поле вблизи поверхности проводника
Учебники
Журнал «Квант»
Общие
Чивилёв В.И. Проводники в электростатическом поле //Квант. — 1988. — № 1. — С. 38-39.
По специальной договоренности с редколлегией и редакцией журнала «Квант»
Содержание
Тот факт, что в природе существуют проводники, обогащает окружающий нас мир разнообразными электрическими явлениями, среди которых есть и далеко небезопасные. Проводники занимают важное место при изучении электромагнетизма.
Рассмотрим подробно случай, когда заряженный неподвижный проводник находится во внешнем электростатическом поле (созданном посторонними неподвижными зарядами). В проводнике рано или поздно все заряды перестанут перемещаться, и наступит равновесие (так как в противном случае мы получили бы вечный двигатель в результате непрерывного выделения тепла при движении зарядов). Для такого заряженного и помещенного во внешнее электростатическое поле проводника будут справедливы утверждения, приведенные ниже.
1. Поле внутри проводника
В любой точке внутри проводника напряженность электрического поля равна нулю. Действительно, при невыполнении этого условия свободные заряды в проводнике под действием сил поля пришли бы в движение, и равновесие было бы нарушено.
2. Распределение заряда в проводнике
Для того чтобы ответить на вопрос о распределении заряда в проводнике, нам надо уточнить некоторые свойства силовых линий электростатического поля. Напомним, что силовая линия электрического поля (в том числе и электростатического) — это воображаемая линия в пространстве, проведенная так, чтобы касательная к ней в каждой точке совпадала с вектором напряженности электрического поля в этой точке. Опыт изучения электростатических полей дает основание заключить, что силовые линии этих полей непрерывны и не замкнуты, они могут начинаться только на положительных зарядах и оканчиваться только на отрицательных и не могут начинаться (заканчиваться) в точке пространства, где нет зарядов. При графическом изображении поля некоторой системы зарядов число силовых линий, начинающихся или заканчивающихся на каком-либо заряде, пропорционально модулю этого заряда. Отсюда следует, что из любого заряда обязательно выходят (или входят в него) силовые линии.
После сказанного о силовых линиях возвратимся к вопросу о распределении заряда в проводнике. Выделим мысленно произвольный достаточно малый объем ΔV внутри проводника (рис. 1). Предположим, что этот объем имеет заряд (для определенности, положительный). Тогда из выделенного объема будут выходить силовые линии, т. е. вблизи него будет существовать электрическое поле. Но поля внутри проводника нет. Поэтому выделенный объем должен быть нейтрален. А поскольку этот объем взят нами в произвольном месте внутри проводника, то можно утверждать, что вся «внутренность» проводника нейтральна и, следовательно, весь заряд проводника находится на его поверхности.
3. Поле снаружи проводника вблизи его поверхности
Вектор напряженности электростатического поля в любой точке снаружи проводника вблизи его поверхности направлен перпендикулярно поверхности, что другими словами можно сказать так: силовые линии поля входят в проводник и выходят из него под прямым углом к поверхности проводника. В противном случае существовала бы составляющая вектора напряженности поля вдоль поверхности проводника, на свободные заряды на поверхности проводника действовала бы сила, имеющая составляющую вдоль поверхности. В результате этого по поверхности проводника стали бы двигаться заряды, что нарушило бы равновесие.
4. Распределение потенциала в проводнике
Покажем, что разность потенциалов любых двух точек проводника, включая точки поверхности, равна нулю. Пусть есть произвольные точки М и К внутри проводника. Перенесем мысленно из точки М в точку К пробный заряд q по некоторой траектории МВК, лежащей внутри проводника (рис. 2). Силы поля не совершат работы над перемещаемым зарядом q, так как поля внутри проводника нет. Поэтому разность потенциалов φM— φK = 0. Если точки М и К, одна или обе, лежат на поверхности проводника, то доказательство того, что разность потенциалов между ними равна нулю, аналогично.
Так как разность потенциалов любых двух точек проводника равна нулю, то потенциал всех точек проводника, включая точки поверхности, один и тот же. Поэтому говорят о потенциале проводника, не указывая конкретной его точки. Поскольку все точки поверхности проводника имеют одинаковый потенциал, поверхность проводника будет эквипотенциальной поверхностью.
5. Полость внутри проводника
Удалим из внутренней области проводника часть вещества. Так как удаляемое вещество нейтрально, то следует ожидать, что электростатическое поле во всех точках вне проводника, внутри проводника и в возникшей полости не изменится. И это будет действительно так, причем на внутренней поверхности проводника (на поверхности полости) зарядов не будет. Весь заряд проводника сосредоточится на внешней поверхности проводника, а наличие полости внутри проводника не скажется на распределении заряда по внешней поверхности. Поле в полости и в проводнике будет отсутствовать. Потенциал всех точек проводника и полости окажется одинаков.
Короче говоря, полый проводник, имеющий заряд и помещенный во внешнее электростатическое поле, ведет себя так же, как и соответствующий сплошной. Доказательство этого утверждения приводить не будем, но заметим, что оно подтверждено многочисленными опытами, проведенными еще Г. Кавендишем (1731-1810) в конце XVIII века и М. Фарадеем (1791-1867) в начале XIX века.
Поле вблизи поверхности проводника
Проводники это тела, в которых электрические заряды способны перемещаться под действием сколь угодно слабого электростатического поля, что приводит к появлению поля внутри проводника, равного и противоположного внешнему. Вследствие этого сообщённый проводнику заряд будет перераспределяться до тех пор, пока в любой точке внутри проводника напряженность электрического поля не станет равной нулю.
Таким образом, напряженность электрического поля внутри проводника всегда будет равна нулю.
Распределение зарядов по поверхности
E = dϕ/dr → dϕ/dr = 0 → ϕ = const [1]
Так как напряжённость внутри проводника равна нулю (Е = 0), то потенциал внутри проводника постоянен.
На поверхности заряженного проводника вектор напряженности Е должен быть направлен перпендикулярно к этой поверхности, иначе под действием составляющей, касательной к поверхности (Et), заряды перемещались бы по поверхности проводника.
Таким образом, при условии статического распределения зарядов, напряженность на поверхности:
где En — нормальная составляющая напряженности,
Et — составляющая напряженности, направленная касательно к поверхности.
Из равенств [1] и [2] следует, что при равновесии зарядов поверхность проводника является эквипотенциальной.
Таким образом, в состоянии равновесия внутри проводника избыточных зарядов нет.
Поэтому если мы удалим вещество из некоторого объёма, взятого внутри проводника, это никак не отразится на равновесном расположении зарядов. Таким образом, избыточный заряд распределяется на полом проводнике так же, как и на сплошном, т.е. по его наружной поверхности. На внутренней поверхности избыточные заряды располагаться не могут.
Если поместить на внутреннюю поверхность полого проводника электрический заряд, то этот заряд будет вытолкнут на наружную поверхность проводника, повышая потенциал последнего. Многократно повторяя передачу полому проводнику можно значительно повысить его потенциал до величины, ограничиваемой явлением стекания зарядов с проводника. Этот принцип был использован Ван-дер-Граафом для построения электростатического генератора, позже названного его именем. В этом устройстве заряд от электростатической машины передаётся бесконечной непроводящей ленте, переносящий его внутрь большой металлической сферы. Там заряд снимается и переходит на наружную поверхность проводника, таким образом, удаётся постепенно сообщить сфере очень большой заряд и достигнуть разности потенциалов в несколько миллионов вольт.
Проводники во внешнем электрическом поле.
Перемещение зарядов в проводнике помещённом во внешнее электрическое поле Е0 будет происходить до тех пор, пока создаваемое индукционными зарядами дополнительное поле Едоп. не скомпенсирует внешнее поле Е0 во всех точках внутри проводника и результирующее поле Е внутри проводника станет равным нулю.
Суммарное поле Е вблизи проводника будет заметно отличаться от своего первоначального значения Е0. Линии Е будут перпендикулярны к поверхности проводника и будут частично кончаться на индуцированных отрицательных зарядах и вновь начинаться на индуцированных положительных зарядах.
Отсутствие поля внутри проводника, помещённого в электрическое поле, широко применяется в технике для электростатической защиты от внешних электрических полей (экранировки) разных электрических приборов и проводов. Когда какой-то прибор хотят защитить от воздействия внешних полей, его окружают проводящим футляром (экраном).
Поле вблизи поверхности проводника
Условия равновесия зарядов на проводнике
Электростатическая индукция
Напряженность поля заряженного проводника вблизи его поверхности
Проводник – это твердое тело, в котором имеются “свободные электроны”, перемещающиеся в пределах тела.
Металлические проводники в целом являются нейтральными: в них поровну отрицательных и положительных зарядов. Положительно заряженные – это ионы в узлах кристаллической решетки, отрицательные – электроны, свободно перемещающиеся по проводнику. Когда проводнику сообщают избыточное количество электронов, он заряжается отрицательно, если же у проводника «отбирают» какое-то количество электронов, он заряжается положительно.
Избыточный заряд распределяется только по внешней поверхности проводника.
1.6.1. Условия равновесия зарядов на проводнике
2. Вектор на поверхности проводника направлен по нормали к каждой точке поверхности проводника.
Действительно, если бы условие 1 не выполнялось, то подвижные носители электрических зарядов, имеющиеся в каждом проводнике, под действием сил поля пришли бы в движение (в проводнике возник бы электрический ток) и равновесие было бы нарушено.
Из 1 следует, что поскольку
Из того факта, что поверхность проводника эквипотенциальна следует, что непосредственно у этой поверхности поле Из 1 следует, что поскольку
Заряды распределяются только на поверхности проводника с некоторой плотностью s и находятся в очень тонком поверхностном слое (его толщина около одного-двух межатомных расстояний). 1.6.2. Электростатическая индукция |
Рис.1.24. Проводник в электростатическом поле |
Итак, избыточный заряд распределяется только по внешней поверхности проводника. Поэтому вещество внутри проводника электрически нейтрально. Если мы удалим вещество из объема внутри проводника, т.е. сделаем в нем полость, то поле в проводнике не изменится и заряд на проводнике с полостью распределиться также как и на сплошном – по его наружной поверхности.
Отсутствие поля внутри полости в проводнике позволяет создать электростатическую защиту – экранирование тел, например измерительных приборов, от влияния внешних электростатических полей. Проводник или достаточно густая металлическая сетка, окружающие со всех сторон некоторую область, экранируют ее от электрических полей, созданных внешними зарядами.
Избыточные заряды, сообщаемые проводнику, распределяется равномерно только по поверхности металлических сферы или шара. Во всех остальных случаях заряды распределяются неравномерно: чем больше кривизна поверхности, тем больше поверхностная плотность зарядов на поверхности проводника. На рис. 1.25. показаны силовые линии и эквипотенциальные поверхности поля заряженного тела. Наибольшая напряженность получается у острых выступов поверхности. Это приводит к так называемому «стеканию зарядов». Из-за высокой напряженности вблизи острия возникают сложные явления: могут ионизироваться молекулы воздуха, дипольные молекулы втягиваются в область более сильного поля, в результате скорость потока частиц от острия оказывается большей, и образуется «электрический ветер»
. Этот ветер может привести во вращение легкое колесо, находящееся вблизи острия. Воздух становится проводящей средой, возникает разряд, вблизи острых концов часто наблюдается свечение. Поэтому всем деталям в электроустановках, находящихся под высоким напряжением, придают закругленную форму и делают их поверхности гладкими.
Рис. 1.25. Распределение зарядов на поверхности проводника | Рис. 1.26. Напряженность поля вблизи поверхности проводника |
1.6.3. Напряженность поля заряженного проводника вблизи его поверхности
Найдем напряженность поля заряженного проводника вблизи его поверхности, используя теорему Гаусса. Весь проводник представляет собой одну эквипотенциальную поверхность. Силовые линии перпендикулярны эквипотенциальным поверхностям. Выберем в качестве гауссовой поверхности S цилиндр очень малого размера, образующие которого перпендикулярны поверхности проводника (см. рис. 1.26.). В пределах цилиндра поверхностную плотность заряда s будем считать постоянной.
Разобьем интеграл потока на три: по боковой, по нижней торцевой и по верхней торцевой поверхностям. Первый интеграл = 0, т.к. cos a = 0, второй интеграл = 0, т.к. Е = 0. Получим:
|