след матрицы это что

Линейная алгебра для исследователей данных

«Наша [Ирвинга Капланского и Пола Халмоша] общая философия в отношении линейной алгебры такова: мы думаем в безбазисных терминах, пишем в безбазисных терминах, но когда доходит до серьезного дела, мы запираемся в офисе и вовсю считаем с помощью матриц».

Для многих начинающих исследователей данных линейная алгебра становится камнем преткновения на пути к достижению мастерства в выбранной ими профессии.

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это чтоkdnuggets

В этой статье я попытался собрать основы линейной алгебры, необходимые в повседневной работе специалистам по машинному обучению и анализу данных.

Произведения векторов

Для двух векторов x, y ∈ ℝⁿ их скалярным или внутренним произведением xy

называется следующее вещественное число:

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Как можно видеть, скалярное произведение является особым частным случаем произведения матриц. Также заметим, что всегда справедливо тождество

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Для двух векторов x ∈ ℝᵐ, y ∈ ℝⁿ (не обязательно одной размерности) также можно определить внешнее произведение xyᵀ ∈ ℝᵐˣⁿ. Это матрица, значения элементов которой определяются следующим образом: (xy)ᵢⱼ = xy, то есть

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Следом квадратной матрицы A ∈ ℝⁿˣⁿ, обозначаемым tr(A) (или просто trA), называют сумму элементов на ее главной диагонали:

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

След обладает следующими свойствами:

Для любой матрицы A ∈ ℝⁿˣⁿ: trA = trAᵀ.

Для любой матрицы A ∈ ℝⁿˣⁿ и любого числа t ∈ ℝ: tr(tA) = t trA.

Для любых матриц A,B, таких, что их произведение AB является квадратной матрицей: trAB = trBA.

Для любых матриц A,B,C, таких, что их произведение ABC является квадратной матрицей: trABC = trBCA = trCAB (и так далее — данное свойство справедливо для любого числа матриц).

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это чтоTimoElliott

Нормы

Норму ∥x∥ вектора x можно неформально определить как меру «длины» вектора. Например, часто используется евклидова норма, или норма l₂:

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Более формальное определение таково: нормой называется любая функция f : ℝn → ℝ, удовлетворяющая четырем условиям:

Для всех векторов x ∈ ℝⁿ: f(x) ≥ 0 (неотрицательность).

f(x) = 0 тогда и только тогда, когда x = 0 (положительная определенность).

Для любых вектора x ∈ ℝⁿ и числа t ∈ ℝ: f(tx) = |t|f(x) (однородность).

Для любых векторов x, y ∈ ℝⁿ: f(x + y) ≤ f(x) + f(y) (неравенство треугольника)

Другими примерами норм являются норма l

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Все три представленные выше нормы являются примерами норм семейства lp, параметризуемых вещественным числом p ≥ 1 и определяемых как

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Нормы также могут быть определены для матриц, например норма Фробениуса:

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Линейная независимость и ранг

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

линейно зависимы, так как x₃ = −2xₙ + x₂.

Столбцовым рангом матрицы A ∈ ℝᵐˣⁿ называют число элементов в максимальном подмножестве ее столбцов, являющемся линейно независимым. Упрощая, говорят, что столбцовый ранг — это число линейно независимых столбцов A. Аналогично строчным рангом матрицы является число ее строк, составляющих максимальное линейно независимое множество.

Оказывается (здесь мы не будем это доказывать), что для любой матрицы A ∈ ℝᵐˣⁿ столбцовый ранг равен строчному, поэтому оба этих числа называют просто рангом A и обозначают rank(A) или rk(A); встречаются также обозначения rang(A), rg(A) и просто r(A). Вот некоторые основные свойства ранга:

Для любой матрицы A ∈ ℝᵐˣⁿ: rank(A) ≤ min(m,n). Если rank(A) = min(m,n), то A называют матрицей полного ранга.

Для любой матрицы A ∈ ℝᵐˣⁿ: rank(A) = rank(Aᵀ).

Для любых матриц A ∈ ℝᵐˣⁿ, Bn×p: rank(AB) ≤ min(rank(A),rank(B)).

Ортогональные матрицы

Два вектора x, yⁿ называются ортогональными, если xy = 0. Вектор xⁿ называется нормированным, если ||x||₂ = 1. Квадратная м

атрица Uⁿˣⁿ называется ортогональной, если все ее столбцы ортогональны друг другу и нормированы (в этом случае столбцы называют ортонормированными). Заметим, что понятие ортогональности имеет разный смысл для векторов и матриц.

Непосредственно из определений ортогональности и нормированности следует, что

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Другими словами, результатом транспонирования ортогональной матрицы является матрица, обратная исходной. Заметим, что если U не является квадратной матрицей (U ∈ ℝᵐˣⁿ, n след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

для любых вектора x ∈ ℝⁿ и ортогональной матрицы U ∈ ℝⁿˣⁿ.

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это чтоTimoElliott

Область значений и нуль-пространство матрицы

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Областью значений R(A) (или пространством столбцов) матрицы A ∈ ℝᵐˣⁿ называется линейная оболочка ее столбцов. Другими словами,

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Нуль-пространством, или ядром матрицы A ∈ ℝᵐˣⁿ (обозначаемым N(A) или ker A), называют множество всех векторов, которые при умножении на A обращаются в нуль, то есть

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Квадратичные формы и положительно полуопределенные матрицы

Для квадратной матрицы A ∈ ℝⁿˣⁿ и вектора xквадратичной формой называется скалярное значение xAx. Распишем это выражение подробно:

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Симметричная матрица A ∈ 𝕊ⁿ называется положительно определенной, если для всех ненулевых векторов xⁿ справедливо неравенство xAx > 0. Обычно это обозначается как

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

(или просто A > 0), а множество всех положительно определенных матриц часто обозначают

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Симметричная матрица A ∈ 𝕊ⁿ называется положительно полуопределенной, если для всех векторов справедливо неравенство xAx ≥ 0. Это записывается как

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

(или просто A ≥ 0), а множество всех положительно полуопределенных матриц часто обозначают

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Аналогично симметричная матрица A ∈ 𝕊ⁿ называется отрицательно определенной

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

, если для всех ненулевых векторов xⁿ справедливо неравенство xAx след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

), если для всех ненулевых векторов xⁿ справедливо неравенство xAx ≤ 0.

Наконец, симметричная матрица A ∈ 𝕊ⁿ называется неопределенной, если она не является ни положительно полуопределенной, ни отрицательно полуопределенной, то есть если существуют векторы x₁, x₂ ∈ ⁿ такие, что

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Собственные значения и собственные векторы

Для квадратной матрицы Aⁿˣⁿ комплексное значение λ ∈ ℂ и вектор x ∈ ℂⁿ будут соответственно являться собственным значением и собственным вектором, если выполняется равенство

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

На интуитивном уровне это определение означает, что при умножении на матрицу A вектор x сохраняет направление, но масштабируется с коэффициентом λ. Заметим, что для любого собственного вектора x ∈ ℂⁿ и скалярного значения с ∈ ℂ справедливо равенство A(cx) = cAx = cλx = λ(cx). Таким образом, cx тоже является собственным вектором. Поэтому, говоря о собственном векторе, соответствующем собственному значению λ, мы обычно имеем в виду нормализованный вектор с длиной 1 (при таком определении все равно сохраняется некоторая неоднозначность, так как собственными векторами будут как x, так и –x, но тут уж ничего не поделаешь).

Перевод статьи был подготовлен в преддверии старта курса «Математика для Data Science». Также приглашаем всех желающих посетить бесплатный демоурок, в рамках которого рассмотрим понятие линейного пространства на примерах, поговорим о линейных отображениях, их роли в анализе данных и порешаем задачи.

Источник

След (линейная алгебра)

след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

СОДЕРЖАНИЕ

Определение [ править ]

Пример [ править ]

Свойства [ править ]

Основные свойства [ править ]

tr ⁡ ( A + B ) = tr ⁡ ( A ) + tr ⁡ ( B ) tr ⁡ ( c A ) = c tr ⁡ ( A ) <\displaystyle <\begin\operatorname

(\mathbf +\mathbf )&=\operatorname

(\mathbf )+\operatorname

(\mathbf )\\\operatorname

(c\mathbf )&=c\operatorname

(\mathbf )\end>> след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Матрица и ее транспонирование имеют один и тот же след: [2] [3] [4] : 34

Это сразу следует из того, что транспонирование квадратной матрицы не влияет на элементы по главной диагонали.

След продукта [ править ]

Это означает, что след произведения матриц равного размера функционирует аналогично скалярному произведению векторов (представьте, что A и B как длинные векторы со столбцами, наложенными друг на друга). По этой причине обобщения векторных операций на матрицы (например, в матричном исчислении и статистике ) часто включают след матричных произведений.

Для вещественных матриц A и B след продукта также можно записать в следующих формах:

Циклическое свойство [ править ]

Произвольные перестановки не допускаются: как правило,

Однако, если рассматриваются произведения трех симметричных матриц, допускается любая перестановка, поскольку:

где первое равенство связано с тем, что следы матрицы и ее транспонирования равны. Обратите внимание, что в целом это неверно для более чем трех факторов.

След матричного продукта [ править ]

След продукта Кронекера [ править ]

След продукта Кронекера двух матриц является произведением их следов:

Полная характеристика следа [ править ]

Следующие три свойства:

Инвариантность подобия [ править ]

След произведения симметричной и кососимметричной матрицы [ править ]

Связь с собственными значениями [ править ]

След единичной матрицы [ править ]

След идемпотентной матрицы [ править ]

След нильпотентной матрицы [ править ]

Трассировка равна сумме собственных значений [ править ]

В более общем смысле, если

f ( x ) = ∏ i = 1 k ( x − λ i ) d i <\displaystyle f(x)=\prod _^\left(x-\lambda _\right)^>> след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

то есть след квадратной матрицы равен сумме собственных значений, подсчитанных с кратностями.

След коммутатора [ править ]

Наоборот, любая квадратная матрица с нулевым следом представляет собой линейную комбинацию коммутаторов пар матриц. [примечание 3] Более того, любая квадратная матрица с нулевым следом унитарно эквивалентна квадратной матрице с диагональю, состоящей из всех нулей.

След эрмитовой матрицы [ править ]

След эрмитовой матрицы действительный, потому что элементы на диагонали действительны.

След матрицы перестановок [ править ]

След матрицы проекции [ править ]

Матрица P X идемпотентна, и, вообще говоря, след любой идемпотентной матрицы равен ее собственному рангу.

Экспоненциальный след [ править ]

След линейного оператора [ править ]

Отношения собственных значений [ править ]

В более общем смысле,

Производные [ править ]

который явно имеет нулевую трассу, что указывает на то, что эта матрица представляет собой бесконечно малое преобразование, сохраняющее площадь.

Приложения [ править ]

Алгебра Ли [ править ]

Фактически, существует внутреннее разложение операторов / матриц прямой суммой на бесследные операторы / матрицы и скалярные операторы / матрицы. Карта проекции на скалярные операторы может быть выражена в терминах следа, в частности, как: g l n = s l n ⊕ K <\displaystyle <\mathfrak >_=<\mathfrak >_\oplus K> след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

0 → s l n → g l n → tr K → 0 <\displaystyle 0\to <\mathfrak >_\to <\mathfrak >_ <\overset <\operatorname><\to >>K\to 0> след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Билинейные формы [ править ]

След определяет билинейную форму:

Форма является симметричной, невырожденной [примечание 4] и ассоциативной в том смысле, что:

Для сложной простой алгебры Ли (такой как n ) каждая такая билинейная форма пропорциональна друг другу; в частности, к форме убийства. s l <\displaystyle <\mathfrak >> след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Две матрицы X и Y называются ортогональными по следу, если

Внутренний продукт [ править ]

Для матрицы A размера m × n с комплексными (или действительными) элементами и H, являющимся сопряженным транспонированием, имеем

Обобщения [ править ]

Если K является следовым классом, то для любого ортонормированного базиса след определяется выражением ( φ n ) n <\displaystyle (\varphi _)_> след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

и конечна и не зависит от ортонормированного базиса. [6]

Операция тензорного сжатия обобщает след на произвольные тензоры.

Определение без координат [ править ]

К следу можно также подойти безкоординатным образом, т. Е. Без обращения к выбору базиса, следующим образом: пространство линейных операторов в конечномерном векторном пространстве V (определенном над полем F ) изоморфно пространству пространство VV ∗ линейным отображением

Существует также каноническая билинейная функция t : V × V ∗ → F, которая состоит в применении элемента w ∗ из V ∗ к элементу v из V, чтобы получить элемент из F :

можно интерпретировать композиционную карту

( V ⊗ V ∗ ) × ( V ⊗ V ∗ ) → ( V ⊗ V ∗ ) <\displaystyle (V\otimes V^<*>)\times (V\otimes V^<*>)\to (V\otimes V^<*>)> след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

происходит от спаривания V ∗ × VF на средних членах. Отслеживание следа продукта происходит в результате спаривания на внешних терминах, при взятии продукта в обратном порядке и последующем взятии следа просто выбирается, какое спаривание применяется первым. С другой стороны, взятие следа A и следа B соответствует применению спаривания к левым и правым членам (а не к внутреннему и внешнему) и, таким образом, отличается.

В координатах это соответствует индексам: умножение дается на

что то же самое, в то время как

Если t определено, как указано выше,

Двойной [ править ]

Далее можно дуализировать эту карту, получив карту

Затем можно составить их,

F,> след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Обобщения [ править ]

Источник

СОДЕРЖАНИЕ

Определение

Пример

Характеристики

Основные свойства

Матрица и ее транспонирование имеют одинаковый след:

Это сразу следует из того, что транспонирование квадратной матрицы не влияет на элементы по главной диагонали.

След продукта

Это означает, что след произведения матриц равного размера функционирует аналогично скалярному произведению векторов (представьте, что A и B как длинные векторы со столбцами, наложенными друг на друга). По этой причине обобщения векторных операций на матрицы (например, в матричном исчислении и статистике ) часто включают след матричных произведений.

Для вещественных матриц A и B след продукта также можно записать в следующих формах:

Циклическое свойство

Произвольные перестановки не допускаются: как правило,

Однако, если рассматриваются произведения трех симметричных матриц, допускается любая перестановка, поскольку:

где первое равенство связано с тем, что следы матрицы и ее транспонирования равны. Обратите внимание, что в целом это неверно для более чем трех факторов.

След матричного произведения

След продукта Кронекера

След продукта Кронекера двух матриц является произведением их следов:

Полная характеристика следа

Следующие три свойства:

Инвариантность подобия

След произведения симметричной и кососимметричной матрицы

Отношение к собственным значениям

След единичной матрицы

След идемпотентной матрицы

След нильпотентной матрицы

Трассировка равна сумме собственных значений

В более общем смысле, если

то есть след квадратной матрицы равен сумме собственных значений, подсчитанных с кратностями.

След коммутатора

Наоборот, любая квадратная матрица с нулевым следом представляет собой линейную комбинацию коммутаторов пар матриц. Более того, любая квадратная матрица с нулевым следом унитарно эквивалентна квадратной матрице с диагональю, состоящей из всех нулей.

След эрмитовой матрицы

След эрмитовой матрицы действительный, потому что элементы на диагонали действительны.

След матрицы перестановок

След матрицы проекции

Матрица P X идемпотентна, и, вообще говоря, след любой идемпотентной матрицы равен ее собственному рангу.

Экспоненциальный след

След линейного оператора

Отношения собственных значений

В более общем смысле,

Производные

который явно имеет нулевую трассу, что указывает на то, что эта матрица представляет собой бесконечно малое преобразование, сохраняющее площадь.

Приложения

Алгебра Ли

Фактически, существует внутреннее разложение операторов / матриц прямой суммой на бесследные операторы / матрицы и скалярные операторы / матрицы. Карта проекции на скалярные операторы может быть выражена в терминах следа, в частности, как: грамм л п знак равно s л п ⊕ K <\ displaystyle <\ mathfrak > _ = <\ mathfrak > _ \ oplus K> след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

0 → s л п → грамм л п → tr K → 0 <\ displaystyle 0 \ to <\ mathfrak > _ \ to <\ mathfrak > _ <\ overset <\ operatorname> <\ to>> K \ to 0> след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Билинейные формы

След определяет билинейную форму:

Форма является симметричной, невырожденной и ассоциативной в том смысле, что:

Для сложной простой алгебры Ли (такой как n ) каждая такая билинейная форма пропорциональна друг другу; в частности, к форме убийства. s л <\ displaystyle <\ mathfrak >> след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Две матрицы X и Y называются ортогональными по следу, если

Внутренний продукт

Для матрицы A размера m × n с комплексными (или действительными) элементами и H, являющимся сопряженным транспонированием, имеем

Обобщения

Если K является следовым классом, то для любого ортонормированного базиса след определяется выражением ( φ п ) п <\ Displaystyle (\ varphi _ <п>) _ <п>> след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

и конечна и не зависит от ортонормированного базиса.

Операция тензорного сжатия обобщает след на произвольные тензоры.

Безкоординатное определение

К следу можно также подойти безкоординатным образом, т. Е. Без обращения к выбору базиса, следующим образом: пространство линейных операторов в конечномерном векторном пространстве V (определенном над полем F ) изоморфно пространству пространство VV ∗ линейным отображением

Существует также каноническая билинейная функция t : V × V ∗ → F, которая состоит в применении элемента w ∗ из V ∗ к элементу v из V, чтобы получить элемент из F :

можно интерпретировать композиционную карту

( V ⊗ V * ) × ( V ⊗ V * ) → ( V ⊗ V * ) <\ displaystyle (V \ otimes V ^ <*>) \ times (V \ otimes V ^ <*>) \ to (V \ otimes V ^ <*>)> след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

происходит от спаривания V ∗ × VF на средних членах. Отслеживание следа продукта происходит в результате спаривания на внешних терминах, при взятии продукта в обратном порядке и последующем взятии следа просто выбирается, какое спаривание применяется первым. С другой стороны, взятие следа A и следа B соответствует применению спаривания к левым и правым членам (а не к внутреннему и внешнему) и, таким образом, отличается.

В координатах это соответствует индексам: умножение дается на

что то же самое, в то время как

Если t определено, как указано выше,

Двойной

Далее, можно дуализировать эту карту, получив карту

Затем можно составить их,

F,> след матрицы это что. Смотреть фото след матрицы это что. Смотреть картинку след матрицы это что. Картинка про след матрицы это что. Фото след матрицы это что

Обобщения

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *