опыты ампера магнитное поле

Газета ЗАО МПО «Электромонтаж»

Газета «МПО ЭЛЕКТРОМОНТАЖ» июль 2007

В номере

Акцент

Новинки ассортимента

Внимание к деталям

Актуальная покупка

Известная марка

Прошлое больших открытий

Спорт

Коротко

Архив газеты по годам

Все статьи по рубрикам газеты

Опыты Ампера

опыты ампера магнитное поле. Смотреть фото опыты ампера магнитное поле. Смотреть картинку опыты ампера магнитное поле. Картинка про опыты ампера магнитное поле. Фото опыты ампера магнитное поле

Андре-Мари Амперу повезло родиться в богатой аристократической семье, имевшей поместье недалеко от Лиона. На образование ребенка родители не скупились: учителя, приходившие обучать богатого отпрыска, давали ему знания из самых различных областей. Никто не посмел бы отнести мальчика к разряду недорослей: он рано заинтересовался математическими трудами известных ученых и часами проводил время за чтением фолиантов из обширной отцовской библиотеки. А в 13 лет Андре-Мари написал свою первую работу по математике и отправил ее в Лионскую академию.

Во время Великой Французской буржуазной революции был казнен отец Ампера, и юноше пришлось заняться преподаванием, чтобы заработать. Начав с частных уроков математики, он через некоторое время был приглашен в Центральную школу старинного городка Бурк-ан-Бреса для преподавания физики и химии. Потом был Лионский колледж, а в 1807 году, в возрасте 32 лет, он становится профессором Политехнической школы.

Время расцвета научной деятельности Ампера приходится на 1814—1824 годы и связано, главным образом, с Академией наук, в число членов которой он был избран 28 ноября 1814 года за свои заслуги в области математики. Впрочем, наш рассказ — об открытиях, сделанных ученым в области изучения свойств электричества.

В 1820 году датский физик Ханс Христиан Эрстед случайно заметил, что если по проволоке проходит ток, то отклоняется стрелка лежащего рядом компаса. На заседании академии 4 сентября 1820 года был продемонстрирован опыт Эрстеда. А уже к концу сентября Ампер доложил об открытии сил притяжения между двумя параллельными проводниками с током.

Продолжая эти эксперименты, Ампер обнаружил, что катушка с током действует как постоянный магнит (в дальнейшем, работая в этом направлении, Майкл Фарадей открыл явление электромагнитной индукции). Ампер изобрел устройство со свободно подвешенной иглой, которая отклонялась под действием тока через катушку, причем отклонение было тем больше, чем больше сила тока. Усовершенствование этого устройства привело к появлению измерительного прибора — гальванометра. Но даже работая с его прототипом, Ампер установил, что ток течет в замкнутой электрической цепи. В дальнейшем Кирхгоф и Ом установили законы электрических цепей.

Несмотря на нападки своих научных противников, Ампер продолжал свои эксперименты. Он решил найти закон взаимодействия токов в виде строгой математической формулы и нашел этот закон, который носит теперь его имя. Так шаг за шагом в работах Ампера вырастала новая наука — электродинамика, основанная на экспериментах и математической теории. Все основные идеи этой науки, по выражению Максвелла, по сути дела, «вышли из головы этого Ньютона электричества» за две недели.

С 1820 по 1826 год Ампер публикует ряд теоретических и экспериментальных работ по электродинамике и почти на каждом заседании физического отделения Академии выступает с докладом на эту тему. В 1826 году выходит из печати его итоговый классический труд «Теория электродинамических явлений, выведенная исключительно из опыта».

Эффект взаимодействия проводов с током и магнитных полей сейчас используется в электродвигателях, в электрических реле и во многих электроизмерительных приборах.

Андре-Мари Ампер был одновременно и блестящим экспериментатором и блестящим теоретиком. Память ученого увековечена потомками, и даже не один раз: одна из гор на Луне носит его имя, в Париже его именем названа улица. Но главное — любой из нас, измеряя силу тока в электрической цепи, произносит его имя.

Источник

Закон Ампера

Движение электрических зарядов приводит к возникновению магнитных полей.

Одним из главных направлений развития естественной науки в начале XIX века стало растущее осознание взаимосвязей между, казалось бы, совершенно не связанными между собой феноменами электричества и магнетизма. Ханс Кристиан Эрстед (см. Открытие Эрстеда) экспериментально установил, что провод, по которому течет электрический ток, отклоняет магнитную стрелку компаса. Андре-Мари Ампер так заинтересовался этим явлением, что принялся за углубленное экспериментальное и математическое исследование взаимосвязи между электричеством и магнетизмом. В результате и был сформулирован закон, носящий теперь его имя.

Ключевой эксперимент, проведенный Ампером, достаточно прост. Он положил два прямых провода бок о бок и пропускал по ним электрический ток. Выяснилось, что между проводами действует сила притяжения или отталкивания (в зависимости от направления тока. — Прим. переводчика). Конечно, не надо быть семи пядей во лбу, чтобы прийти к такому выводу. Ведь при достаточно сильном токе провода действительно притягиваются или отталкиваются так, что это видно невооруженным глазом. Но Ампер путем тщательных измерений сумел определить, что сила механического взаимодействия пропорциональна силам токов и падает по мере увеличения расстояния между ними. Исходя из этого Ампер решил, что наблюдаемая сила объясняется возникновением магнитного поля.

Рассуждал Ампер примерно так. Электрический ток в одном проводе производит магнитное поле, конфигурация силовых линий которого представляет собой концентрические круги вокруг сечения провода. Второй провод попадает в область воздействия этого магнитного поля, и в нем возникает сила, действующая на движущиеся электрические заряды. Эта сила передается атомам металла, из которого сделан провод, в результате чего провод и изгибается. Таким образом, эксперимент Ампера демонстрирует нам два взаимодополняющих факта о природе электричества и магнетизма: во-первых, любой электрический ток порождает магнитное поле; во-вторых, магнитные поля оказывают силовое воздействие на движущиеся электрические заряды. Первое из этих утверждений сегодня и называют законом Ампера, и закон этот тесно связан с законом Био—Савара. Именно эти два закона затем легли в основу теории электромагнитного поля (см. Уравнения Максвелла).

Если же трактовать закон Ампера чуть шире, то мы поймем, что находящийся в пространстве замкнутый электрический контур формирует вокруг себя магнитное поле, интенсивность которого пропорциональна силе протекающего через контур электрического тока и площади внутри контура. То есть, например, если вокруг отдельного прямолинейного проводника с током формируется магнитное поле, индукция которого равна B на расстоянии r от проводника, то при замыкании такого проводника в круговой контур, путём сложения этих полей внутри контура, образованного замкнутым проводником с током, то есть, выражаясь научным языком, путём интегрирования, мы получим значение интенсивности магнитного поля внутри контура 2рrB, где 2рr — площадь кругового контура. По закону Ампера эта величина и будет пропорциональна силе тока в контуре.

На самом деле вы не раз сталкивались с упоминанием имени Андре-Мари Ампера, возможно сами того не сознавая. Взгляните на любой электроприбор у вас дома — и вы на нем обнаружите его электротехнические характеристики, например: «

220V 50Hz 3,2А». Это значит, что прибор рассчитан на питание от стандартной электросети переменного тока напряжением 220 вольт с частотой 50 герц, а сила потребляемого прибором тока составляет 3,2 ампера. Единица силы тока ампер (сокращенно — А) как раз и названа в честь ученого.

Официальное определение единицы выводится из исходного эксперимента, проделанного Ампером. Это сила тока, протекающего в каждом из двух параллельных прямолинейных проводников, помещенных в вакууме на расстояние одного метра друг от друга, вызывающая между двумя проводниками силу взаимодействия, равную 2×10 –7 ньютона на метр длины. (Все научные определения единиц измерения даются в такой строгой формулировке. Причем речь здесь идет о так называемых «идеальных проводниках» бесконечной длины и ничтожно малого поперечного сечения.) Кстати, при силе тока в 1 ампер в любой точке проводника каждую секунду протекает около 6×10 23 электронов.

Источник

Презентация была опубликована 8 лет назад пользователемedu.of.ru

Похожие презентации

Презентация на тему: » Опыт Эрстеда. Опыт Ампера. Магнитное поле. Конфигурации магнитных полей. Характеристики магнитного поля. Объяснение магнитных свойств вещества. Магнитное.» — Транскрипт:

2 Опыт Эрстеда. Опыт Ампера. Магнитное поле. Конфигурации магнитных полей. Характеристики магнитного поля. Объяснение магнитных свойств вещества. Магнитное поле Земли. Применение магнитов. Явление электромагнитной индукции.

3 « Следует испробовать. Не производит ли электричество… каких-либо действий на магнит…» Ганс Христиан Эрстед

4 Опыт Эрстеда (1820г) Под неподвижным проводником, параллельно ему, поместим магнитную стрелку. При пропускании электрического тока через проводник магнитная стрелка поворачивается и располагается перпендикулярно к проводнику. При размыкании цепи магнитная стрелка возвращается в первоначальное положение. Этот фундаментальный опыт показывает, что в пространстве, окружающем проводник с током, действуют силы, вызывающие движение магнитной стрелки, подобные тем, которые действуют вблизи магнитов. Таким образом, опыт Эрстеда доказывает, что в пространстве, окружающем проводник с током, возникает магнитное поле.

6 Анри Ампер французский физик Впервые указал на тесную «генетическую» связь между электрическими и магнитными процессами

7 Опыт Ампера (1820г). Ампер установил взаимодействие между двумя проводниками по которым идёт ток. По двум параллельным проводникам он пропустил электрический ток. Если токи в них имеют одинаковое направление, то проводники будут друг к другу притягиваться; если в них токи противоположны по направлению, то проводники будут друг от друга отталкиваться. Таким образом. в пространстве, окружающем токи, возникает магнитное поле.

8 Вокруг проводника с током существует магнитное поле. B B Опыт Ампера

10 Магнитные линии – воображаемые линии, вдоль которых расположились бы магнитные стрелки, помещённые в магнитное поле. Магнитная линия Свойства линий магнитного поля: всегда замкнуты; непрерывны; не пересекаются; расположены гуще там, где магнитное поле сильнее.

11 Конфигурации магнитных полей: Проводник с током; Катушка с током; Соленоид; Постоянный магнит;

13 Катушка с током I B

15 Постоянный магнит S N N N

16 Характеристики магнитного поля: а)Вектор магнитной индукции б)Магнитный поток.

17 В – вектор магнитной индукции. В = F l l – длина проводника; I – сила тока в проводнике; 2.Единица магнитной индукции называется тесла (Тл). 1 Тл = 1 Н А м 3.Направление вектора магнитной индукции. 1.Модуль вектора магнитной индукции:

18 1.Правило магнитной стрелки: 2.Правило буравчика: 3. Правило правой руки:

19 1.Правило магнитной стрелки: В Направление В совпадает с направлением от южного полюса S к северному полюсу N. N S 1.Правило магнитной стрелки:

20 2.Правило буравчика: Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока. I В

21 3. Правило правой руки: Если охватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида. I В

22 Ф – магнитный поток. В В 1 2 В 1 В 2

23 В 1 В 2 = S 1 S 2 S 2 S 1

24 В 1 В 2 = S 2 S 1 = 3.Магнитный поток зависит от того, как расположена плоскость контура по отношению к линиям магнитной индукции. В 2 В 1 S 1 S 2 Ф 2 = 0

25 Магнитное поле Земли. Арктика Антарктика (южный географический полюс) (северный географический полюс) N S SMSM NMNM Космическое излучение Магнитные бури Аномалии справка

27 Примеры применения магнитного поля. Электромагнит Магнитный сепаратор Электрический двигатель Генератор переменного тока Магнитные мины.

28 А Магнитное поле катушки с током сердечник

29 Магнитное поле катушки с током можно изменять в широких пределах 1.ввести внутрь катушки железный сердечник; 2.увеличить число витков в катушке; 3.увеличить силу тока в катушке. Железная катушка с сердечником внутри называется э л е к т р о м а г н и т о м.

30 В зерно подмешивают очень мелкие железные опилки. Эти опилки не прилипают к гладким зёрнам полезных злаков, но прилипают к зёрнам сорняков. Зерна из бункера высыпаются на вращающийся барабан, внутри которого находится сильный магнит. Притягивая железные частицы он очищает зерно от сорняков.

31 Зерно Вращающийся барабан электромагнит Железные частицы и зёрна сорняков

32 Генератор переменного тока. Электрический генератор – машина, преобразующая механическую энергию вращения в электрическую энергию постоянного или переменного тока. Действие генератора основано на явлении электромагнитной индукции: при вращении витка в магнитном поле в витке возникает индукционный ток. Неподвижная часть генератора называется статор, а вращающаяся – ротором. В промышленных генераторах вращается магнит, а роль статора выполняет катушка. К концам катушки присоединены полукольца, к которым прижаты щётки, с помощью которых катушка соединяется с внешней цепью.

33 Статор (магнит) Ротор ( катушка) щётки полукольца V 0 5

34 Электрический двигатель. Явление вращения проводника с током в магнитном поле используют в устройстве электрического двигателя. Якорь (ротор) состоит из большого числа витков, находящихся в пазах железного цилиндра. Коллектор – устройство, состоящее из двух полуколец, насаженных на ту же ось, что и якорь. С помощью щёток, которые касаются пластин коллектора, проводники якоря включают в цепь источника тока. Первый в мире электродвигатель изобрёл Борис Семёнович Якоби в 1834г.

35 S N якорь щётки коллектор электромагнит

36 Принцип действия магнитной мины. Каждый корабль можно уподобить огромному плавающему постоянному магниту, ибо его металлический корпус и механизмы под действием магнитного поля Земли намагничиваются. Наличие у кораблей собственного магнитного поля использовалось для создания магнитных мин. В некоторых типах взрывателей магнитных мин реагирующим элементом, вызывающим действие мины, служила магнитная стрелка. Когда в районе расположения мины оказывался корабль, магнитное поле последнего вызывало перемещение магнитной стрелки, замыкавшей электрическую цепь, в которую включены батарея элементов и запал. Мина взрывалась

37 Магнитные мины Магнитная стрелка Запал

39 Магнитные мины катушка взрывателя реле электрический запал магнитное поле корабля

40 Гипотеза Ампера: магнитные свойства тела определяются замкнутыми электрическими токами внутри него.

41 Современная физика: Электроны при движении вокруг ядра атома создают магнитное поле, что и вызывает намагниченность тела.

42 Явление электромагнитной индукции. Майкл Фарадей английский физик При всяком изменении магнитного потока, пронизывающего контур замкнутого проводника, в этом проводнике возникает электрический ток, существующий в течение всего процесса изменения магнитного потока. «Превратить магнетизм в электричество».

Источник

МАГНИТНОЕ ПОЛЕ

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля. Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец — южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные — притягиваются ( рис. 1 ).

опыты ампера магнитное поле. Смотреть фото опыты ампера магнитное поле. Смотреть картинку опыты ампера магнитное поле. Картинка про опыты ампера магнитное поле. Фото опыты ампера магнитное поле

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса, т. е. будет постоянным магнитом ( рис. 2 ). Оба полюса — северный и южный, — неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются — у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

Опыт Эрстэда. Магнитное поле токаопыты ампера магнитное поле. Смотреть фото опыты ампера магнитное поле. Смотреть картинку опыты ампера магнитное поле. Картинка про опыты ампера магнитное поле. Фото опыты ампера магнитное поле

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты. Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему ( рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток ( рис. 5 ). Направление линий определяется правилом правого винта:

Силовой характеристикой магнитного поля является вектор магнитной индукции B. В каждой точке он направлен по касательной к линии поля. Линии электрического поля начинаются на положительных зарядах и оканчиваются на отрицательных, а сила, действующая в этом поле на заряд, направлена по касательной к линии в каждой ее точке. В отличие от электрического, линии магнитного поля замкнуты, что связано с отсутствием в природе «магнитных зарядов».

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид — катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита ( рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления — к наблюдателю — обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа ( рис. 7 а, б).

опыты ампера магнитное поле. Смотреть фото опыты ампера магнитное поле. Смотреть картинку опыты ампера магнитное поле. Картинка про опыты ампера магнитное поле. Фото опыты ампера магнитное поле

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

опыты ампера магнитное поле. Смотреть фото опыты ампера магнитное поле. Смотреть картинку опыты ампера магнитное поле. Картинка про опыты ампера магнитное поле. Фото опыты ампера магнитное поле

Магнитное поле внутри соленоида является однородным — вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B.

Направление силы определяется правилом левой руки:

опыты ампера магнитное поле. Смотреть фото опыты ампера магнитное поле. Смотреть картинку опыты ампера магнитное поле. Картинка про опыты ампера магнитное поле. Фото опыты ампера магнитное полеСледует отметить, что сила, действующая на проводник с током в магнитном поле, направлена не по касательной к его силовым линиям, подобно электрической силе, а перпендикулярна им. На проводник, расположенный вдоль силовых линий, магнитная сила не действует.

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Отношение опыты ампера магнитное поле. Смотреть фото опыты ампера магнитное поле. Смотреть картинку опыты ампера магнитное поле. Картинка про опыты ампера магнитное поле. Фото опыты ампера магнитное полене зависит от свойств проводника и характеризует само магнитное поле.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

В системе СИ единицей индукции магнитного поля служит тесла (Тл):

опыты ампера магнитное поле. Смотреть фото опыты ампера магнитное поле. Смотреть картинку опыты ампера магнитное поле. Картинка про опыты ампера магнитное поле. Фото опыты ампера магнитное поле

Магнитное поле. Таблицы, схемы, формулы

(Взаимодействие магнитов, опыт Эрстеда, вектор магнитной индукции, направление вектора, принцип суперпозиции. Графическое изображение магнитных полей, линии магнитной индукции. Магнитный поток, энергетическая характеристика поля. Магнитные силы, сила Ампера, сила Лоренца. Движение заряженных частиц в магнитном поле. Магнитные свойства вещества, гипотеза Ампера)

опыты ампера магнитное поле. Смотреть фото опыты ампера магнитное поле. Смотреть картинку опыты ампера магнитное поле. Картинка про опыты ампера магнитное поле. Фото опыты ампера магнитное поле

опыты ампера магнитное поле. Смотреть фото опыты ампера магнитное поле. Смотреть картинку опыты ампера магнитное поле. Картинка про опыты ампера магнитное поле. Фото опыты ампера магнитное поле

опыты ампера магнитное поле. Смотреть фото опыты ампера магнитное поле. Смотреть картинку опыты ампера магнитное поле. Картинка про опыты ампера магнитное поле. Фото опыты ампера магнитное поле

опыты ампера магнитное поле. Смотреть фото опыты ампера магнитное поле. Смотреть картинку опыты ампера магнитное поле. Картинка про опыты ампера магнитное поле. Фото опыты ампера магнитное поле

Дополнительные материалы по теме: Электромагнитные явления

Конспект по теме «Магнитное поле. Теория, формулы, схемы».

Источник

Опыты ампера магнитное поле

Если металлический проводник с током поместить в магнитное поле, то на этот проводник со стороны магнитного поля будет действовать сила, которая называется силой Ампера.

Для определения направления силы Ампера применяют правило левой руки. Если левую руку расположить в магнитном поле так, чтобы силовые линии входили в ладонь, а четыре пальца были направлены по току, то отогнутый большой палец укажет направление силы, действующей на проводник.

опыты ампера магнитное поле. Смотреть фото опыты ампера магнитное поле. Смотреть картинку опыты ампера магнитное поле. Картинка про опыты ампера магнитное поле. Фото опыты ампера магнитное поле

Магнитное взаимодействие можно наблюдать между двумя параллельными токами (опыт Ампера): два параллельных проводника с током отталкиваются, если направления токов в них противоположны, и притягиваются, если направления токов совпадают.

Магнитное поле действует также на движущиеся заряженные частицы. При этом сила (сила Лоренца) зависит от модуля магнитной индукции, заряда частицы, а также от модуля и направления её скорости.

Электрический двигатель

Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся, потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ab, противоположна силе, действующей на сторону cd.

опыты ампера магнитное поле. Смотреть фото опыты ампера магнитное поле. Смотреть картинку опыты ампера магнитное поле. Картинка про опыты ампера магнитное поле. Фото опыты ампера магнитное поле

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.

В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

опыты ампера магнитное поле. Смотреть фото опыты ампера магнитное поле. Смотреть картинку опыты ампера магнитное поле. Картинка про опыты ампера магнитное поле. Фото опыты ампера магнитное поле

Действие магнитного поля на проводник с током

Конспект урока по физике в 8 классе «Действие магнитного поля на проводник с током».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *