Овр в медицине что это
Овр в медицине что это
Процессы обмена веществ, дыхания, гниения, брожения, фотосинтеза являются окислительно-восстановительными процессами (ОВП). В живых организмах, вследствие наличия многочисленных мембран, направленного транспорта веществ и прохождения различных ОВП между его частями, возникает разность зарядов, называемая биопотенциалами. По своей природе биопотенциалы могут быть диффузными, мембранными и редокс-потенциалами. Мембранный потенциал имеет ионную природу, а редокс-потенциал – электронную природу. Биопотенциалы играют важнейшую роль в направленном транспорте веществ, работе мембранных систем, процессах биосинтеза, выделения и запасания энергии. Выделение и запасание организмом энергии тесно связано с процессами окисления и восстановления. Биопотенциалы являются качественной и количественной характеристикой направления, глубины и интенсивности протекания биохимических процессов. Поэтому регистрация биопотенциалов органов и тканей широко применяется в клинической практике при изучении их деятельности, в частности, при диагностике сердечно-сосудистых заболеваний снимают электрокардиограмму, при измерении биопотенциалов мышц снимают электромиограмму. Регистрация потенциалов мозга – энцефалография – позволяет судить о патологических нарушениях нервной системы. Источником энергии жизнедеятельности клеток служит мембранный потенциал, равный 80 мВ, обусловленный возникновением ионной асимметрии, т.е. неодинаковым распределением по обе стороны мембраны катионов и анионов.
Важными процессами в организмах являются реакции ферментативного окисления веществ-субстратов: углеводов, жиров, аминокислот. В результате этих процессов организмы получают большое количество энергии. Приблизительно 90 % всей потребности взрослого мужчины в энергии покрывается за счет энергии, вырабатываемой в тканях при окислении углеводов и жиров. Остальную часть энергии
10 % дает окислительное расщепление аминокислот.
Все биохимические ОВП, скорость и глубина которых контролируется организмом, протекают под действием ферментов – оксидоредуктаз, которые делятся на кофакторы и коферменты и могут быть и окислителями и восстановителями [1]. Системы с более низким окислительно-восстановительным потенциалом отдают электроны, с высоким – их принимают. Электроны переносятся по дыхательной цепи ферментов постепенно с нарастанием редокс-потенциала. В качестве переносчиков электронов в дыхательную цепь митохондрий входят различные белки, содержащие разнообразные функциональные группы, которые предназначены для переноса электронов. По мере продвижения по цепи от одного интермедиата к другому электроны теряют свободную энергию. На каждую пару электронов, переданных по дыхательной цепи кислороду, синтезируется три молекулы АТФ. Свободная энергия, высвобождающаяся при переносе двух электронов на кислород, составляет 220 кДж/моль.
В течение жизни человек подвергается воздействию различных вредных внешних факторов – плохая экология, неправильное и зачастую некачественное питание, употребление некачественной питьевой воды, стрессовые ситуации, курение, злоупотребление алкоголем, употребление лекарственных препаратов, болезни и многое другое. Все эти факторы способствуют разрушению окислительно-восстановительной системы регуляции организма, в результате чего процессы окисления начинают преобладать над процессами восстановления, защитные силы организма и функции жизненно важных органов человека начинают ослабевать и уже не в состоянии самостоятельно противостоять различного рода заболеваниям. Замедлить преобладание окислительных процессов над восстановительными процессами возможно с помощью антиокислителей (антиоксидантов). Нормализовать баланс окислительно-восстановительной системы регуляции (с тем, чтобы укрепить защитные силы организма и функции жизненно важных органов человека и позволить организму самостоятельно противостоять различного рода заболеваниям) возможно с помощью антиоксидантов. Чем сильнее антиоксидант, тем более ощутим его противоокислительный эффект. Многочисленные исследования показали, что аскорбиновая кислота является эффективным антиоксидантом, выступая в качестве донора электронов в таких процессах, как гидроксилирование коллагена, биосинтез карнитина и норадреналина, метаболизм тирозина и аминирование гормонов.
Роль окислительно-восстановительных реакций в организме
Анализ механизма активации кислорода во время окисления различных субстратов дыхания. Влияние окислительно-восстановительных процессов на обмен веществ. Применение тиосульфата натрия в качестве универсального антидота. Изучение химического состава воды.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 09.01.2017 |
Размер файла | 23,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство здравоохранения Республики Беларусь
«Гомельский государственный медицинский университет»
Кафедра общей и биоорганической химии
Роль окислительно-восстановительных реакций в организме
3. ОВР в медицине и фармации
4. Окислительно-восстановительный потенциал
Список используемой литературы
Биологическое окисление имеет огромное значение для живых организмов. Большая часть энергии, необходимой для жизнедеятельности, образуется в результате окислительно-восстановительных реакций.
Изучение процессов биологического окисления начал в XVIII в. А. Лавуазье. Он обратил внимание на наличие определенной тождественности процессов горения органических веществ вне организма и дыханием животных. Оказалось, что при дыхании, как и при горении, поглощается кислород и образуются CO2 и H2O, однако процесс «горения» в организме идет очень медленно, к тому же, без пламени.
После работ А. Лавуазье в науке в течение длительного времени господствовало мнение о тождестве явлений горения и медленного окисления питательных веществ в организме. Однако оставалось неясным, почему это особое медленное «горения» в организме происходит при необычных условиях. при определенной низкой температуры (36-37 ° C), без возникновения пламени (как это имеет место при горении) и в присутствии воды, содержание которой достигает в тканях 75-80% от общей массы и которая в обычных условиях горению мешает. Это указывало на то, что медленное окисление органических веществ в организме по своему механизму резко отличается от обычного горения в воздухе органических веществ (дерева, угля и т.д.), хотя конечными продуктами в обоих случаях CO2 и вода.
Причину такого своеобразного течения окислительных процессов в живых организмах ученые сначала пытались объяснить «активацией» кислорода в клетках организма.
Одна из первых теорий биологического окисления, связанных с «активацией» кислорода, была развита русским ученым О.М.Бахом (1897), который считал, что молекула кислорода способна действовать как окислитель органических веществ только после своей активации результате разрыва одного из н «связей в его молекуле (-OO-). Активация происходит, в частности, если в среде присутствуют соединения, которые легко окисляются (например, имеющих двойные связи), при участии ферментов оксигеназ.
Соединения легко окисляются, например, ненасыщенные жирные кислоты, взаимодействуя с кислородом, образуют пероксиды. В этих реакциях окисление параллельно с восстановлением. Таким образом О.М. Бах впервые сформулировал идею о сопряженность окислительно-восстановительных процессов при дыхании. Теория А.Н. Баха получила название «перекисной теории» активации кислорода.
Однако истинный механизм активации кислорода во время окисления различных субстратов дыхания оказался другим.
Изучая окисление субстратов в растениях, В.И. Палладин установил, что оно может происходить без кислорода, если в среде имеются вещества, способные присоединять отщепленным при окислении водород. Такими веществами могут быть пигменты или хромогены и другие вещества, которые выполняют функцию промежуточных переносчиков водорода. Присоединяя водород от субстратов при этом окисляются, хромогены восстанавливаются и становятся бесцветными. Таким образом, В.И. Палладин придавал большое значение процесса окисления как процесса дегидрирования, а также указывал на важную роль кислорода как акцептора водорода в процессах биологического окисления.
Исследования В.И. Палладина были подтверждены работами Г. Виланда, который установил на примере окисления альдегидов, что процесс дегидрирования субстратов является основным процессом, который лежит в основе биологического окисления, и кислород взаимодействует уже с активированными атомами водорода. Таким образом, была создана концепция окисления веществ путем их дегидрирования, которая стала называться теорией Пал-Ладина-Виланда. Большую роль в подтверждении этой теории сыграло открытие и изучение целого ряда ферментов-дегидрогеназ, катализирующих отщепление атомов водорода от различных субстратов.
В дальнейшем были изучены: связь дыхания с другими процессами обмена веществ, в том числе и с процессом фосфорилирования; свойства ферментов, катализирующих реакции биологического окисления; локализация этих ферментов в клетке; механизм аккумуляции и преобразования энергии и т.п..
Значительный вклад в изучение биологического окисления сделали О. Варбург, Д. Кейлин, Г. Кребс, П. Митчелл, Д. Грин, А. Ленинджер, Б. Чанс, Э. Рекер, В.О. Энгельгардт, В.А. Белицер, С.Е. Северин, В.П. Скулачев и др..
Окислительно-восстановительные реакции играют исключительную роль в обмене веществ и энергии, происходящем в организме человека и животных. Реакция окисления неотделима от реакции восстановления, и оба эти процесса необходимо рассматривать в неразрывном единстве. При любой окислительно-восстановительной реакции алгебраическая сумма степеней окисления атомов остается неизменной. Многие окислительно-восстановительные реакции сводятся только к взаимодействию окислителя и восстановителя. Но чаще всего, если реакция осуществляется в водной среде, на ход окислительно-восстановительного процесса оказывает большое влияние взаимодействие реагентов с ионами водорода и гидроксила воды, а также присутствующих в растворе кислот и щелочей. Иногда влияние среды на ход окислительно-восстановительного процесса столь велико, что некоторые реакции могут осуществляться только в кислой или щелочной среде. От кислотно-щелочного баланса среды зависит направление окислительно-восстановительной реакции, количество электронов, присоединяемых молекулой (ионом) окислителя и отдаваемых молекулой (ионом) восстановителя и т. д. Например, реакция между иодидами и иодатами с выделением элементов иода протекает только в присутствии сильных кислот, а в сильно щелочной среде при нагревании может протекать обратная реакция.
В основе процессов дыхания лежит окислительно-восстановительная реакция, при которой молекула диатомного кислорода образует две молекулы воды. В процессе внешнего дыхания кислород воздуха связывается с гемоглобином и в форме оксигемоглобина доставляется с потоком крови к капиллярам тканей. В процессе тканевого, или клеточного дыхания, ткани и клетки поглощают этот кислород, за счет которого осуществляется окисление поступивших в организм из внешней среды белков, жиров и углеводов. одновременно образующийся диоксид углерода с потоком венозной крови направляется в легкие и там, диффундируя через стенки альвеол, оказывается в составе выдыхаемого воздуха. Но в этих процессах биологического окисления субстратами, непосредственно подвергающихся действию кислорода, являются не те высокомолекулярные соединения, которые первоначально находились в составе пищи, а образовавшиеся в результате гидролитического расщепления в желудочно-пищевом тракте более простые, низкомолекулярные продукты.
Другая часть продуктов гидролиза подвергается окислению, при котором наряду с диоксидом углерода, водой, аммиаком, мочевиной и т. д. образуются также продукты неполного окисления.
На второй стадии диссимиляции освобождается около 1/3 общего количества энергии, но еще не происходит аккумулирование выделившейся энергии путем образования высокоэргических веществ.
На третьей стадии диссимиляции освобождается 40?60% энергии, которая используется организмом для синтеза высокоэргических веществ.
Таким образом, рассмотренные стадии диссимиляции в организме питательных веществ показывает, что энергоснабжение организма на 99% обеспечивается протеканием в нем окислительно-восстановительных процессов.
Кроме того, с помощью окислительно-восстановительных реакций в организме разрушаются некоторые токсические вещества, образующиеся в ходе метаболизма. Именно таким путем организм избавляется от вредного влияния промежуточных продуктов биохимического окисления.
3. ОВР в медицине и фармации
Сведения относительно окислительно-восстановительных свойств различных лекарственных препаратов позволяют решать вопросы о совместимости при одновременном их назначении больному, а также о допустимости их совместного хранения. С учетом этих данных становятся понятными несовместимость ряда лекарственных средств (например, таких как ио-дид калия и нитрит натрия, перманганат калия и тиосульфат натрия, пероксид водорода и ио-диды и т. д.).
Во многих случаях фармацевтические свойства медицинских препаратов находятся в непосредственной связи с их окислительно-восстановительными свойствами. Так, например, многие из антисептических, противомикробных и дезинфицирующих средств, (иод, перманганат калия, пероксид водорода, соли меди, серебра и ртути) являются в то же время и сильными окислителями.
Применение тиосульфата натрия в качестве универсального антидота (противоядия) основано на его способности участвовать в окислительно-восстановительных реакциях в роли как окислителя, так и восстановителя. В случае отравлений соединениями мышьяка, ртути и свинца, прием внутрь раствора тиосульфата натрия приводит к образованию труднорастворимых и потому практически неядовитых сульфатов. При отравлениях синильной кислотой или цианидами тиосульфат натрия дает возможность превратить эти токсичные вещества в менее ядовитые роданистые соединения. При отравлении галогенами и другими сильными окислителями антитоксическое действие триосульфата натрия обусловлено его умеренными восстановительными свойствами.
4. Окислительно-восстановительный потенциал
Значение ОВП для каждой окислительно-восстановительной реакции может иметь как положительное, так и отрицательное значение.
В биохимии величины редокс-потенциала выражаются не в милливольтах, а в условных единицах rH (reduction Hydrogenii).
Шкала условных единиц rH содержит 42 деления.
pH и rH тесно взаимосвязаны.
В организме человека энергия, выделяемая в ходе окислительно-восстановительных реакций, расходуется на поддержание гомеостаза (относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций организма) и регенерацию клеток организма, т. е. на обеспечение процессов жизнедеятельности организма.
новках обратного осмоса и большинства разнообразных больших и малых водоочистительных систем.
Указанные различия ОВП внутренней среды организма человека и питьевой воды означают, что активность электронов во внутренней среде организма человека намного выше, чем активность электронов в питьевой воде.
Активность электронов является важнейшей характеристикой внутренней среды организма, поскольку напрямую связана с фундаментальными процессами жизнедеятельности.
Когда обычная питьевая вода проникает в ткани человеческого (или иного) организма, она отнимает электроны от клеток и тканей, которые состоят из воды на 80?90%. В результате этого биологические структуры организма (клеточные мембраны, органоиды клеток, нуклеиновые кислоты и другие) подвергаются окислительному разрушению. Так организм изнашивается, стареет, жизненно-важные органы теряют свою функцию. Но эти негативные процессы могут быть замедлены, если в организм с питьем и пищей поступает вода, обладающая свойствами внутренней среды организма, т. е. обладающая защитными и восстановительными свойствами.
Для того, чтобы организм оптимальным образом использовал в обменных процессах питьевую воду с положительным значением окислительно-восстановительного потенциала, ее ОВП должен соответствовать значению ОВП внутренней среды организма. Необходимое изменение ОВП воды в организме происходит за счет затраты электрической энергии клеточных мембран, т. е. энергии самого высокого уровня, энергии, которая фактически является конечным продуктом биохимической цепи трансформации питательных веществ.
Количество энергии, затрачиваемой организмом на достижение биосовместимости воды, пропорциональна ее количеству и разности ОВП воды и внутренней среды организма.
Если поступающая в организм питьевая вода имеет ОВП близкий к значению ОВП внутренней среды организма человека, то электрическая энергия клеточных мембран (жизненная энергия организма) не расходуется на коррекцию активности электронов воды и вода тотчас же усваивается, поскольку обладает биологической совместимостью по этому параметру. Если питьевая вода имеет ОВП более отрицательный, чем ОВП внутренней среды организма, то она подпитывает его этой энергией, которая используется клетками, как энергетический резерв антиокси-дантной защиты организма от неблагоприятного влияния внешней среды.
Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд других химических процессов в основе своей являются окислительно-восстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления-восстановления.
Получение элементарных веществ (железа, хрома, марганца, золота, серебра, серы, хлора, иода и т. д.) и ценных химических продуктов (аммиака, щелочей, азотной, серной и других кислот) основана на окислительно-восстановительных реакциях.
На окислении-восстановлении в аналитической химии основаны методы объемного анализа: перманганатометрия, йодометрия, броматометрия и другие, играющие важную роль при контролировании производственных процессов и выполнении научных исследований.
Таким образом, большинство химических процессов, протекающих в природе и осуществляемых человеком в его практической деятельности, представляют собой окислительно-восстановительные реакции. Эти реакции являются основными процессами, обеспечивающими жизнедеятельность любого организма и имеют огромное значение в теории и практике.
Глубокое знание сущности и закономерностей протекания химических реакций дает возможность управлять ими и использовать для синтеза новых веществ. Усвоение общих закономерностей протекания химических реакций необходимо для последующего изучения свойств неорганических и органических веществ, что важно для понимания процессов, происходящих в организме человека.
Список используемой литературы
Размещено на Allbest.ru
Подобные документы
реферат [130,1 K], добавлен 03.10.2011
Определение водородного и гидроксильного показателей. Составление окислительно-восстановительных реакций и электронного баланса. Изменение степени окисления атомов реагирующих веществ. Качественные реакции на катионы различных аналитических групп.
практическая работа [88,2 K], добавлен 05.02.2012
Важнейшие окислители и восстановители. Cоставление уравнений окислительно-восстановительных реакций и подбор стехиометрических коэффициентов. Влияние различных факторов на протекание реакций. Окислительно-восстановительный эквивалент, сущность закона.
лекция [72,5 K], добавлен 22.04.2013
Методы окислительно-восстановительного титрования. Основные окислители и восстановители. Факторы, влияющие на окислительно-восстановительные реакции. Применение реакции окисления-восстановления в анализе лекарственных веществ. Растворы тиосульфата натрия.
презентация [1,0 M], добавлен 21.10.2013
Составление уравнений окислительно-восстановительных реакций методом электронного баланса. Степень окисления как условный заряд атома элемента. Распространённые восстановители. Свободные неметаллы, переходящие в отрицательные ионы. Влияние концентрации.
презентация [498,5 K], добавлен 17.05.2014
Витамин С (обзор).
Автор: О. Громова, доктор медицинских наук
Источник: Научно-практический журнал «Эстетическая медицина» том VI • №1 • 2007
Витамин С отличается от всех других витаминов. В ХХ веке за открытия, связанные с витамином С, присуждены две Нобелевские премии: в 1937 году Альберту Имре Сент-Дьердьи (Albert Szent Gyorgyi) – за открытие структуры и роли витамина С в антиокислительных процессах и в 1954 году Лайнусу Полингу (L. Pauling) – за работы о природе химической связи и их приложение к определению структуры сложных соединений. В 60–70 годы Л. Полинг осуществил важнейшие исследования о влиянии витамина С на фагоцитоз, чем перевел витаминологию в русло развития иммунофармакологии.
А. Сент-Дьердьи обладал необходимым для исследователя даром – способностью, по его собственному выражению, «видеть то, что видят все и при этом думать то, что другому не придет в голову». Благодаря этому, он обнаружил казавшуюся невероятной связь между появлением темных кругов вокруг глаз, гиперпигментацией кожи пациентов, страдающих болезнью Адисона и надпочечниковой недостаточностью, и потемнением свежего среза картофеля, яблока и груши, в то время как цитрусовые на срезе не темнеют! Из цитрусовых и красного болгарского перца, а также из коры надпочечников А. Сент-Дьердьи выделил сильнейший восстановитель, который назвал сначала гексуроновой кислотой, а затем витамином С. Название «витамин С» в 1920 году предложил Дж. Драммонд (J. Drummond) для обозначения некоего антицинготного фактора (витамин против скорбута, цинги). Очищенный препарат витамина С впервые получил в 1922 году из сока капусты русский биохимик Н. А. Бессонов.
Позже были созданы различные фармакологические формы витамина С, открыты и продолжают уточняться новые детали механизма его воздействия на организм, в связи с чем постоянно меняются подходы к профилактической и лечебной коррекции дефицита этого витамина.
1 ТЕРМИНОЛОГИЯ И ФОРМЫ ВИТАМИНА С
Витамин С вместе с витамином Е и каротиноидами по новой функциональной классификации относят к группе «больших» витаминов-антиоксидантов. Кроме защиты от оксидативного стресса, витамин С способствует гидроксилированию.
Аскорбиновая кислота участвует в окислительно-восстановительных процессах путем окисления в дегидроаскорбиновую кислоту. Этот процесс обратим и сопровождается переносом ионов водорода.
Классикой биохимии стало рассмотрение витамина С как семейства родственных соединений, обладающих активностью L-аскорбиновой кислоты. Наиболее активные представители – L-аскорбиновая (аскорбиновая, 2,3-дегидро-L-тригексано-1,4-лактон) кислота и L-дегидроаскорбиновая кислота.
Дегидроаскорбиновая кислота рядом исследователей признается транспортной формой витамина С, способной проникать через клеточные мембраны без энергетических затрат и быстро восстанавливаться в клетке.
Одноэлектронное окисление L-аскорбиновой кислоты приводит к образованию монодегидроаскорбиновой кислоты, относящейся к свободнорадикальной форме полухиноновой структуры [1]. Некоторые исследователи [2, 3] выделяют два вида витамина С: аскорбиновую кислоту (витамин С1) и пентаоксифлавон (витамин С2). Витамин С2 присутствует в цитрусовых, хвойных, шиповнике и других растениях. Витамин С1 по происхождению может быть как естественным (выделенным из кожуры и плодов цитрусовых, ацеролы, софоры и т.д.), так и синтетическим.
Аскорбиновая кислота может иметь 4 оптических изомера и 2 рацематические формы. Биологически активны только природная форма – L-аскорбиновая кислота и синтетический аналог, полностью копирующий природную форму, широко использующийся в качестве пищевой добавки (код E300).
Полученные синтетическим путем другие, не встречающиеся в природе формы – оптический изомер D-аскорбиновая кислота, а также диастереоизомеры L- и D-изоаскорбиновые кислоты – никакой биологической активностью не обладают.
С основаниями щелочных и щелочноземельных металлов L-аскорбиновая кислота образует хелатные формы – аскорбаты натрия, кальция, магния и калия. Аскорбаты – менее кислые соединения, не являющиеся потенциальными раздражителями слизистой оболочки желудка, что особенно важно для пациентов с заболеваниями желудочно-кишечного тракта с повышенной кислотностью. Поэтому они могут использоваться в более высоких дозах. Кроме того, переносимость смесей аскорбатов лучше, в организм дополнительно поступают, как правило, дефицитные элементы (магний, кальций, калий), аллергические реакции возникают реже.
Часть аскорбиновой кислоты в организме прочно связана с белковыми структурами и нуклеиновыми кислотами. Эти соединения называются аскорбигенами и представляют собой своеобразное депо витамина.
Высвобождение витамина С из аскорбигена происходит только при гидролизе последнего. Витамин С избирательно накапливается в задней доле гипофиза и надпочечниках.
В животных тканях окисление витамина С потенцируют медьсодержащий пептид церулоплазмин или митохондриальная железосодержащая цитохромоксидаза.
Витамин С в организме человека не синтезируется. Генетики предполагают, что человек в процессе эволюции около 25 млн. лет назад утратил способность к синтезу витамина С[1].
Витамин С поступает в организм с пищей и принимает участие в большом числе химических процессов, а в некоторых – играет ключевую роль. С точки зрения эстетической медицины важным свойством витамина С является его уникальная способность потенцировать образование мукополисахаридов соединительной ткани (гиалуроновую и хондроитинсерную кислоты).
Безусловно, поступление гиалуроновой кислоты извне имеет огромное эстетическое значение, обеспечивая максимальное (соответствующее детскому и молодому возрасту) содержание воды в коже. Однако не следует забывать о собственных возможностях организма синтезировать гиалуроновую кислоту при адекватном потреблении витамина С.
Метод физикального осмотра с целью выявления дефицита витамина С предполагает оценку состояния кожи (дефицит витамина соответствует сухой и очень сухой коже), цвета лица (бледность и темные круги вокруг глаз – симптомы дефицита витамина С с развитием относительной надпочечниковой недостаточности).
Уникальная эстетическая роль витамина С заключается в том, что он принимает обязательное участие в синтезе коллагена, а через лизин – в образовании лизиновых мостиков в структуре коллагена.
Аналогичным образом аскорбиновая кислота, трансформируя лизин в оксилизин,участвует в формировании поперечных сшивок эластина и коллагена и тем самым стабилизирует сетчатый матрикс соединительной ткани [4]. Это способствует более быстрому заживлению ран, формированию опорного слоя кожи и позволяет целенаправленно использовать витамин С в период реабилитации после проведения агрессивных эстетических процедур: пластических операций лица и тела, липосакции, установки имплантатов, а также включать в состав коктейлей мезотерапии для омоложения кожи.
Биосинтез коллагена и последующее образование фибрилл и волокон соединительной ткани – процесс достаточно медленный и поэтапный. Разрезы соединительной ткани и хрящей в ходе эстетических операций заживают длительно, особенно у пациентов старше 40 лет. При дефиците витамина С (ионов железа, D-кетоглутарата, магния) образуется неполноценный или атипичный коллаген.
Недостаток витамина С тормозит гидроксилирование пролина и лизина и поэтому является причиной таких тяжелых заболеваний, как цинга, ревматоидный артрит, остеоартроз, склеродермия и ряда других не менее тяжелых и эстетически проблемных заболеваний. Коллаген – основной белок соединительной ткани. С эстетической точки зрения наиболее важно поддержание метаболизма коллагена IV типа, ответственного за сохранение целостности эпителия и эндотелия.
Также витамин С влияет на:
– образование кортикостероидов (при стрессе в несколько раз возрастает уровень потребления витамина С, при длительном дефиците витамина С темнеет кожа вокруг глаз) [1];
– обмен тирозина (влияет на обмен гормонов щитовидной железы, сосудистый тонус, состояние эмоциональной сферы; проявления дефицита витамина С – усталый вид, «потухший» взгляд, апатичное выражение лица) [5];
– трансформацию дофамина в норадреналин(оказывает влияние на гемодинамику и эмоциональную сферу, при дефиците витамина С появляется усталый вид) [6];
– превращение токсичных соединений V-валентного ванадия, вызывающих тяжелые депрессивные состояния, раздражительность и даже мании, в безвредные IV-валентные соединения [7];
– превращение фолиевой кислоты в ее активную форму – тетрагидрофолиевую кислоту (стабилизирует обмен ДНК, опосредованно участвует в профилактике гипергомоцистеинемии) [2];
– активацию мРНК ацетилхолинового рецептора [1];
– регулирование углеводного обмена (регуляцию веса) [8];
– образование активных форм витамина D: транспортной формы [25(OH)D] – в печени; и активной гормональной формы витамина [1,25(ОН)2D] – в почках (профилактика остеопороза) [1];
– потенцирование всасывания железа (совместно с препаратами железа профилактика диффузного выпадения волос) [7];
– обмен холестерина (профилактика атеросклероза) [9];
– активацию ряда ферментов.
Витамин С необходим организму для защиты от вирусных и бактериальных инфекций, для синтеза стероидных гормонов, нейромедиаторов и карнитина, всасывания железа, стимуляции макрофагов, индукции эндогенного интерферона.
Лишь физиологические дозы витамина С стимулируют фагоцитоз, в то время как его мегадозы в силу избыточной антиоксидантной активности могут приводить к незавершенному фагоцитозу, подавлять фагоцитоз и вызывать специфические дозозависимые эффекты, эффекты негативного взаимодействия с различными лекарственными препаратами, биологически важными токсическими и жизненно необходимыми элементами. Витамин С многократно потенцирует активность рекомбинантных форм человеческого α-интерферона и поэтому как синергист иммуномодулирующего действия и как антиокислитель введен в состав таких
препаратов, как «Виферон», «Кипферон» и т.д. [10].
Таким образом, витамин С регулирует многообразные функции иммунной, нервной систем, стимулирует деятельность эндокринных желез, особенно надпочечников, улучшает функцию печени.
Витамин С всасывается в тонком кишечнике в кровь; это активный энергозатратный процесс, протекающий с участием глюкозы.
Всасываемость витамина С зависит от дозы. При поступлении витамина в организм в количестве до 300 мг усваивается около 70%, при увеличении дозы свыше 300 мг – 50–20% и ниже, что предотвращает развитие гипервитаминоза [1].
Максимальная концентрация аскорбиновой кислоты в крови после приема внутрь достигается через 4 часа. Для насыщения тканей требуется превращение аскорбиновой кислоты в дегидроаскорбиновую, которая легко проникает через мембраны энтероцита без затрат энергии. В клетках дегидроаскорбиновая кислота быстро восстанавливается, превращаясь вновь в аскорбиновую кислоту при участии тиоловых и дисульфидных групп.
Метаболизируется витамин С главным образом в печени, преобразуясь в дезоксиаскорбиновую и дикетогулоновую кислоты. Последняя превращается в щавелево-уксусную кислоту. Метаболиты аскорбиновой кислоты выделяются почками. При избытке поступления витамина С в моче увеличивается концентрация щавелево-уксусной кислоты и возникает угроза дисметаболической нефропатии и камнеобразования. При введении гипердоз витамина С (более 2000 мг/сут.) ускоряется его продвижение по кишечнику и повышается риск осмотической диареи и желудочно-кишечных расстройств (болезненная перистальтика и колики) [1–3,11].
Поскольку аскорбиновая кислота легко окисляется, ее частичное разрушение начинается уже в желудке, особенно при ахилии. Законы всасывания таковы, что кислое хорошо всасывается в кислой среде, а щелочное – в щелочной. Поэтому для усвоения аскорбиновой кислоты важна соответствующая кислотность. Плохая переносимость детьми монопрепаратов аскорбиновой кислоты, а также комплексов, в состав которых входит аскорбиновая кислота, привела к широкому внедрению новой, менее кислой формы витамина С – аскорбата натрия [«Геримакс» («Nycomed»); «Биовиталь Витамин С» («Hoffmann-La Roche»)]. Применение аскорбата натрия нежелательно у детей и подростков с нарушением водно-солевого обмена, с солезависимой формой артериальной гипертензии, цереброваскулярными заболеваниями, при болезнях почек и любых заболеваниях, сопровождающихся появлением отеков.
В последнее время в поливитаминные комплексы активно вводятся аскорбат кальция [«Алвитил» («Solvay»)] или смесь аскорбатов кальция и магния с лизином и цистеином [«Ультра Потент С» («Metagenics»)]. Идея Л. Полинга о противораковых свойствах витамина С и аскорбатов привела к созданию аскорбатов с заданными свойствами (аскорбат платины и т.п.) [1]. В странах Европы период наблюдения за пациентами, получающими витамин С, превышает 10 лет.
4 ПОТЕНЦИРОВАНИЕ АКТИВНОСТИ ВИТАМИНА С
Основным направлением в эволюции фармакологии витамина С явилось не столько получение хелатов (аскорбаты Me++, Me+), сколько потенцирование его свойств (усвоение, снижение риска нежелательных эффектов).
Оказалось, что улучшение фармакокинетических параметров достижимо при введении аскорбатов, повышении устойчивости оболочки микрокапсулированного витамина С к кислой среде желудка и обеспечении ее растворения лишь в тонком кишечнике – месте преимущественного всасывания витамина С.
Использование технологии микрокапсулирования и раздельного гранулирования витамина С и элементов-антагонистов (железа, меди) в одном комплексе значительно снизило их физико-химическое взаимодействие, что улучшило качество хранения препаратов.
Однако существенно более высокая эффективность была достигнута при разработке новых идей потенцирования разных этапов биохимического маршрута витамина С (глютатион, лизин, цистеин, D-рибоза, гесперидин) по принципу ортомолекулярной медицины. Естественные молекулы, совместно с витамином С участвующие в реализации различных проявлений его функций, воссоздаются в виде идеального пищевого комплекса, необходимого организму для баланса различных видов обмена, в первую очередь –обмена витамина С. В современном способе потенцирования витамина С может быть предусмотрено введение адапторов, снижающих риск нежелательных эффектов. Например, совместное применение натрия тетрапирофосфата снижает риск оксалатурии.
Иммунопотенцирование эффектов витамина С – еще одна инновация. Этот процесс не укладывается в представления клинической фармакологии и оценивается с позиций иммунологии [8, 10, 11]. Так, способность физиологических доз витамина С активировать фагоцитоз значительно возрастает при совместном введении витамина С и α-интерферона, витамина С и глютатиона. Доказана высокая значимость уровня глютатиона для реализации максимальной иммуномодулирующей активности витамина С (оценивался уровень противовирусной, противоопухолевой защиты по динамике специфических маркеров – рост активности естественных киллеров (NK), фактор некроза опухолей, белка р53 и т.д.). В целом, фармакология глютатиона активно развивается. Созданы окисленные формы глютатиона, в том числе содержащие серу в виде SH-групп, для внутримышечного введения [«Глутоксим» («ФармаВам»)], потенцирующие активность витамина С. Однако этот препарат разрешен к применению только у взрослых.
Инновацией в педиатрии является внедрение спецальных апробированных и разрешенных к применению у детей пероральных форм в виде смеси аскорбатов с глютатионом [«Ультра Потент С» («Metagenics»)] [10, 11].
Потенцирование усвоения витамина С промоутерами обмена аскорбиновой кислоты –глютатионом, лизином и цистеином – отражается в активации процесса поглощения витамина С лейкоцитами.
5 РОЛЬ ВИТАМИНА С В ПОДРОСТКОВОМ ВОЗРАСТЕ
Главенствующая роль витамина С для здоровья в пубертатном возрасте заключается в обеспечении подросткового ростового скачка. Во-первых, витамин С вызывает экспрессию генов хондробластов и фибробластов, ответственных за синтез коллагена. Во-вторых, витамин С обеспечивает созревание соединительнотканных белков – коллагена и эластина. Это важно для формирования не только соединительно-тканного слоя сосудов, но и для формирования опорного слоя кожи, связок и оболочек органов. Баланс витамина С – один из способов профилактики близорукости.
При дефиците витамина С в подростковом периоде отмечена более высокая частота кистозных осложнений при угревой сыпи, имеются указания на корреляцию с нарушениями осанки и сколиозом, с формированием растяжек на бедрах, пояснице, у девочек– растяжек на груди [4]. У девушек и молодых женщин баланс витамина С, наряду с эстрогенами, влияет на становление менструального цикла, особенно его фолликулиновой фазы. Для нормализации менструального цикла при недостаточности фолликулиновой фазы применяли витамин С в течение 2 недель, начиная с первого дня цикла [8]. Более поздние исследования показали высокую эффективность нормализации менструальной функции у девочек-подростков при проведении трехмесячной терапии аскорбатом кальция в комплексе с другими витаминами в физиологических дозировках без перерыва [11].
Баланс витамина С – фактор фертильности у молодых мужчин. Семенная жидкость человека содержит около 12 мг% аскорбиновой кислоты, что значительно превышает ее содержание в сыворотке (1,2 мг%).
Исследования показали крайне неблагоприятный прогноз в отношении репродуктивного здоровья у юношей вследствие снижения качества спермы по многим параметрам и в том числе по балансу витаминов [1]. Витамин С используется для дезагглютинации спермы при мужском бесплодии. Агглютинация спермы вызывается усиленным окислением ряда ее белков; в присутствии витамина С белки не окисляются, восстанавливаются и сперматозоиды разделяются. Этот процесс может потенцироваться при совместном поступлении селена (в виде селенцистеина, селенметионина), растительных фосфолипидов и ликопина [«Оксилик» («Woerwag pharma»)].При этом особенностью препарата «Оксилик» является заключение около 25% витамина С в особую желатиновую капсулу, что обеспечивает дополнительное адекватное всасывание. Оставшаяся часть совместно с другими компонентами (β-каротином, ликопином и селеном) окружена оболочкой из фосфолипидов, которая способствует оптимальному прохождению через кишечный эпителий. Такой состав препарата и новые технологии производства позволяют достичь максимального эффекта антиоксидантной защиты [10].
6 ВЗАИМОДЕЙСТВИЕ С МЕТАЛЛАМИ
В естественных условиях многие металлы (железо, кобальт, марганец, медь, серебро) разрушают аскорбиновую кислоту. В жидких и гелеобразных формах витаминно-минеральных комплексов (ВМК), содержащих одновременно витамин C, медь, серебро и/или железо, происходит окисление витамина С (фармацевтический или физико-химический антагонизм). В клетках организма микроэлементы (железо, селен, цинк, медь) и витамин C выступают в качестве синергистов [7, 9].
7 ДЕЙСТВИЕ ВЫСОКИХ ТЕМПЕРАТУР
Аскорбатоксидаза растений усиливает окисление аскорбиновой кислоты, но быстро инактивируется при высокой температуре. Поэтому сохранность витамина С существенно увеличивается при быстром погружении круп и свежих овощей (картофеля, свеклы, моркови т.д.) в кипящую воду. Помещение продуктов в холодную воду и последующее ее постепенное нагревание приводит к инактивации до 70–90% витамина С.
8 ПОТЕНЦИРУЮЩЕЕ ВЛИЯНИЕ ВИТАМИНА С
1. Наряду с приемом бора и цинка в комплексной терапии болезни Вильсона–Коновалова важно применение витамина С в количестве 70 мг/сут., что позволяет снизить абсорбцию меди из пищи и воды.
2. При одновременном применении витамина С и L-цистеина значительно повышается абсорбция цинка.
3. Совместное применение витамина С и препаратов железа повышает биоусвояемость последнего.
4. Витамин С в физиологических дозах позволяет снизить токсичность доксорубицина и цисплатины, усиливает выведение свинца из организма.
5. При приеме витамина С с биофлавоноидами существенно усиливается сосудисто-протективный эффект. Среди биофлавоноидов максимальный синергизм с витамином С в лечении таких сосудистых нарушений, как варикозное расширение вен, геморрой, проявляет гесперидин.
6. Сочетание витамина С и биофлавоноидов в виде гесперидина и глютатиона ингибирует окисление ДНК, потенцирует детоксикацию канцерогенов и предупреждает их образование.
7. Прием аскорбата магния и аскорбата кальция ослабляет бронхоконстрикцию, вызванную гистамином.
8. Витамин С совместно с введением L-цистеина и глютатиона потенцирует иммунный ответ у ВИЧ-позитивных больных. При ВИЧ-инфекции на фоне депрессии иммунной системы усиливаются процессы катаболизма и отмечается аномально низкое содержание L-цистеина и глютатиона. При этом серосодержащая аминокислота L-цистеин является лимитирующей аминокислотой в синтезе глютатиона. Сочетание витамина С с цистеином и глютатионом – классическая потенцирующая антиоксидантная комбинация.
9. Совместное применение витамина С с глютатионом активирует антиоксидантные ферменты глютатион-пероксидазу и глютатион-С-трансферазу, низкая активность которых ассоциирована с ранним старением, нейродегенерацией, диабетом.
10. Прием витамина С и L-лизина снижает частоту возникновения и остроту инфекции простого герпеса, потенцирует созревание полноценного коллагена.
11. Совместное применение витамина С и натрия тетрапирофосфата ингибирует окисление липидов и предотвращает витамин С-индуцируемое отложение солей кальция в почках и крупных сосудах, повышает активность естественных киллеров, приводит к нормализации концентрации аскорбиновой кислоты в лейкоцитах и замедляет скорость распада аскорбиновой кислоты.
12. Витамин С повышает эффективность гипотензивных средств у больных с артериальной гипертонией, при этом показатели артериального давления не выходят за рамки возрастной нормы.
13. Антибактериальная активность антихеликобактерных препаратов повышается при совместном применении с витамином С.
14. Витамин С потенцирует кардиопротекторное действие D-рибозы, синтез аденозина и АТФ, особенно при ишемии [1].
9 ОТРИЦАТЕЛЬНОЕ ВЛИЯНИЕ ВИТАМИНА С НА НЕКОТОРЫЕ ФАРМАКОЛОГИЧЕСКИЕ ПРЕПАРАТЫ
Учитывая кислотный характер витамина С, его не рекомендуется совмещать в одном шприце или растворе для инфузионного введения с другими препаратами. Витамин С может потенцировать дополнительное усвоение алюминия и железа из воды и пищи (не следует превышать суточных доз витамина С при лечении посттравматической энцефалопатии, посттрансфузионной или постдиализной энцефалопатии). Высокие дозы витамина С могут задерживать выведение из организма аспирина и усиливать его побочные эффекты. Витамин С может снизить эффективность гепарина, варфарина, некоторых препаратов, используемых для химиотерапии [9, 12].
10 ДОЗОЗАВИСИМЫЕ НЕЖЕЛАТЕЛЬНЫЕ ЭФФЕКТЫ ВИТАМИНА С
1. К побочным эффектам, связанным с дозировкой и кислотностью витамина С в виде аскорбиновой кислоты, относят раздражение слизистой оболочки желудочно-кишечного тракта (эзофагит, изжога, отрыжка кислым, вздутие и колики в животе).
При введении аскорбатов кальция и магния эти эффекты, как правило, не развиваются. Изза присутствия в аскорбате натрия ионов натрия, пациенты, страдающие склонностью к отекам и повышению артериального давления, этот препарат переносят несколько хуже.
2. Избыточное поступление витамина С приводит к его неферментативному гидролитическому расщеплению с образованием 2,3-дикето-L-гулоновой кислоты, не обладающей позитивной биологической активностью. При дальнейшем распаде этой кислоты образуется щавелевая кислота, что приводит к оксалатурии и даже к оксалатной форме уролитиазиса. Это нарушение генетически детерминировано, поэтому одна и та же доза, превышающая суточную потребность (от 300 мг/сут.), у одного пациента приведет к оксалатурии, а у другого даже более высокие быть абсолютно безопасными [2].
3. Во время беременности следует избегать передозировки витамина С (свыше 500 мг/сут.). Кроме общеизвестных нежелательных эффектов, при агрессивной витаминотерапии в этот период развиваются специфические осложнения. Витамин С может повысить уровень эстрадиола. В очень больших дозах витамин С потенцирует мутагенез [3].
4. Терапия витамином С в высоких фармакологических дозах плохо переносится пациентами, страдающими гемохроматозом, талассемией, сидеробластной анемией, серповидноклеточной анемией, недостаточностью глюкозо-6-фосфат-дегидрогеназы в эритроцитах. Высокие дозы витамина С, особенно при одновременной нагрузке железом, могут ухудшить состояние и спровоцировать гемолиз у пациентов с недостаточностью глюкозо-6-фосфатдегидрогеназы, ускорить преципитацию серповидных эритроцитов.
5. Конкурентные отношения дегидроаскорбиновой кислоты и глюкозы приводят к подавлению инсулина и формированию гиперглюкозурии и гипергликемии. Высокие дозы витамина С противопоказаны при диабете.
6. Гипердозы витамина С (от 1000 мг/сут.) могут вызвать геморрагии вследствие снижения активности агрегации тромбоцитов у пациентов с исходно низким уровнем тромбоцитов.
7. Высокие дозы витамина С повышают возбудимость ЦНС.
8. С приемом больших доз связывают тромбоз глубоких вен, развитие катаракты [1].
9. Высокие дозы витамина С приводят к увеличению потребности организма в витаминах В12, В2 и В6 [1].
11 ДЕФИЦИТ ВИТАМИНА С
Недостаток витамина С в пище в течение 1–3 месяцев способствует развитию гиповитаминоза С, а через 3–6 месяцев уже возникает авитаминоз – цинга. Основная причина – нерациональное питание, недостаток в меню свежих овощей и фруктов, особенно в зимневесенний период года. А также нерациональная кулинарная обработка продуктов – варка в открытой посуде, в воде с высоким содержанием солей железа, серебра, меди, ускоряющих окисление аскорбиновой кислоты, помещение продуктов не в кипящую, а в холодную воду с последующим нагреванием.
К дефициту аскорбиновой кислоты в организме могут привести инфекционные заболевания, обширные хирургические вмешательства, атрофический гастрит, энтерит, стрессовые ситуации, тяжелая физическая работа.
Первоначально гиповитаминоз проявляется неспецифическими симптомами: снижением умственной и физической работоспособности, вялостью, ощущением общей слабости, повышенной заболеваемостью острыми респираторными болезнями. Часто отмечаются повышенная чувствительность к холоду, зябкость, сонливость или, наоборот, плохой сон, депрессия, снижение аппетита. Набухают десны, развивается их кровоточивость. Кожа становится шероховатой («гусиная кожа»), бледной, сухой, тонкой. Усиливается появление морщин; на теле возникают микрокровоизлияния.
Переход гиповитаминоза в авитаминоз (цингу) сопровождается усилением проявления симптомов заболевания, развитием выраженной кровоточивости из-за нарушения синтеза коллагена в сосудистой стенке. Появляются массивные кровоизлияния в мышцы, под кожу, в суставы и пр. Опасны кровоизлияния в плевру и перикард. Сильные боли в мышцах и суставах затрудняют ходьбу. Десны изъязвляются. Судовые врачи XVII века впервые описали цингу у моряков: «зубы больных, лишившиеся опоры, настолько расшатываются, что движутся при повороте головы». Прогрессирует артериальная гипотония, развивается сердечная недостаточность. Наблюдается умеренная гипохромная анемия, резко снижается сопротивляемость организма различным инфекциям.
12 ПОКАЗАНИЯ К ПРИМЕНЕНИЮ ВИТАМИНА С, ОСНОВАННЫЕ НА ДОКАЗАТЕЛЬНОЙ БАЗЕ.
1. Гиповитаминоз С; авитаминоз С (цинга)А.
2. Геморрагические диатезыА, В, С; кровотечения В, С.
3. Инфекционные заболевания А, В; интоксикации В, С.
4. Острая лучевая болезнь А, В, С.
5. Острые и хронические гепатитыВ, С; цирроз печени В.
6. Эзофагит, язвенная болезнь желудка и двенадцатиперстной кишки с геморрагичес
кими проявлениями А, В.
7. Хронический гастрит с ахлоргидрией; хронический энтерит с синдромом мальабсорбции: глютеновая энтеропатия, болезнь Уипла, болезнь Крона, радиационный энтерит, хронический панкреатит с секреторной недостаточностью А, В, С.
8. Надпочечниковая недостаточность А.
9. Вялозаживающие раны, грубое формирование рубца, язвы слизистых оболочек и кожи А.
10. Недостаточность соединительной ткани (стрии), кистозные осложнения при угревой сыпи А, В, С.
11. Мужское бесплодие, обусловленное агрегацией сперматозоидов С.
12. Физическое и умственное переутомление В.
13. Беременность, лактация А.
14. Лекарственная болезнь В, С.
Витамин С – известный экологопротектор.
Доказана способность витамина С выводить из организма избыток свинца, меди, нитрозаминов, мышьяка, бензолов, цианидов в составе комплексной терапии.
Дефицит аскорбиновой кислоты в международной классификации болезней (МКБ-10) имеет код диагноза Е.54. «Недостаточность аскорбиновой кислоты». Отдельно выделяется диагноз Е 64.2. «Последствия недостаточности витамина С».
В России в 2004 году введены новые рекомендуемые уровни потребления витамина С.
для подростков и взрослых [13]. Согласно этим рекомендациям, адекватный уровень потребления витамина С в сутки составляет 70 мг, а верхний допустимый уровень потребления – 700 мг/сут.
14 ПРОДУКТЫ, СОДЕРЖАЩИЕ ВИТАМИН С
Витамин С в основном содержится в растительных продуктах – в свежих овощах и фруктах, не темнеющих на срезе. Высокие концентрации витамина содержат плоды шиповника, сладкий красный перец, горох, клубника, капуста (кочанная, брюссельская, брокколи),хвоя, листья черной смородины, мандарины, все цитрусовые, помидоры, зелень петрушки, укропа. Сохранению аскорбиновой кислоты в растительных продуктах способствует наличие в них антиоксидантов флавоноидной и полифенольной природы.
15 ЛАБОРАТОРНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ВИТАМИНА С
Основным методом определения концентрации витамина С в крови является высокоэффективная жидкостная хроматография – электрохимическая детекция.
Референтные пределы витамина С – 23–85 мкмоль/л, субнормальные значения – 11–23 мкмоль/л, дефицит – менее 11 мкмоль/л.
Прием аспирина, барбитуратов и эстрогенов может приводить к получению ложно низких значений концентрации витамина С, поэтому следует исключить эти препараты 24 часа до исследования. Избыток тяжелых металлов в крови (свинца, кадмия, ртути, никеля и кобальта) также снижает эффективность пробы.
16 КОРРЕКЦИЯ ДЕФИЦИТА ВИТАМИНА С
Для коррекции дефицита витамина С используются препараты, прошедшие регистрацию в России.
Таким образом, витамин С не перестает удивлять исследователей, открывающих все новые грани его воздействия. Как следствие, бурно развивается прикладная фармакология витамина С. Витамин С незаменим и его применение в эстетической медицине безгранично. Подготовка и реабилитация больных при оперативном вмешательстве, при проведении мезотерапии, лечении темных кругов вокруг глаз, пигментных старческих пятен, проблем сухой кожи, петехий, сосудистых звездочек, кровоточивости десен, обильных кровоподтеков при ушибах, всевозможных проявлений несостоятельности соединительной ткани и даже неэмоционального «потухшего» взгляда невозможны без включения в комплексную терапию витамина С – витамина с простой, но загадочной химической формулой, по своему действию похожего на жизненный эликсир, который так долго искали алхимики.
1. Девис М, Остин Дж, Патридж Д. Витамин С: химия и биохимия: Пер. с англ. М.: Медицина, 1999.
2. Спиричев ВБ, Шатнюк ЛН, Поздняковский ВМ. Обогащение пищевых продуктов витаминами и минеральными веществами. Сибирское университетское издательство, Новосибирск, 2004.
3. Тутельян ВА, Спиричев ВБ и др. Микронутриенты в питании здорового и больного человека. М.: Колос, 2002.
4. Мазуров ВИ. Биохимия коллагеновых белков. М.: Медицина, 1974.
5. Кон Р, Рот К. Ранняя диагностика болезней обмена веществ. М.: Медицина, 1986.
6. Северин ЕС. Биохимия. М.: ГэотарМед, 2006.
7. Кудрин АВ, Громова ОА. Микроэлементы в неврологии. М.: ГэотарМед, 2006.Медицина, 2001.
10. Лекарственные препараты в России: справочник ВИДАЛЬ. М.: Астра-Фарм-Сервис, 2006.
11. Ребров ВГ, Громова ОА. Витамины и микроэлементы. М.: АЛЕВ-В, 2003.
12. Подколозин АА, Гуревич КГ. Действие биологически активных веществ в малых дозах. М.: КМК, 2002.
13. Методические рекомендации института питания «Нормативы дозирования микронутриентов в Российской Федерации» МР № 2.3.1. 1915 – 04. МЗСР РФ, М.: 2004.