поле в алгебре это

Группы, кольца, поля в математике

Группа: определение и примеры групп

Множество с алгебраической операцией называется группой, если выполняются следующие условия:

1) операция в ассоциативна: ;

2) в существует нейтральный элемент ;

Решение. Действительно, операция умножения определена на указанном множестве, так как

Кольцо

1) относительно операции сложения множество — коммутативная группа, т.е.

а) операция сложения коммутативна: ;

б) операция сложения ассоциативна: ;

в) существует нулевой элемент ;

г) для каждого элемента существует противоположный ему элемент ;

2) операция умножения в множестве ассоциативна:

3) операции сложения и умножения связаны законами дистрибутивности:

Кольцами являются множества целых, рациональных, действительных чисел, причем все они — коммутативные кольца с единицей. Примеры других колец, в том числе и некоммутативных, встретятся в дальнейшем. Как видим, кольцо — это множество, в котором определены три операции: сложение, умножение и вычитание.

Если операция коммутативна, то дистрибутивность слева операции относительно операции влечет дистрибутивность справа, так как

Решение. В самом деле, для любых положительных действительных чисел справедливы равенства

Следовательно, операция дистрибутивна справа относительно операции умножения чисел. Дистрибутивность слева относительно умножения опровергается примером

Пример В.7. Доказать, что множество чисел вида, где и — целые числа, является кольцом:

Решение. Действительно, операции сложения и умножения определены на рассматриваемом множестве, так как сумма и произведение двух чисел вида (В.2) имеют тоже самое представление:

Таким образом, рассматриваемое множество удовлетворяет всем условиям определения кольца.

Поле: определение и примеры полей

1) — коммутативное кольцо с единицей ;

Как видим, поле — это множество, в котором определены четыре операции: сложение, умножение, вычитание и деление. Полями, например, являются множества рациональных и действительных чисел.

Пример В.8. На множестве трех целых чисел определим две операции:

1) «сложение по модулю 3» — остаток от деления суммы на 3 (обозначим через );

2) «умножение по модулю 3» — остаток от деления произведения на 3 (обозначим через ).

Доказать, что множество является полем относительно введенных операций.

– остаток от деления на 3 суммы не изменится, если слагаемое (или не сколько слагаемых) заменить его остатком при делении на 3:

– остаток от деления на 3 произведения не изменится, если множитель (или несколько множителей) заменить его остатком при делении на 3:

Рассматриваемые в примере операции «сложения по модулю 3» и «умножения по модулю 3» можно представить в виде

Покажем, что множество является коммутативным кольцом с единицей. В самом деле, операция «сложения по модулю 3» коммутативна и ассоциативна. Это следует из коммутативности и ассоциативности сложения чисел. Действительно, из равенства следует, что

Коммутативность доказана. Заметим, впрочем, что коммутативность «сложения по модулю 3» видна непосредственно по таблице (см. рис.В.2): слагаемые и в таблице можно поменять местами, при этом таблица не изменится.

Из равенства следует, что

Ассоциативность «сложения по модулю 3» доказана.

Итак, множество относительно операции «сложения по модулю 3» является коммутативной группой.

Операция «умножение по модулю 3» ассоциативна и коммутативна, что следует из ассоциативности и коммутативности умножения целых чисел, а также свойств остатков:

Следовательно, операция «умножения по модулю 3» дистрибутивна слева относительно операции «сложения по модулю 3». Дистрибутивность справа можно не проверять, так как обе операции коммутативны.

Единичным элементом служит число 1 (что видно по таблице «умножения по модулю 3»). Следовательно, — коммутативное кольцо с единицей.

Пример В.9. Доказать, что множество чисел вида, где и — рациональные числа, является полем:

Решение. Действительно, операции сложения и умножения определены на рассматриваемом множестве, так как сумма и произведение двух чисел вида (В.З) имеют тоже самое представление:

Так как рассматриваемое множество является коммутативным кольцом с единицей и каждый элемент, отличный от нуля, имеет обратный, то оно является полем.

Источник

Поле (алгебра)

По́лем называется множество F с двумя бинарными операциями поле в алгебре это. Смотреть фото поле в алгебре это. Смотреть картинку поле в алгебре это. Картинка про поле в алгебре это. Фото поле в алгебре это(аддитивная операция, или сложение) и поле в алгебре это. Смотреть фото поле в алгебре это. Смотреть картинку поле в алгебре это. Картинка про поле в алгебре это. Фото поле в алгебре это(мультипликативная операция, или умножение), если оно (вместе с этими операциями) образует коммутативное ассоциативное кольцо c единицей поле в алгебре это. Смотреть фото поле в алгебре это. Смотреть картинку поле в алгебре это. Картинка про поле в алгебре это. Фото поле в алгебре это, все ненулевые элементы которого обратимы.

Иными словами, множество F с двумя бинарными операциями поле в алгебре это. Смотреть фото поле в алгебре это. Смотреть картинку поле в алгебре это. Картинка про поле в алгебре это. Фото поле в алгебре это(сложение) и поле в алгебре это. Смотреть фото поле в алгебре это. Смотреть картинку поле в алгебре это. Картинка про поле в алгебре это. Фото поле в алгебре это(умножение) называется полем, если оно образует коммутативную группу по сложению поле в алгебре это. Смотреть фото поле в алгебре это. Смотреть картинку поле в алгебре это. Картинка про поле в алгебре это. Фото поле в алгебре это, все его ненулевые элементы образуют коммутативную группу по умножению поле в алгебре это. Смотреть фото поле в алгебре это. Смотреть картинку поле в алгебре это. Картинка про поле в алгебре это. Фото поле в алгебре это, и выполняется свойство дистрибутивности.

Содержание

Связанные определения

Свойства

Примеры множеств, являющихся полями

См.также

Ссылки

поле в алгебре это. Смотреть фото поле в алгебре это. Смотреть картинку поле в алгебре это. Картинка про поле в алгебре это. Фото поле в алгебре это

Полезное

Смотреть что такое «Поле (алгебра)» в других словарях:

Алгебра Хопфа — Алгебра Хопфа алгебра, являющаяся унитарной ассоциативной коалгеброй и, таким образом, биалгеброй c антигомоморфизмом специального вида. Названа в честь Х. Хопфа. Алгебры Хопфа встречаются в алгебраической топологии, где они возникли в… … Википедия

Алгебра Темперли — Алгебра Темперли Либа, в статистической механике алгебра, при помощи которой строятся некоторые трансфер матрицы. Открыты Невиллом Темперли и Эллиотом Либом. Также алгебра применяется в теории интегрируемых моделей, имеет отношение… … Википедия

Поле (алгебраич.) — Поле алгебраическое, важное алгебраическое понятие, часто используемое как в самой алгебре, так и в др. отделах математики и являющееся предметом самостоятельного изучения. Над обычными числами можно производить четыре арифметических действия… … Большая советская энциклопедия

АЛГЕБРА АБСТРАКТНАЯ — (общая алгебра), раздел современной математики, выросший из исследования уравнений и теории чисел. Свою теперешнюю форму абстрактная алгебра начала приобретать лишь в двадцатом веке. Занимается главным образом изучением систем, элементы которых… … Энциклопедия Кольера

АЛГЕБРА — часть математики, посвященная изучению алгебраических операций. Исторический очерк. Простейшие алгебраич. операции арифметич. действия над натуральными и положительными рациональными числами встречаются в самых ранних математич. текстах,… … Математическая энциклопедия

ПОЛЕ — коммутативно ассоциативное кольцо с единицей, множество ненулевых элементов к рого не пусто и образует группу относительно умножения. П. можно охарактеризовать также как простые ненулевые коммутативно ассоциативные кольца с единицей. Примеры… … Математическая энциклопедия

Алгебра — У этого термина существуют и другие значения, см. Алгебра (значения). Алгебра (от араб. الجبر‎‎, «аль джабр» восполнение[1]) раздел математики, который можно грубо охарактеризовать как обобщение и расширение арифметики. Слово… … Википедия

Поле — I Поле 1) обширное, ровное, безлесное пространство. 2) В сельском хозяйстве участки пашни, на которые разделены площадь Севооборота, а также внесевооборотные (запольные) участки, используемые для выращивания с. х. растений. 3)… … Большая советская энциклопедия

Источник

Поле (алгебра)

По́ле в общей алгебре — алгебра, для элементов которой определены операции сложения, вычитания, умножения и деления (кроме деления на нуль), причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Хотя названия операций поля взяты из арифметики, следует иметь в виду, что элементы поля не обязательно являются числами, и определения операций могут быть далеки от арифметических.

В рамках понятия о поле неявно работал ещё Галуа в 1830 году, с использованием идеи алгебраического расширения поля ему удалось найти необходимое и достаточное условие того, чтобы уравнение от одной переменной можно было решить в радикалах. Позднее при помощи теории Галуа была доказана невозможность решения таких классических задач, как квадратура круга, трисекция угла и удвоение куба. Явное введение понятия поля относят к Дедекинду (изначально под названием «рациональная область», термин «поле» введён в 1871 году). Будучи наиболее близким из всех общеалгебраических абстракций к обычным числам, поле используется в линейной алгебре как структура, универсализирующая понятие скаляра, и основная структура линейной алгебры — линейное пространство — определяется как конструкция над произвольным полем. Также теория полей в значительной степени составляет инструментальную основу таких разделов, как алгебраическая геометрия и алгебраическая теория чисел.

В связи с другими структурами (исторически возникшими позднее) поле может быть определено как коммутативное кольцо, являющееся телом. Иерархия структур следующая:

Над полями естественным образом вводятся основные общеалгебраические определения: подполем называется подмножество, само являющееся полем относительно сужения на него операций из основного поля, расширением — поле, содержащее данное в качестве подполя.

Поля Галуа — поля, состоящие из конечного числа элементов. Названы в честь их первого исследователя Эвариста Галуа.

Источник

Поле (алгебра)

По́ле в общей алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления (кроме деления на ноль), причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Хотя названия операций поля взяты из арифметики, следует иметь в виду, что элементы поля не обязательно являются числами, и определения операций могут быть далеки от арифметических.

Содержание

История [ | ]

В рамках понятия о поле неявно работал ещё Галуа в 1830 году, с использованием идеи алгебраического расширения поля ему удалось найти необходимое и достаточное условие того, чтобы уравнение от одной переменной можно было решить в радикалах. Позднее при помощи теории Галуа была доказана невозможность решения таких классических задач, как квадратура круга, трисекция угла и удвоение куба.

Будучи наиболее близким из всех общеалгебраических абстракций к обычным числам, поле используется в линейной алгебре как структура, универсализирующая понятие скаляра, и основная структура линейной алгебры — линейное пространство — определяется как конструкция над произвольным полем. Также теория полей в значительной степени составляет инструментальную основу таких разделов, как алгебраическая геометрия и алгебраическая теория чисел.

Формальные определения [ | ]

Аксиомы 1-7 и 9 — это определение коммутативного кольца с единицей.

Исключив аксиому коммутативности умножения, получим определение тела.

В связи с другими структурами (исторически возникшими позднее) поле может быть определено как коммутативное кольцо, являющееся телом. Иерархия структур следующая:

Связанные определения [ | ]

Над полями естественным образом вводятся основные общеалгебраические определения: подполем называется подмножество, само являющееся полем относительно сужения на него операций из основного поля, расширением — поле, содержащее данное в качестве подполя.

Если такого числа не существует, то характеристика считается равной нулю. Задачу определения характеристики обычно решают с задействованием понятия простого поля — поля, не содержащего собственных подполей, благодаря факту, что любое поле содержит ровно одно из простых полей.

Поля Галуа — поля, состоящие из конечного числа элементов. Названы в честь их первого исследователя Эвариста Галуа.

Свойства [ | ]

Примеры полей [ | ]

Поля характеристики, равной 0 [ | ]

Поля ненулевой характеристики [ | ]

Любое конечное поле имеет характеристику, отличную от нуля. Примеры конечных полей:

Существуют примеры бесконечных полей ненулевой характеристики.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *