Площадь круга и его частей. Длина окружности и ее дуг
Основные определения и свойства. Число π
Формулы для площади круга и его частей
Формулы для длины окружности и ее дуг
Площадь круга
Длина окружности
Длина дуги
Площадь сектора
Площадь сегмента
Основные определения и свойства
Фигура
Рисунок
Определения и свойства
Окружность
Часть окружности, расположенная между двумя точками окружности
Конечная часть плоскости, ограниченная окружностью
Часть круга, ограниченная двумя радиусами
Часть круга, ограниченная хордой
Выпуклый многоугольник, у которого все стороны равны и все углы равны
Около любого правильного многоугольника можно описать окружность
Дуга
Часть окружности, расположенная между двумя точками окружности
Круг
Конечная часть плоскости, ограниченная окружностью
Сектор
Часть круга, ограниченная двумя радиусами
Сегмент
Часть круга, ограниченная хордой
Правильный многоугольник
Выпуклый многоугольник, у которого все стороны равны и все углы равны
Около любого правильного многоугольника можно описать окружность
Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.
Формулы для площади круга и его частей
Числовая характеристика
Рисунок
Формула
Площадь круга
,
где R – радиус круга, D – диаметр круга
,
если величина угла α выражена в радианах
,
если величина угла α выражена в градусах
,
если величина угла α выражена в радианах
,
если величина угла α выражена в градусах
,
где R – радиус круга, D – диаметр круга
Площадь сектора
,
если величина угла α выражена в радианах
,
если величина угла α выражена в градусах
Площадь сегмента
,
если величина угла α выражена в радианах
,
если величина угла α выражена в градусах
Формулы для длины окружности и её дуг
Числовая характеристика
Рисунок
Формула
Длина окружности
где R – радиус круга, D – диаметр круга
если величина угла α выражена в радианах
,
если величина угла α выражена в градусах
где R – радиус круга, D – диаметр круга
Длина дуги
если величина угла α выражена в радианах
,
если величина угла α выражена в градусах
Площадь круга
Длина окружности
откуда вытекает формула для длины окружности радиуса R :
Длина дуги
Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.
В случае, когда величина α выражена в градусах, справедлива пропорция
из которой вытекает равенство:
В случае, когда величина α выражена в радианах, справедлива пропорция
из которой вытекает равенство:
Площадь сектора
В случае, когда величина α выражена в градусах, справедлива пропорция
из которой вытекает равенство:
В случае, когда величина α выражена в радианах, справедлива пропорция
из которой вытекает равенство:
Площадь сегмента
Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.
Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем
В случае, когда величина α выражена в в радианах, получаем
Полукруг – это часть круга, которая ограничена полуокружностью и диаметром.
Полукруг (определение, понятие):
Полукруг – это сегмент круга, хордой которого является диаметр этого круга, либо дуга окружности, лежащая между концами диаметра.
В свою очередь, сегмент – это часть круга, которая ограничена дугой и хордой, что соединяет ее концы. Хорда – это отрезок, который соединяет две точки окружности. Дуга – это часть окружности, которая соединяет две точки на окружности.
Полукруг – это часть круга, которая ограничена полуокружностью и диаметром.
Площадь и дуга полукруга:
Площадь полукруга составляет одну вторую (1/2) от площади круга с таким же диаметром.
.
Так как полукруг – половина круга 360°, то дуга полукруга всегда составляет 180°.
Полукруг в архитектуре и культуре:
Театры в Древней Греции были построены в форме полукруга. Это гарантировало хороший обзор и акустику. Зрители, находящиеся на трибунах, могли видеть, что происходило на сцене.
Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.
Он включает в себя: – экономику Второй индустриализации России, – теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России, – организационный механизм осуществления Второй индустриализации России, – справочник прорывных технологий.
Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!
Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.
О Второй индустриализации
Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.
Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.
Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.
Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.
Для того чтобы найти площадь круга, существует формула, которую лучше запомнить:
S=πr 2 – это произведение числа пи на квадрат радиуса.
Поскольку радиус тесно связан отношениями с диаметром и длиной окружности, то путем нехитрых замен можно также вычислить площадь круга через диаметр или длину окружности .
Диаметр – это удвоенный радиус, следовательно, подставляя его в формулу вместо последнего, нужно разделить его обратно на два. Длина окружности представляет собой удвоенное произведение радиуса и числа π: P=2πr, обратным методом получаем, что радиус равен длине окружности, разделенной на его множитель.
Данные онлайн калькуляторы предназначены для расчета площади круга. Вычисление происходит по приведенным выше геометрическим формулам, где π считается константой, округленной до 15-го знака после запятой.
Результат работы калькулятора также округляется до аналогичного разряда. Для использования калькулятора расчета площади круга необходимо ввести только значение радиуса, диаметра или окружности круга. Для калькулятора единицы измерения радиуса не имеют значения – результат вычисляется в абсолютном виде. То есть, если значение радиуса задано, например, в сантиметрах, то и вычисленное калькулятором значение площади круга тоже следует интерпретировать как представленное в квадратных сантиметрах.
Урок 25 Бесплатно Длина окружности и площадь круга
На этом уроке мы рассмотрим одни из самых древнейших геометрических фигур: окружность и круг.
Определим, какими элементами характеризуются круг и окружность, в чем сходство и различие этих фигур.
Узнаем, как рассчитать длину окружности и площадь круга.
Окружность и круг
Мы часто встречаем такие понятия, как окружность и круг.
Давайте попробуем разобраться, что называют окружностью, а что кругом.
Центр окружности— это точка, которая находится на одинаковом расстоянии (равноудаленная) от любой точки окружности, ее обозначают обычно заглавной буквой О.
Свои имена окружность и круг приобрели не сразу.
В древние времена специальных названий для этих фигур не существовало. Люди пытались описать различные геометрические формы, сравнивая объекты. Например, говоря про что-то круглое, говорили: «такой, как солнце» или «такой, как орех» и т.п.
Только в Древней Греции окружность и круг приобрели себе свои названия.
Круг всегда привлекал к себе внимание как самая простая фигура из кривых, но самая загадочная.
У меня есть дополнительная информация к этой части урока!
Древние греки считали круг и окружность символом бесконечности и совершенства. Поражало то, что в каждой своей точке окружность устроена одинаково, представляя собой бесконечную линию, которая движется сама по себе.
У древних славян еще за долго до христианства круг был символом солнца.
Символика круга в различных религиях сопоставляется с целостностью, вечностью и бесконечной мудростью.
У буддистов круг символизирует единство внутреннего и внешнего мира.
В христианстве круг служит эталоном божественного и духовного совершенства.
В живой и неживой природе круги и окружности встречаются как на макроуровнях, так и на микроуровнях. Например, движение электронов вокруг атомного ядра; вращение планет вокруг солнца; распространение волн на воде от упавшего груза; образование солнечного и лунного гало; срез дерева; зрачок глаза у человека и многое другое.
Рассмотрим подробней элементы, характерные для окружности.
Радиус окружности— это отрезок, соединяющий центр окружности и любую другую точку, расположенную на линии окружности.
С латинского радиус (radius)- луч, спица колеса. Радиус не сразу приобрел себе такое название.
Слово радиус впервые встречается в 1569 году у французского ученого П. Рамуса, а общепризнанным становится к концу XVII века.
Радиус обозначается маленькой латинской буквой (r) или заглавной (R).
В окружности можно провести столько же радиусов, сколько точек имеет линия окружности; все эти радиусы равны.
Обычно диаметр обозначают латинской маленькой буквой d или заглавной D.
По величине диаметр равен двум радиусам, лежащим на одной прямой.
d = 2r
Следовательно, радиус- это половина диаметра.
r = d: 2
Пример 1
Радиус окружности равен 6 см.
Чему равен диаметр окружности?
r = 6 см
Решение:
d = 2r
d = 2r= 2*6 = 12 (см) диаметр окружности
Ответ: d= 12 см
Пример 2
Диаметр окружности равен 12 см.
Чему равен радиус окружности?
d = 12 см
Решение:
r = d : 2
r = 12 : 2 = 6 (см) радиус окружности
Ответ: r = 6 см
У меня есть дополнительная информация к этой части урока!
Образовались две дуги: \(\mathbf<\cup AB\ и\ \cup BA>\)
Отрезок, который соединяет любые две точки на окружности (отрезок секущей), называется хордой.
На рисунке отрезок MN является хордой.
Если хорда проходит через центр окружности, то она является самой большой хордой для этой окружности. По своей сути она является диаметром для данной окружности и делит окружность на две равные дуги.
По мере удаления хорды от центра размеры ее уменьшаются, а дуги делятся на большую и малую.
АВ— самая большая хорда окружности- диаметр окружности.
CD, N1M1,NM, FE— хорды окружности.
Хорды окружности, удаленные на равные расстояния от центра, равны.
Хорды NM и N1M1 равны.
Если две хорды пересекаются в точке, то их отрезки пропорциональны.
Важно отметить, что все рассмотренные элементы окружности одинаковы и для круга.
Пройти тест и получить оценку можно после входа или регистрации
Длина окружности и площадь круга
Давайте выясним, что такое длина окружности и как ее определить.
Представьте, что окружность обернута нитью.
Если разрезать эту нить в некоторой точке и размотать ее, то длина нитки будет равна длине окружности.
Обычно длина окружности обозначается заглавной буквой С
Длина окружности (С) зависит от длины ее диаметра (d)
Обратите внимание на рисунок.
Вы можете заметить, что чем больше диаметр, тем больше длина окружности.
Из этого следует, что длина окружности прямо пропорционально зависит от диаметра окружности.
А значит, для любых окружностей отношение длины окружности (С) к длине диаметра (d) является числом постоянным.
Это число (коэффициент пропорциональности) обозначают греческой буквой \(\mathbf<\pi>\), читается «пи».
С— это длина окружности
d— диаметр окружности
запишем отношение \(\mathbf\)
отсюда следует, что длина окружности равна
Так как диаметр окружности вдвое больше радиуса d = 2r, получим еще одну формулу для вычисления длины окружности
Число \(\mathbf<\pi>\)- это иррациональное число, т.е. число, которое представлено в виде бесконечной непериодической десятичной дроби.
У меня есть дополнительная информация к этой части урока!
История числа \(\mathbf< \pi>\) насчитывает около 4 тысячелетий.
Одно из первых доказательств древнего существования этого числа \(\mathbf< \pi>\) заключено в папирусе Ахмеса, в одном из старейших задачников (1650 год до н.э.), найденного в Древнем Египте.
В папирусе дано достаточно точное, особенного для того времени, значение числа, равного 3,1605.
Точнее число \(\mathbf< \pi>\) рассчитал древнегреческий математик Архимед. Он приближенно представил значение константы в виде обыкновенной дроби \(\mathbf<\frac <22><7>>\)
Архимеду удалось найти точное приближение числа \(\mathbf< \pi>\) (т.е. узкий числовой промежуток к которому принадлежит число \(\mathbf< \pi>\)).
Пройти тест и получить оценку можно после входа или регистрации
Решения задач по теме «Длина окружности и площадь круга»
Рассмотрим примеры решения задач
Задача 1
Найдите длину окружности, если ее радиус равен 4 см.
Число \(\mathbf<<\pi>>\) округлите до сотых.
r = 4 см
Решение:
Подставив в формулу известные значения радиуса и постоянной \(\mathbf<\pi>\), получим:
Ответ: \(\mathbf\)(см)
Задача 2
Длина окружности надувного бассейна 15,7м.
Найдите диаметр этого бассейна.
Число \(\mathbf<\pi>\) округлите до сотых.
C= 15,7 м
Решение:
Подставив в формулу известные значения длины окружности и постоянной \(\mathbf<\pi>\), получим:
Ответ: \(\mathbf\) (м)
Задача 3
Диаметр окружности равен 6 см.
Найдите площадь круга, ограниченного этой окружностью.
Значение числа \(\mathbf<\pi>\) округлить до сотых.
d= 6cм
Решение:
\(\mathbf<4><\cdot>3,14<\cdot>6^2 = \frac <3,14<\cdot>36> <4>> = 3,14<\cdot>9=28,26\) (cм 2 ) площадь круга
Ответ: \(\mathbf\) (см 2 )
Задача 4
Вычислите площадь полукруга, если радиус круга равен 5 см.
Значение \(\mathbf<\pi >\) округлить до целых.
r= 5cм
Решение:
Площадь круга найдем по формуле:
Площадь полукруга будет равна половине площади всего круга.
Следовательно, формула для расчета площади полукруга получится вида:
Подставим в формулу известные значения радиуса круга и постоянной \(\mathbf<\pi>\), получим:
\(\mathbf <2>=37,5>\) (cм 2 ) площадь полукруга
Ответ: \(\mathbf\) (см 2 )
Задача 5
Найдите площадь круга, если известна длина окружности С.
Длина окружности С
Решение:
Длина окружности выражается формулой:
Выразим неизвестный радиус окружности через длину окружности:
Площадь круга определяем по формуле:
Подставим, полученные выражения для радиуса окружности, в формулу площади круга, получим:
Сократим полученную дробь:
У меня есть дополнительная информация к этой части урока!
Кроме вычислительных задач, существуют задачи на построение окружности и круга.
Окружность и круг можно начертить с помощью чертежного инструмента, который называется циркуль.
В переводе с латинского языка circulus означает «окружность», «круг».
Циркуль использовали еще с древности, много тысяч лет назад, об этом свидетельствуют найденные на раскопках находки, изображения.
Циркуль представляет собой две одинаковые по длине «ножки». На конце одной из них игла, а на второй- грифель.
Есть циркуль, у которого вместо «ножки» с грифелем помещается карандаш.
Рассмотрим, как построить окружность (круг) на бумаге с помощью циркуля и линейки.
Если задан радиус окружности (круга), то в нулевую отметку на линейке ставим иголку циркуля, другая «ножка» циркуля с грифелем в точку на линейке, равной по значению заданному радиусу.
Не отрывая грифеля второй «ножки» циркуля от бумаги проводим окружность с заданным радиусом.
Если в задаче задан диаметр, то, прежде чем совершать замер по линейке, необходимо диаметр разделить пополам.
Таким образом, устанавливаем раствор циркуля по линейке на расстояние d:2 = r и чертим окружность по выше изложенной схеме.
Данный способ построения окружности (круга) может быть применен и на бумаге, если под рукой не оказалось циркуля.
В качестве колышка берется кнопка, к ней привязывается нить определенной длинны (длина нити равна значению заданного радиуса), ко второму концу привязывается карандаш
Пройти тест и получить оценку можно после входа или регистрации