Вычисление электрических полей с помощью теоремы Остроградского –Гаусса
Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.
Поле бесконечной однородно заряженной плоскости
Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:
где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности.
Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).
Очевидно, что в симметричных, относительно плоскости точках, напряженность будетодинакова по величине и противоположна по направлению.
Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).
Рис. 2.11
Рис. 2.12
Тогда
Суммарный поток через замкнутую поверхность (цилиндр) будет равен:
Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского–Гаусса получим:
откуда видно, что напряженность поля плоскости S равна:
Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости
Поле двух равномерно заряженных плоскостей
Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).
Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей .
Тогда внутри плоскостей
Вне плоскостей напряженность поля
Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).
Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):
Механические силы, действующие между заряженными телами, называют пондермоторными.
Тогда сила притяжения между пластинами конденсатора:
где S – площадь обкладок конденсатора. Т.к. , то
Это формула для расчета пондермоторной силы.
Поле заряженного бесконечно длинного цилиндра (нити)
Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью , где d q – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).
Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.
Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров для боковой поверхности т.е. зависит от расстояния r.
Следовательно, поток вектора через рассматриваемую поверхность, равен
При на поверхности будет заряд По теореме Остроградского-Гаусса , отсюда
Если , т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).
Если уменьшать радиус цилиндра R (при ), то можно вблизи поверхности получить поле с очень большой напряженностью и, при , получить нить.
Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком
В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:
Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).
Поле заряженного пустотелого шара
Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, – в любой точке проходит через центр шара. ,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).
Если то внутрь воображаемой сферы попадет весь заряд q, распределенный по сфере, тогда
откуда поле вне сферы:
Внутри сферы, при поле будет равно нулю, т.к. там нет зарядов:
Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы.
Поле объемного заряженного шара
Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула:
Но внутри шара при сферическая поверхность будет содержать в себе заряд, равный
где ρ – объемная плотность заряда, равная: ; – объем шара. Тогда по теореме Остроградского-Гаусса запишем:
Поле двух параллельных бесконечных плоскостей, заряженных разноименно с одинаковой по величине постоянной поверхностной плотностью , можно найти как суперпозицию полей, создаваемых каждой из плоскостей в отдельности (рис. 7.4). В области между плоскостями складываемые поля имеют одинаковое направление, так что результирующая напряженность равна
. (7.2)
Вне объема, ограниченного плоскостями, складываемые поля имеют противоположные направления, так что результирующая напряженность равна нулю.
Таким образом, поле оказывается сосредоточенным между плоскостями. Напряженность поля во всех точках этой области одинакова по величине и по направлению, следовательно, поле однородно. Линии напряженности представляют собой совокупность параллельных равноотстоящих прямых.
Полученный нами результат приближенно справедлив и для плоскостей конечных размеров, если расстояние между плоскостями много меньше их линейных размеров (плоский конденсатор). В этом случае заметные отклонения поля от однородности наблюдаются только вблизи краев пластин (рис 7.5).
(Рис. 7.5)(Савельев стр. 57, 14.5)
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Поле двух бесконечных параллельных разноименно заряженных плоскостей
(рис. 127). Пусть плоскости заряжены равномерно разноименными зарядами с поверхностными плотностями +σ и −σ. Поле таких плоскостей найдем как суперпозицию полей, создаваемых каждой из плоскостей в отдельности.
На рисунке верхние стрелки соответствуют полю от положительно заряженной плоскости, нижние — от отрицательной плоскости. Слева и справа от плоскостей поля вычитаются (линии напряженности направлены навстречу друг другу), поэтому здесь напряженность поля E = 0
В области между плоскостями E++ E− (E+и E− определяются по формуле ), поэтому результирующая напряженность: .
Таким образом, результирующая напряженность поля в области между плоскостями описывается этой формулой, а вне объема, ограниченного плоскостями, равна нулю.
1. Поле равномерно заряженной сферической поверхности
Рис. 1.10. Электрическое поле заряженной сферы
Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью .
Благодаря равномерному распределению заряда по поверхности поле, создаваемое им, обладает сферической симметрией. Поэтому линии напряженности направлены радиально (рис. 1.10, а). Напряженность поля будет, таким образом, одинакова во всех точках воображаемой сферы радиуса r, концентричной с заряженной сферой. Поскольку напряженность поля перпендикулярна поверхности, теорема Гаусса дает
или
.
Рис. 1.11. Зависимость напряженности поля равномерно заряженного шара от расстояния r
Внутри шара при r= 4/3 r 3 . Поэтому, согласно теореме Гаусса
,
График зависимости E от r приведен на рис. 1.11.
3. Поле равномерно заряженной бесконечной плоскости
Рис.1.12. Электрическое поле равномерно заряженной плоскости
Бесконечная плоскость заряжена с постоянной плотностью +.
Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны. В качестве замкнутой поверхности мысленно построим цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Поскольку через боковую поверхность цилиндра поток равен нулю, весь поток проходит сквозь его основания (рис. 1.12 а). По теореме Гаусса
Отсюда напряженность электрического поля равна
.
График зависимости E от r приведен на рис. 1.12 б.
4. Поле равномерно заряженного бесконечного цилиндра (нити)
Рис. 1.13. Электрическое поле равномерно заряженного цилиндра
Бесконечный цилиндр радиуса R заряжен равномерно; линейная плотность заряда равна l. Из соображений симметрии следует, что линии напряженности будут направлены по радиусам круговых сечений с одинаковой густотой во все стороны относительно оси цилиндра. В качестве замкнутой поверхности мысленно построим коаксиальный с заряженным цилиндр радиуса r и высотой l (рис. 1.13 а). Поскольку вектор напряженности параллелен торцам, поток сквозь основания цилиндра равен нулю, и