поле равномерно заряженного кольца
Поле равномерно заряженного кольца
Вычисление электрических полей с помощью теоремы Остроградского –Гаусса | |
Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах. Поле бесконечной однородно заряженной плоскости Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле: где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности. Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность Очевидно, что в симметричных, относительно плоскости точках, напряженность Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).
Тогда Суммарный поток через замкнутую поверхность (цилиндр) будет равен: Внутри поверхности заключен заряд откуда видно, что напряженность поля плоскости S равна: Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости Поле двух равномерно заряженных плоскостей Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13). Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей Тогда внутри плоскостей Вне плоскостей напряженность поля Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор). Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин): Механические силы, действующие между заряженными телами, называют пондермоторными. Тогда сила притяжения между пластинами конденсатора: где S – площадь обкладок конденсатора. Т.к. Это формула для расчета пондермоторной силы. Поле заряженного бесконечно длинного цилиндра (нити) Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра. Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров Следовательно, поток вектора При Если Если уменьшать радиус цилиндра R (при Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае: Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор). Поле заряженного пустотелого шара Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, Если откуда поле вне сферы: Внутри сферы, при Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы. Поле объемного заряженного шара Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула: Но внутри шара при где ρ – объемная плотность заряда, равная: Таким образом, внутри шара Пример расчета напряженности Электрического поля равномерно заряженного тонкого кольцаВекторы напряжённости электрического поля каждого из этих зарядов одинаковы по модулю и направлены так, что концы этих векторов образуют конус с вершиной в точке A (штриховой линией показано основание этого конуса). Проекции этих векторов на плоскость кольца компенсируются, поэтому суммарный вектор направлен вдоль оси z: E (при z > 0). Вычислим Ez. Напряжённость поля точечного заряда: В этом выражении все величины – постоянные, кроме dq. Проинтегрируем по q: Поток вектора напряженности. Теорема Остроградского-Гауса для электростатического поля в вакууме. Применение теоремы к расчету напряженности поля. Пример: поле бесконечно большой равномерно заряженной плоскости. Элементарный поток направлен по внешней нормали к малому участку dS (Если поверхность S не замкнута, то выбор одного из двух направлений нормали произволен, при этом направление нормали для всех участков dSдолжно быть одинаковым) Полный поток вектора сквозь поверхность S E Теорема Остроградского-Гаусса для :поток вектора напряжённости электрического поля сквозь произвольную замкнутую поверхность равен алгебраической сумме зарядов, охваченной этой поверхностью, делённой на ε0: Поле равномерно заряженной бесконечной плоскости: Работа сил электростатического поля по перемещению заряда. Потенциал электростатического поля. Связь между напряженностью поля и потенциалом. Понятие градиента. Методы расчета потенциала. Пример: потенциал на оси равномерно заряженного кольца. I уравнение Максвелла для электростатического поля умножим на пробный заряд q0: Разность потенциалов – это работа поля по перемещению пробного заряда из начального положения в конечное, отнесённая к модулю этого заряда и взятая с обратным знаком, или работа внешних сил при том же перемещении, отнесённая к модулю пробного заряда. Дата добавления: 2016-07-05 ; просмотров: 13143 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ Напряженность кольца
Страница обновлена: 05.02.2018 Отзывы и пожелания можно направлять по адресу energ2010@yandex.ru Информация предоставлена для ознакомления и не является официальным источником. и его емкость: Если заряд (или систему зарядов) поместить у безграничной проводящей незаряженной плоскости, то между ними возникнет взаимодействие вследствие появления на этой плоскости индуцированных зарядов. Поле в полупространстве, где расположен заряд, можно найти как сумму полей исходного заряда и «заряда-изображения» в данной плоскости. «Заряд-изображение» ищется из условия, что потенциал результирующего поля на проводящей поверхности должен обратиться в 0. Емкостью системы проводников называется
Емкость плоского конденсатора: При последовательном соединении конденсаторов емкость системы определяется: Примеры решения задачЗадача №1Находящаяся в вакууме круглая очень тонкая пластинка радиуса R равномерно заряжена с поверхностной плотностью s. Найти потенциал и напряженность электрического поля на оси пластинки как функцию расстояния х от ее центра. Потенциал в точке А, расположенной на оси на расстоянии х от центра пластинки будем искать как Разобьем пластинку на тонкие кольца радиуса r и толщины dr. На этом кольце расположен заряд где сделана замена: Из симметрии задачи следует, что напряженность поля пластинки в точке А будет направлена по оси х. Учитывая связь между напряженностью и потенциалом Задача №2Тонкое проволочное кольцо радиуса R имеет заряд q. Кольцо расположено параллельно безграничной проводящей плоскости на расстоянии а от нее. Найти потенциал в центре кольца и поверхностную плотность заряда в точке плоскости, расположенной симметрично относительно кольца. «Зарядом-изображением» будет кольцо зарядом –q, расположенное на расстоянии а по другую сторону плоскости. Поле в полупространстве, содержащем заданное кольцо, будет определяться этим кольцом и его «изображением». Найдем потенциал системы зарядов: Разобьем данный интеграл на 2: Чтобы найти поверхностную плотность зарядов на плоскости в точке О, найдем там напряженность поля, которая у поверхности проводника определяется:
(см. задачу 2 из урока 1). Направление напряженности поля у поверхности проводника в точке О указывает на отрицательный знак поверхностной плотности индуцированного заряда. Ее величина найдется как Задача №3Точечный заряд q находится на расстоянии l от безграничной проводящей плоскости. Найти работу, которую совершит электрическая сила, действующая на заряд q при его медленном удалении на очень большое расстояние от плоскости.
где выражение для силы получено с помощью метода изображений. Проинтегрировав это уравнение по x от l до ¥, найдем Замечание. Попытка решить эту задачу другим способом – через потенциал – приводит к неверному результату. Это связано с тем, что соотношение
|