скорость движения земли по орбите больше чем скорость меркурия
Как Земля движется в космосе? Теперь мы знаем это во всех масштабах
Спросите у учёного наш космический адрес, и вы получите довольно полный ответ. Мы находимся на планете Земля, которая вращается вокруг своей оси и вокруг Солнца. Солнце вращается по траектории эллипса вокруг центра Млечного Пути, который внутри нашей Местной группы тянется в сторону Андромеды; Местная группа, в свою очередь, движется внутри нашего космического Сверхскопления Ланиакея, галактическими группами, кластерами и космическими пустотами, а они лежат в войде KBC, посреди структуры Вселенной в широком масштабе. После десятилетий исследований наука наконец-то собрала полную картину этого движения и может точно определить скорость нашего движения в космосе в любом масштабе.
В пределах Солнечной системы вращение Земли играет важную роль в формировании экваториального утолщения, в смене дня и ночи, а также помогает питать защищающее нас от космических лучей и солнечного ветра магнитное поле.
Скорее всего, читая это, вы воспринимаете себя неподвижными. Тем не менее мы знаем, что в космическом масштабе мы движемся. Во-первых, Земля вращается вокруг своей оси и несёт нас сквозь космос со скоростью почти 1700 км/ч относительно кого-то на экваторе. Это число может показаться большим, но по сравнению с другими скоростями нашего движения во Вселенной эта скорость едва заметна. На самом деле в километрах в секунду это не так быстро. Вращаясь вокруг своей оси, Земля сообщает нам скорость всего 0,5 км/с, или менее 0,001 % скорости света. Но есть другие перемещения, и они [в смысле скорости] важнее.
Скорость, с которой планеты вращаются вокруг Солнца, намного превышает скорость вращения любой из них вокруг своей оси, это касается даже самых быстрых планет — Юпитера и Сатурна.
Как и все планеты нашей Солнечной системы, Земля движется по орбите Солнца гораздо быстрее скорости вращения вокруг своей оси. Чтобы удержаться на стабильной орбите, мы должны двигаться вправо и со скоростью около 30 км/с. Внутренние планеты — Меркурий и Венера — движутся быстрее, а внешние (вроде Марса и планет за ним) — медленнее. Вращаясь в плоскости Солнечной системы, планеты непрерывно меняют направление своего движения, и Земля возвращается в свою исходную точку через 365 дней. Ну хорошо, почти в исходную точку.
Точная модель движения планет по орбите Солнца, которое движется по Галактике в другом направлении.
Даже Солнце само по себе не статично. Млечный Путь огромен, массивен, и, самое важное, он движется. Все звёзды, планеты, газовые облака, крупицы пыли, чёрные дыры, тёмная материя и многое движутся внутри Млечного Пути и вносят свой вклад в гравитационную сеть. С нашей точки зрения, а мы находимся в около 25 000 световых лет от центра Галактики, Солнце вращается по эллипсу и совершает полный оборот каждые 220–250 миллионов лет или около того.
Предполагается, что скорость нашего Солнца на этой траектории составляет 200–220 км/с, это довольно много по сравнению как со скоростью вращения Земли, так и со скоростью вращения нашей планеты вокруг Солнца, тогда как оба вращения наклонены относительно плоскости движения нашей звезды вокруг Галактики.

Но сама Галактика не стационарна, она движется из-за гравитационного притяжения всех сгустков сверхплотной материи и, в равной степени, из-за отсутствия гравитационного притяжения от областей с плотностью ниже средней. Внутри нашей Местной группы мы можем измерить нашу скорость в направлении к самой большой, массивной галактики на нашем космическом заднем дворе: Андромеде. Похоже, что оно движется к нашему Солнцу со скоростью 301 км/с, а это означает (учитывая движение Солнца по Млечному Пути), что две самые массивные галактики Местной группы, Андромеда и Млечный Путь, движутся навстречу друг другу со скоростью примерно 109 км/с.
Самая большая галактика в Местной группе, Андромеда, кажется маленькой и незначительной рядом с Млечным Путём, но это из-за её расстояния, составляющего около двух с половиной миллионов световых лет. В настоящий момент она движется к нашему Солнцу со скоростью около 300 км/с.
Местная группа, как бы массивна она ни была, изолирована не полностью. Другие галактики и скопления галактик поблизости притягивают нас, и даже более отдалённые сгустки материи оказывают гравитационное воздействие на Землю. Основываясь на том, что мы можем увидеть, измерить и вычислить, эти структуры, по-видимому, – причина дополнительной скорости примерно в 300 км/с, но в несколько ином направлении, чем другие скорости, вместе взятые. И это объясняет часть движения во Вселенной в крупном масштабе, но не всё движение. Кроме того, существует ещё один важный эффект, который был количественно рассчитан только недавно, — гравитационное отталкивание космических пустот.
Различные галактики Сверхскопления Девы, кластеризованные и сгруппированные вместе. В самых больших масштабах Вселенная однородна, но если вы посмотрите на неё в масштабе галактик или скоплений, то окажется, что преобладают сверхплотные области и области с плотностью ниже средней.
Для каждого атома или частицы материи во Вселенной, которые собираются в сверхплотной области, существует область некогда средней плотности, потерявшая соответствующее количество массы. Точно так же, как область плотнее средней притягивает, область, плотность которой ниже средней, будет притягивать с силой ниже средней.
Если взять большую область пространства с меньшим, чем в среднем, количеством материи, на практике её сила будет отталкивать, а плотность выше средней, напротив, — притягивать. В нашей Вселенной в направлении, противоположном от ближайшей области сверхплотности, пролегает огромная пустота с плотностью ниже средней. Мы находимся между этими двумя областями, поэтому силы притяжения и отталкивания складываются, причём каждая из них вносит в скорость примерно 300 км/с, то есть общая скорость приближается к 600 км/с.
Гравитационное притяжение (синим цветом) сверхплотных областей и относительное отталкивание (красным цветом) областей с плотностью ниже средней, когда они действуют на Млечный Путь.
Сложив все эти движения вместе: вращение Земли вокруг своей оси, её вращение вокруг Солнца, движение Солнца по Галактике, которая направляется к Туманности Андромеды, движение Местной группы, притягиваемой к области сверхплотности и отталкиваемой от областей с плотностью ниже средней, мы получим число, указывающее, как быстро на самом деле мы движемся во Вселенной, в любой момент времени.
Мы обнаружили, что Земля движется со скоростью 360 км/с в каком-то определённом направлении плюс-минус около 30 км/ч в зависимости от времени года и направления. Выводы о скорости Земли подтверждены реликтовым излучением, которое в направлении движения планеты проявляется лучше, а в противоположном направлении — ослабевает.

Если проигнорировать движение Земли, мы обнаружим, что Солнце относительно реликтового излучения движется со скоростью 368 ± 2 километра, затем, если пренебречь движением Местной группы, получится, что Млечный Путь, Андромеда, Галактика Треугольника и все остальные относительно реликтового излучения движутся со скоростью 622 ± 22 км. Эта большая неопределённость, кстати, в основном связана с неопределённостью в движении Солнца вокруг центра Галактики, это самый трудный в смысле измерения компонент.
Относительные притягивающие и отталкивающие эффекты сверхплотных и недостаточно плотных областей Млечного Пути, комбинация которых известна как Дипольный отталкиватель.
Возможно, не существует универсальной системы отсчёта, но есть система, измерения в которой полезны: полезен отсчёт от покоя реликтового излучения, также эта точка отсчёта совпадает с системой отсчёта удаления галактик друг от друга по закону Хаббла. У каждой видимой галактики есть то, что мы называем «пекулярной скоростью» (или скоростью, превышающей скорость, с которой галактики удаляются друг от друга согласно закону Хаббла), — от нескольких сотен до нескольких тысяч км/с, и то, что мы видим, в точности соответствует этому. Пекулярная скорость движения нашего Солнца — 368 км/с, а нашей Местной группы — 627 км/с — прекрасно согласуется с нашим пониманием того, как в пространстве движутся все галактики. Благодаря эффекту дипольного отталкивания теперь мы понимаем, как происходит это движение, во всех масштабах.
В постижении тайн космоса людям точно не обойтись без помощников и именно таким компаньоном может для нас стать искусственный интеллект. Если AI изначально создали для облегчения жизни на Земле, почему бы с его помощью не исследовать космос? Многие компании, включая NASA и Google, уже внедрили ИИ для поиска новых небесных тел и жизни на других планетах и всегда будут рады специалистам в области AI и нейронных сетей. Работать с которыми мы учим на курсах по Machine Learning и его расширенном варианте «Machine Learning и Deep Learning».
На Земле тоже много работы. Узнайте, как прокачаться в других крутых инженерных специальностях или освоить их с нуля:
Астрономия 7 класс, муниципальный этап (2 этап), г. Москва, 2017-2018 учебный год
Содержание
Задача 1
Как-то в середине осени начинающий художник сразу после захода Солнца сделал набросок картины «Осень в Подмосковье», нарисовав с натуры линию горизонта, несколько элементов пейзажа и положения Венеры и Юпитера (цифры 1 и 2 на рисунке), видимых на небе в это время. Через несколько месяцев он вернулся к работе и нарисовал на наброске своё любимое созвездие.
Ответ:
Критерии оценивания:
Поскольку в условии не указывается число ошибок, учащиеся часто пытаются указать их больше, чем надо. В 7-9 классах это не наказывается.
Максимум за задачу – 8 баллов.
Задача 2
Выберите верные утверждения.
Ответ: Верные утверждения №3, 4, 7, 8.
Критерии оценивания:
За каждое верное утверждение по 2 балла, за каждое неверное – минус 2 балла.
Суммарная оценка не может быть меньше 0.
Максимум за задачу – 8 баллов.
Задача 3
Выберите из списка четыре звезды, которые будут видны (т.е. будут находиться над горизонтом) в 20 часов по московскому времени в Москве в день проведения олимпиады при условии хорошей погоды.
Ответ: Полярная звезда, Вега, Мицар, Шедар.
Примечание (для справки — не требуется указывать при ответе): большинство звёзд можно выбрать по созвездию, в котором они находятся, – Малая Медведица, Кассиопея, Лира и Большая Медведица являются незаходящими на широте Москвы. Киль, напротив, никогда не восходит. Часть созвездия Эридана в Москве видно, но Ахернар находится далеко в южной полусфере и также не появляется над горизонтом в Москве. Антарес и Спика в Москве восходят, но период их вечерней видимости начинается гораздо позже.
Критерии оценивания:
За каждую верно указанную звезду по 2 балла (обоснование или объяснение не требуется), за каждую неверную — минус 2 балла.
Отрицательная оценка не ставится (выставляется 0 баллов за задачу).
Максимум за задачу – 8 баллов.
Задача 4
Расставьте отдельные объекты и их группы в порядке удаления от Солнца: Марс, Венера, Юпитер, Нептун, облако Оорта, главный пояс астероидов, Земля.
Ответ: Венера – Земля – Марс — главный пояс астероидов — Юпитер — Нептун — облако Оорта.
Критерии оценивания:
Максимум за задачу – 8 баллов.
Задача 5
Два космических аппарата будущего стартуют с Земли со скоростями относительно Солнца 1000 км/с и 10000 км/c соответственно. Первый летит к экзопланете Проксима Центавра b (расстояние до неё 40000 млрд. км), а второй – к планетной системе вокруг звезды TRAPPIST-1 (расстояние 39,50 световых лет). По прилёту оба корабля сразу же отправят некоторые данные на Землю с помощью радиосвязи. Данные от какого корабля придут раньше и на сколько? Ответ представьте в годах. Временем полёта внутри планетных систем и относительным движением звёзд пренебречь. Скорость света равна 300000 км/с.
Решение:
Найдём время полёта до каждой звезды.
1) Проксима Центавра b
τ = r/ν = 4·10 10 сек ≈ 1270 лет
2) Звезда TRAPPIST-1
Расстояние до звезды r = 39,5×365,25×24×3600×300 000 = 3,74·10 14 км
Время τ = r/ν = 1185 лет
(это же время можно найти гораздо проще: 
Учтём, что данные, отправленные с аппаратов, будут лететь до получателя на Земле разное время.
t1 = 1270 + 1270 × (1000/300 000) = 1274,2 года,
где второе слагаемое – время, которое затратит свет, чтобы преодолеть расстояние от Проксимы Центавра до Солнца (т.е. расстояние до звезды в световых годах, которое можно найти отдельно, либо помнить его из прочитанных книг).
t2 = 1185 + 39,5 = 1224,5 года
3) Разница времени будет равна
Δt = 1274,2 – 1224,5 ≈ 50 лет.
Ответ: Данные от второго корабля придут быстрее примерно на 50 лет.
Критерии оценивания
Обратите внимание, для разных классов критерии отличаются, как и условия этой задачи
Основное, что должно быть показано в решении данной задачи, это умение работать с расстояниями, заданными разными способами, умение переводить из одних единиц измерений в другие, понимание конечности скорости распространения сигнала и учёт этого в решении.
Максимум за задачу – 8 баллов.
Всего за работу – 40 баллов.
Меркурий
Масса: 1/20 массы Земли
Радиус: 2/5 радиуса Земли
Расстояние до Солнца: минимальное 0,3 а.е., максимальное 0,47 а.е. (1 а.е. = 150 млн км)
Путешествие по планетам Солнечной системы начнём с самой близкой к Солнцу планеты — Меркурия. Расстояние от него до Солнца в 2,5 раза меньше, чем от Земли. Из-за этого изучать его довольно сложно: для земного наблюдателя Меркурий никогда не отходит далеко от Солнца, и увидеть его можно только на заре — перед самым восходом или сразу после захода Солнца. А отправить к нему космический аппарат оказывается ничуть не легче, чем к Юпитеру, только по обратной причине: хоть Меркурий и несётся по своей орбите со скоростью 47 км/с — в полтора раза быстрее Земли, — всё равно посланный с Земли корабль так разогнался бы под действием солнечного притяжения, подлетев к нему, что проскочил бы мимо, не успев ничего сфотографировать. Приходится лететь сначала к Венере, делать возле неё гравитационный манёвр 1 — но не чтобы разогнаться, а наоборот, чтобы затормозиться — и только потом уж лететь к Меркурию. До сих пор это проделали только две межпланетные станции: «Маринер-10» лет сорок назад и — совсем недавно — «Мессенджер».
Меркурий не только самая близкая к Солнцу (и потому — ещё и самая быстрая) планета, но и самая маленькая. По размеру он уступает даже крупным спутникам планет-гигантов — Ганимеду (спутнику Юпитера) и Титану (спутнику Сатурна). Однако по массе он их всё-таки обогнал. Это значит, что у Меркурия намного больше плотность; и действительно, 1 л его вещества весит в среднем около 5,4 кг, почти как у Земли (5,5 кг). Но Земля-то большая, внешние её слои сильно давят на внутренние, и вещество в её недрах сильно сжато. Маленькой планете трудно было так сильно сжаться; похоже, что у Меркурия очень большое — на 3/4 радиуса — железное ядро. (Для сравнения — у Земли ядро доходит только до половины радиуса. Поэтому у Меркурия ядро занимает почти половину всего объёма, а у Земли — 1/8.) Доля железа и других тяжёлых элементов на Меркурии — самая большая среди всех планет Солнечной системы.
Думаете, раз Меркурий близко к Солнцу, то на нём очень жарко? Это правда, да только отчасти. Действительно, днём там страшная жара: максимальная температура поверхности 430°С, при такой температуре расплавятся олово, свинец и цинк. Зато ночью очень холодно: минус 200°С! Это всё вблизи экватора. На полюсах — всегда холодно, около −90°С.
Почему так? Ответ — в решении задачи из «Квантика» № 10 за 2016 г. Меркурий делает один оборот вокруг Солнца за 88 земных суток, а один оборот вокруг оси — меркурианские звёздные сутки — длится около 58 суток, ровно 2/3 года.
Рис. 1. Дни и ночи на Меркурии. Ось вращения планеты направлена на нас. Красная точка — наблюдатель на экваторе, чёрточкой обозначена его линия горизонта. Синие линии показывают направление на далёкую звезду
Внимание! Представьте себе, что вы стоите на экваторе Меркурия (рис. 1; вы — красная точка) и видите восходящее Солнце, а рядом с ним — какую-нибудь звезду; небо на Меркурии чёрное даже днём, потому что атмосферы почти нет, так что звёзды прекрасно видно. Проследим, что вы увидите по мере движения Меркурия по орбите. Через 1/4 звёздных суток, то есть 1/6 местного года, звезда окажется в зените, ровно над головой. А Солнце отстаёт, оно ещё только поднимается. Вот проходит треть года — звезда садится на западе, а Солнце всё ещё продолжает подниматься. Только через полгода Солнце, наконец, достигает зенита, наступает полдень. Через 2/3 года от начала наблюдения звезда снова восходит — прошли звёздные сутки. Но Солнце ещё и не собирается садиться! Зайдёт оно только ещё через полгода, зато целый год после этого его не будет видно. И только через два меркурианских года мы, наконец, снова встретим восход Солнца, а рядом с ним звезду — всё как было. Так что если отсчитывать сутки по Солнцу, а не по звёздам (это называется солнечные сутки) — получится, что они длятся 2 года!
Итак, от восхода до заката Солнца проходит целый меркурианский год, 3 земных месяца. И столько же длится ночь. Неудивительно, что всё успевает днём как следует нагреться, а ночью — изрядно остыть. Кстати, долгое время люди думали, что звёздные сутки на Меркурии длятся не 2/3 года, а ровно год: тогда Меркурий, как Луна на Землю, «смотрел» бы на Солнце всё время одним и тем же полушарием. На половине планеты был бы вечный день, на половине — вечная ночь. Почему так думали? Потому что каждый раз, когда Меркурий нам особенно хорошо виден — а это происходит примерно каждые 348 земных суток, или примерно 4 меркурианских года, — он поворачивается к Земле (и к Солнцу соответственно тоже) одной и той же стороной. Только с применением радиолокаторов для исследования Меркурия лет 50 назад этот его «обман» раскрылся.
Случайно ли такое совпадение? Вряд ли. Ведь раньше Меркурий, как и Луна, вращался вокруг оси быстрее. Это Солнце затормозило его вращение (как Земля — вращение Луны) приливными силами; как это делается, мы подробно разберёмся в другой раз, а пока заметим, что, хоть Солнце и не совсем остановило — не «синхронизировало» — свой ближайший спутник, зато получился резонанс сразу и с Солнцем — отношение периодов 2 : 3, — и с Землёй. Похоже, это мы помешали Солнцу совсем остановить Меркурий. Так и танцует он свой сложный космический танец, успевая в такт поворачиваться «лицом» то к Солнцу, то к Земле, а то ещё и к Венере.
Рис. 2. Орбита Меркурия, Солнце увеличено для наглядности
Это ещё не всё. У Меркурия очень вытянутая (для планеты) орбита — самая вытянутая из орбит всех планет Солнечной системы: в дальней точке Меркурий в полтора раза дальше от Солнца, чем в ближней (рис. 2). Из-за резонанса получается, что в ближайшей точке орбиты (она называется перигелий, по-гречески — ближний к Солнцу) Меркурий поворачивается к Солнцу всегда одной и той же стороной, а точнее — двумя меридианами на противоположных сторонах планеты, по очереди. Эти меридианы называются «горячие долготы», в них — самая жаркая погода на всём Меркурии.
Но и на этом чудеса с орбитальным движением Меркурия ещё не кончаются. Дело в том, что когда он ближе к Солнцу, он и летит по своей орбите быстрее, а когда дальше от Солнца — то медленнее. А вокруг оси он крутится равномерно; из-за этого вблизи перигелия угловая скорость его движения по орбите ненадолго оказывается больше, чем скорость вращения. И если в остальное время быстрый бег Меркурия по орбите только тормозит видимое движение Солнца с востока на запад, то тут он его совсем останавливает, и Солнце в это время движется по небу в обратную сторону, с запада на восток (рис. 3)! Это явление — из всех планет Солнечной системы оно есть только на Меркурии — называется «эффект Иисуса Навина», в честь библейского персонажа, который как-то попросил бога остановить солнце на небе — и тот остановил на несколько часов. Не знаю, как это ухитрился сделать Иисус Навин (или даже бог — против собственных законов идти сложно. ), а вот на Меркурии это происходит, можно сказать, каждый день! Особенно интересно это выглядит в тех местах, где во время прохождения перигелия Солнце близко к горизонту: оно было взойдёт, потом передумает, сядет обратно — и взойдёт ещё раз. Дальше начинается длинный (годовой!) меркурианский день, в конце которого Солнце, уже сев за горизонт, опять передумывает и выходит обратно посветить ещё немножко.
Рис. 3. Вид со стороны северного полюса планеты. Красная точка — наблюдатель, синяя линия — направление на восток, зелёная — на запад. На всех «нормальных» планетах (например, на Земле) Солнце движется с востока на запад (а); Меркурий вблизи перигелия движется по орбите быстрее, чем поворачивается вокруг оси, и Солнце сместилось с запада на восток (б)
Рис. 4. Типичный рельеф Меркурия (фото с сайта astro-azbuka.ru)
На поверхность Меркурия ещё не ступала нога ни человека, ни даже спускаемого аппарата. Но мы уже знаем, что поверхность эта очень похожа на лунную: множество кратеров, образовавшихся от ударов метеоритов, гладкие долины, покрытые застывшей лавой, цепочки гор — возможно, бывшие вулканы, давно потухшие: маленькая планетка довольно быстро остывала, и не прошло и миллиарда лет, как лава уже не могла пробиться снизу через толстую застывшую кору. Но есть на Меркурии такая деталь рельефа, какой больше нигде в Солнечной системе не встретишь. Это эскарпы — очень длинные и высокие зубчатые обрывы, высотой несколько километров — как самые высокие скальные обрывы на Земле — и длиной несколько сотен километров (!). Они образовались в ту эпоху, когда только что «слепленный» Меркурий быстро остывал — кора остыла первой и затвердела, а внутренние, ещё горячие области продолжали остывать и сжиматься. С маленькими речками и большими лужами на Земле бывает так: в начале зимы верхний слой воды замёрз, а уровень воды упал (оттого, что приток воды резко уменьшился — замёрзли маленькие впадающие в речку ручьи) — и получается, что подо льдом пустота, ничто его снизу не держит. И под небольшой нагрузкой этот верхний слой льда проваливается. Так вышло и на Меркурии (только причина появления «пустоты» была другая), кора под собственной тяжестью стала трескаться и проседать, «догоняя» сжавшееся ядро. Вот эти трещины и сохранились до наших дней.
Рис. 5. Кратеры и эскарпы Меркурия. На левой фотографии видна область, залитая лавой (фото с сайта galaxy-science.ru)
Вот он какой, Меркурий. И маленький, и не очень пока изученный — а сколько в нём удивительного!
Художник Мария Усеинова
1 Про гравитационные манёвры см. статью: В. Сирота, «Приглашение к путешествию», «Квантик» № 10 и № 11 за 2016 год.







