поле плоскости с током
Учебники
Журнал «Квант»
Общие
§12. Постоянное магнитное поле
12.13 Применение теоремы о циркуляции к расчету магнитного поля.
12.13.1 Поле цилиндрического проводника с током.
Постоянный электрический ток силой I протекает по длинному цилиндрическому проводнику радиуса R (Рис. 55). Найдем распределение индукции магнитного в пространстве, как внутри цилиндра, так и вне его. Будем считать, что ток равномерно распределен по поперечному сечению цилиндра, то есть плотность тока является постоянной и равной
Это предположение выглядит логичным, однако не обоснованным, на самом деле, расчет распределения плотности тока является отдельной сложной задачей.
Можно повторить все рассуждения и экспериментальные обоснования, которые привели нас к выводу о том, что силовые линии магнитного поля прямого тока являются концентрическими окружностями. В данном случае симметрия задачи также осевая, поэтому и здесь силовые линии – окружности с центрами на оси цилиндра. Для расчета величины магнитной индукции, конечно, допустимо использовать закон Био-Саварра-Лапласа и принцип суперпозиции. Но зачем идти таким длинным путем, если есть возможность воспользоваться теоремой о циркуляции вектора магнитной индукции. Сначала в качестве контура L1 выберем окружность радиуса r, совпадающую с одной из силовых линий, которая расположена внутри цилиндра. На этой окружности вектор индукции направлен по касательной к контуру (это же силовая линия) и постоянен по модулю, поэтому циркуляция вектора индукции равна произведению ее модуля на длину окружности \(
из которого находим значение индукции поля
которая возрастает пропорционально расстоянию до оси цилиндра.
Если вычислить циркуляцию для кругового контура L2, радиус r которого превышает радиус цилиндра, то она, по-прежнему, будет равна \(
из которой следует, что магнитное поле в рассматриваемом случае совпадает с полем прямого тока, индукция которого равна
и убывает обратно пропорционально расстоянию до оси цилиндра. На поверхности цилиндра (при r = R) формулы (2) и (3) приводят к одному и тому же результату, здесь индукция поля максимальна \(
Важно отметить, что распределение магнитного поля вне цилиндра не зависит от распределения плотности тока внутри цилиндра, если это распределение сохраняет осевую симметрию. Поэтому если поле создается электрическими токами, протекающими по тонким проводам, то нас не интересует распределение плотности тока в поперечном сечении.
График зависимости индукции поля от расстояния до оси цилиндра приведен на рис. 56.
12.13.2 Поле пластины с током.
Электрический ток равномерно протекает по очень большой пластине (то есть будем считать ее бесконечной), линейная плотность тока равна i (Рис.57). Найдем индукцию магнитного поля, Создаваемого таким распределением токов.
В том случае, когда электрический ток протекает по тонкой пластине, можно пренебречь толщиной пластины, или распределением плотности тока по глубине, то распределение токов на поверхности удобно характеризовать линейной плотностью – отношением силы тока, пересекающего малый отрезок, перпендикулярный направлению тока, к длине этого отрезка
Линейную плотность тока можно считать вектором, указывающим направление движения зарядов.
Линейная плотность тока является некоторым аналогом поверхностной плотности заряда – когда можно пренебречь толщиной слоя, в котором находятся заряды, можно считать, что все заряды находятся на поверхности, и описывать их распределение поверхностной плотностью σ. Кстати, равномерное распределение поверхностных токов можно получить, если равномерно заряженную пластину (с постоянной плотностью заряда σ) двигать с постоянной скоростью \(
\vec i = \sigma \vec \upsilon\) (докажите это самостоятельно).
Вернемся к расчету магнитного поля. Прежде всего, нам необходимо попытаться определить направление вектора индукции этого поля. Используя симметрию задачи можно утверждать, что вектор индукции может зависеть только от расстояния до плоскости (если сместится на некоторое расстояние вдоль плоскости, то распределение токов не изменится, почему должно изменится создаваемое им поле?). Поле под плоскостью совпадет с полем над плоскостью при его повороте на 180° (при таком повороте распределение токов на плоскости не изменяется).
Далее – вектор индукции такого поля не может иметь составляющей, перпендикулярной пластине, иначе не будет выполняться теорема о магнитном потоке.
Наконец, прямой электрический ток, создает магнитное поле, вектор индукции которого перпендикулярен направления тока – откуда в данной задаче взяться составляющей вектора индукции, параллельной току?
Таким образом, мы приходим к выводу, что вектор индукции изучаемого поля и его силовые линии направлены параллельно пластине и перпендикулярно направлению тока (Рис. 57).
К этому же выводу можно прийти на основании принципа суперпозиции. Для этого следует разбить плоскость на ряд очень тонких полосок, параллельных направлению тока, которые можно рассматривать как линейные токи (Рис. 59).
Затем следует просуммировать [1] векторы индукции полей, создаваемых каждой полоской. Понятно, что на бесконечной плоскости каждой полоске I1 (за исключением I0, той, которая находится непосредственно под точкой наблюдения A) найдется симметричная ей I2. Сумма векторов индукции полей, создаваемых симметричными полосками, направлена параллельно плоскости и перпендикулярно току (так же как и вектор индукции центральной полоски I0). Следовательно, и сумма векторов индукции полей, создаваемых всеми полосками направлена также.
Все эти рассуждения нам необходимы, чтобы выбрать контур для подсчета циркуляции в виде прямоугольника ABCD (Рис. 57), симметричного относительно пластины, плоскость которого перпендикулярна пластине и направлению тока, а две его стороны параллельны пластине (длины этих сторон обозначим l). На сторонах BC и DA вектор индукции перпендикулярен им (поэтому здесь \(
\vec B \cdot \Delta \vec l = 0\)), а на сторонах параллельных плоскости вектор индукции постоянен и направлен вдоль контура (поэтому на каждой из этих сторон \(
\sum_k \vec B_k \cdot \Delta \vec l_k = Bl\)). Таким образом, циркуляция вектора индукции по данному контуру равна \(
12.13.3 Поле соленоида.
Соленоидом называется цилиндрическая катушка с проволочной обмоткой, по которой можно пропускать электрический ток (Рис. 60). Такой прибор широко используется в различных приборах для создания магнитного поля и других целей.
Сейчас наша задача – рассчитать характеристики магнитного поля, создаваемого электрическим током, протекающим по обмотке. Будем считать, что все параметры катушки (соленоида) нам известны. Для этого, прежде всего, необходимо качественно обсудить структуру магнитного поля. Первое, самое очевидное, источник обладает осевой симметрией, поэтому создаваемое им поле также должно быть осесимметричным, поэтому достаточно рассмотреть структуру поля (например, его силовые линии).
Далее воспользуемся способом рассуждений Майкла Фарадея, который с каждым электрическим зарядом связывал определенное число силовых линий электрического поля исходящих из заряда (своеобразная трактовка теоремы Гаусса), а с каждым элементом тока определенное число замкнутых силовых линий магнитного поля (теорема о циркуляции индукции магнитного поля).
Соленоид является совокупностью параллельных практически плоских круговых витков, поле которого мы изучали. Посмотрим еще раз на силовые линии поля одного витка (На Рис. 61 показаны поля двух витков – каждое из которых часть рисунка 33). Силовые линии должны охватить проводник с током, поэтому они сгущаются внутри витка, а снаружи удаляются от него. Если сблизить два витка, то силовые линии начнут охватывать оба проводника (токи в них текут в одном направлении), что приведет к еще большему сгущению внутри витков и удалению от них снаружи. Добавление числа витков будет усиливать этот эффект. Поэтому следует ожидать, что для длинного соленоида с большим числом витков, силовые линии внутри соленоида будут почти прямыми линиями с небольшими искривлениями при приближении к границам катушки (Рис. 62), а снаружи от него будут замыкаться где-то очень далеко от катушки.
Проведем еще одну цепочку рассуждений, приводящих к такому же выводу о структуре магнитного поля соленоида.
Сначала рассмотрим электрическое поле равномерно заряженной плоскости, которое является однородным с каждой стороны от плоскости и зеркально симметричным. А затем мысленно свернем часть плоскости в цилиндрическую трубку (Рис. 63). Внутри векторы напряженности окажутся направленными противоположно друг другу, поэтому скомпенсируют друг друга – поле внутри равномерно заряженного цилиндра отсутствует, а снаружи будет радиальным (Рис. 63).
Теперь «сделаем» соленоид из участка плоскости, по которой равномерно протекает электрический ток. В этом случае силовые линии внутри цилиндра сгущаются, а снаружи имеют возможность «разбежаться» (Рис. 64).
Интересная конструкция получится, если расположить параллельно две плоских пластины, по которым токи текут в противоположных направлениях. В этом случае магнитное поле будет создаваться только между пластинами, так как снаружи поля пластин направлены противоположно и компенсируют друг друга. Не напоминает ли эта система плоский конденсатор? Похожая ситуация и в случае соленоида – снаружи вблизи соленоида магнитное поле отсутствует.
Задание для самостоятельной работы.
После того, как структура поля установлена, расчет величины индукции поля является «примитивной задачкой». Выберем контур (см. Рис. 62) для применения теоремы о циркуляции в виде прямоугольника ABCD, стороны которого AB и CD параллельны оси катушки. Подсчет циркуляции вектора индукции магнитного поля (то есть суммы \(
\Gamma_B = \sum_i \vec B_i \cdot \Delta \vec l_i\)) в рассматриваемом случае прост: на стороне AB магнитное поле отсутствует; на сторонах BC и DA вектор индукции перпендикулярен контуру (поэтому соответствующие слагаемые также равны нулю); на стороне CD вектор индукции постоянен и параллелен этой стороне, поэтому здесь \(
Из окончательной формулы (2) следует, что поле внутри длинного соленоида является однородным. При приближении к торцам соленоида начинают сказываться, так называемые, краевые эффекты: во-первых, поле перестает быть однородным, появляются радиальные составляющие вектора индукции (силовые линии изгибаются), во-вторых, величина индукции поля уменьшается.
Задание для самостоятельной работы.
Покажите, в точке находящейся в центре торца соленоида, индукция поля уменьшается в два раза по сравнению с индукцией поля в точках далеких от торцов. (Подсказка: мысленно присоедините к рассматриваемому торцу еще один такой же соленоид).
Магнитное поле
Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.
Природа магнетизма
Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.
Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой — на ЮГ.
Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.
Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.
Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец — южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм «Южный парк», он же Сауз (South) парк).
Магнитные линии и магнитный поток
Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.
Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.
Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии — они замкнуты и непрерывны. В магните это будет выглядеть примерно так.
Если приблизить два разноименных полюса, то произойдет притягивание магнитов
Если же приблизить одноименными полюсами, то произойдет их отталкивание
Итак, ниже важные свойства магнитных силовых линий.
Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.
Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке «а» или на рисунке «б»?
Видим, что на рисунке «а» мало силовых магнитных линий, а на рисунке «б» их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке «б» больше, чем на рисунке «а».
В физике формула магнитного потока записывается как
Ф — магнитный поток, Вебер
В — плотность магнитного потока, Тесла
а — угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах
S — площадь, через которую проходит магнитный поток, м 2
Что же такое 1 Вебер? Один вебер — это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м 2 расположенной перпендикулярно направлению магнитного поля.
Напряженность магнитного поля
Формула напряженности
Слышали ли вы когда-нибудь такое выражение: «напряженность между ними все росла и росла». То есть по сути напряженность — это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой
H — напряженность магнитного поля, Ампер/метр
B — плотность магнитного потока, Тесла
Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.
μ — это относительная магнитная проницаемость.
У разных веществ она разная
Напряженность магнитного поля проводника с током
Итак, имеем какой-либо проводник, по которому течет электрический ток.
Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой
H — напряженность магнитного поля, Ампер/метр
I — сила тока, текущая через проводник, Ампер
r — расстояние до точки, в которой измеряется напряженность, метр
Магнитное поле проводника с током
Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.
Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.
Ввинчиваем по часовой стрелке — саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.
Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам — кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.
Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?
Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.
Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.
Соленоид
А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.
Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.
Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.
Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.
Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала — феррита.
Если в электрических цепях есть такое понятие, как ЭДС — электродвижущая сила, то и в магнитных цепях есть свой аналог — МДС — магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.
I — это сила тока в катушке, Амперы
N — количество витков катушки, штуки)
Также советую посмотреть очень простое и интересное видео про магнитное поле.
Похожие статьи по теме «магнитное поле»