материнской плате. Это снижает скорость работы и отзывчивость системы в предельных нагрузках, а также ограничивает возможности, которыми должен обладать настоящий сервер.
Серверные «эпики» имеют уникальное строение и специальную компоновку. Например, TR понимают только 4 канала оперативной памяти, при этом прямой доступ к двум парам памяти есть только у двух блоков с ядрами из имеющихся четырех. То же самое и с обращением к линиям PCIe:
Серверная платформа работает с буферизованной оперативной памятью. Это значит, что на планках установлена дополнительная микросхема, которая помогает процессору управлять большими объемами памяти и масштабирует объемы ОЗУ в несколько раз. Таким образом, платформа EPYC поддерживает до 2 ТБ ОЗУ в одном риге. Threadripper использует обычные планки UDIMM, поэтому максимальный объем памяти физически не может быть больше 256 ГБ — это ограничено типом памяти.
Мощный 64-ядерный 128-поточный EPYC умеет работать в паре с еще одним 64-ядерным 128-поточным EPYC. А это уже 128 ядер и 256 потоков, а также 16 каналов памяти и 256 линий PCIe 4.0 в пределах одной материнской платы. Нет, Threadripper так не могут и не смогут — таким нужно родиться. Чтобы процессоры работали в паре и синхронно, AMD добавила специальный контроллер Fabric — шину, по которой общаются процессоры из разных сокетов.
Серверные корпуса также отличаются от привычных компьютерных. Специфика применения этих комплектующих такова, что чем больше в одном квадратном метре уместится рабочих платформ, тем выгоднее содержать и поддерживать систему. Поэтому для оптимизации пространства применяют специфический форм-фактор:
Разумеется, в этом корпусе не получится разместить стандартное охлаждение для процессоров Threadripper, а низкопрофильные радиаторы из настольного сегмента будут просто бессильны против таких монстров. Поэтому здесь используются полупассивные системы, радиаторы которых расположены таким образом, чтобы сквозная система продувки корпуса заодно проталкивала воздух и сквозь ребра процессорного радиатора. Этот пункт так же касается темы частот и TDP: система охлаждения с трудом тянет на себе круглосуточный нагрев мощностью 150-200 Ватт, но 300 Ватт и больше уже не потянут ни радиатор, ни вентиляторы. Поэтому EPYC, а не Threadripper.
Безопасность превыше всего. А «эпики» считаются эталоном безопасности в серверном сегменте. По крайней мере, из того, что сегодня актуально. Вообще, серверное железо сильно отличается от настольного сегмента, если речь заходит о закрытии каких-либо уязвимостей и брешей в безопасности. Так, если Threadripper или любой Ryzen имеют базовые софтовые защиты, то EPYC защищается как программно, так и аппаратно — для этого есть специальные чипы на материнской плате и в самом процессоре.
В процессор встроен специальный контроллер, который берет первоначальную загрузку и инициализацию системы на себя, что предотвращает взлом на низком уровне. И это только видимая часть системы безопасности. Такого нет ни у Threadripper, ни у Ryzen.
Перечисленные выше преимущества отражаются не только в плюсах серверного железа, но и в минусах. И самый главный — это цена. Похожие по характеристикам процессоры могут сильно различаться в стоимости. Возьмем тройку идентичных по характеристикам процессоров из линейки Threadripper и EPYC и посмотрим на их круглые долларовые ценники:
Как говорится, без комментариев — наблюдаем классический пример формирования цены для корпоративного сегмента. Да, серверные «эпики» круче настольных процессоров в своей стихии, но, чтобы стоить почти в два раза больше, чем близкие по технической составляющей Threadripper, это надо постараться! Вот компании и стараются, выдвигая невероятные цены на электронику такого класса. И пусть в ней не так много уникальных особенностей — деваться некуда, серверу нужно серверное железо.
Так чем же они отличаются
Сказано много, а точнее, достаточно, чтобы разобраться в нюансах работы этих похожих процессоров. Да, они практически не отличаются внешне, и именно поэтому многие причисляют их к одному сегменту. На деле оказывается, что это совершенно разные платформы, причем как процессоры, так и материнские платы здесь не имеют обратной совместимости. Хотя попытки запустить EPYC на гражданской материнке от Threadripper были, но затея остановилась на первоначальной инициализации системы. Это не удивляет — у серверных «эпиков» чипсет находится на одной подложке с ядрами, а в HEDT его оставили на материнской плате, как и у всех настольных систем.
Сравнивать работу, производительность и стоимость TR и EPYC будет моветоном: у каждой платформы свои задачи. «Эпики» рассчитаны на постоянную работу всех ядер и экстремальное использование всей шины памяти для того, чтобы поддерживать виртуализацию и любые другие распределенные вычисления — сервер эффективно делится потоками и ресурсами, при этом может работать бесконечно долго без снижения рабочих частот и сбоев из-за перегрева или проблем с безопасностью.
А мощные, но не «эпичные» Threadripper созданы для платформ, где основная задача — это сложные расчеты здесь и сейчас: проектирование, создание контента, визуализация, отладка программного кода. Несмотря на то, что здесь тоже бывает 32 и даже 64 ядра, таким процессорам тяжело дается продолжительная 100%-ная нагрузка из-за высоких тактовых частот и повышенного TDP. Зато они мощнее своих «эпичных» родственников, а поэтому часто используются в центрах, задача которых предоставить пользователям не просто много ядер, а много мощных ядер. Это нужно для различных вычислений — например, для симуляции изменений климата или сложных научных вычислений.
Socket sTRX4
Socket sTRX4 (или Socket SP3r3) – разъем для настольных высокопроизводительных процессоров AMD Ryzen Threadripper архитектуры Zen 2 (третьего поколения Threadripper, кодовое название Castle Peak).
Сокет пришел на смену разъему TR4, похож с ним по размерам и внешне, имеет такое-же количество контактов, однако, они не совместимы. То есть, процессоры для сокета TR4 не могут устанавливаться в Socket sTRX4 и наоборот.
Процессоры Ryzen Threadripper архитектуры Zen 2 предназначены для высокопроизводительных настольных компьютеров и рабочих станций. Это процессоры:
Кроме чиплетов с вычислительными ядрами, каждый процессор содержит кристалл, изготовленный по техпроцессу 12 nm. Он включает контроллер оперативной памяти (четыре канала DDR4-3200), логическую часть шины Infinity Fabric (обеспечивает взаимодействие всех частей процессора между собой), контроллер PCIe и другие элементы ввода-вывода.
В процессорах Ryzen Threadripper архитектуры Zen 2 есть 64 линии PCIe 4.0. Из них 8 линий используются для связи с чипсетом метринской платы, 48 линий могут быть выведены на материнскую плату в виде разъемов PCIe, остальные предназначены для формирования на материнской плате M.2 и SATA. Есть также контроллер USB 3.2 gen.2 на 4 порта.
В качестве системной логики в материнских платах с Socket sTRX4 используется чипсет AMD TRX40, который обеспечивает еще 16 линий PCIe 4.0, которые можно использовать для подключения устройств, а также порты USB 3.2, USB 2.0, SATA3/NVMe.
Чипсет AMD TRX40 также поддерживает NVMe RAID и технологию AMD StoreMI. Последняя позволяет использовать SSD в качестве кэша для более медленных жестких дисков (HDD). В результате SSD как бы «исчезает» из системы как носитель, а HDD становится больше на ёмкость SSD. При этом, скорость работы жесткого диска значительно возростает. Для ускорения работы запоминающих устройств эта технология может также задействовать часть оперативной памяти.