Оксиданты что это биохимия

ВОЗДЕЙСТВИЕ СВОБОДНЫХ РАДИКАЛОВ НА ОРГАНИЗМ.

Свободные радикалы атакуют наш организм 24 часа в сутки, но их атаки могут происходить чаще или реже. Это зависит от многих факторов. Курение, алкоголь, стрессы, неправильное питание и долгое пребывание на солнце увеличивают количество свободных радикалов, а правильный образ жизни, полноценный отдых и рациональное питание, наоборот, снижают их активность.

Свободные радикалы очень сильно повреждают белок, результатом атаки которого является старение всего организма, поскольку стареют все клетки, в которых белок атакован свободными радикалами.

Свободные радикалы повреждают ДНК – генетический код клетки, что в свою очередь приводит к изменениям в структуре его кода, его свойств и даже мутации. Смутированные клетки больше не могут выполнять свои прежние функции. Считается, что свободные радикалы наиболее сильно влияют на процесс старения и являются основной причиной рака и большинства болезней кровообращения. Наука доказала, что именно они и повинны в развитии таких болезней, как: рак, атеросклероз, инфаркт, инсульт, ишемия, атеросклероз, заболевания нервной и иммунной систем и заболевания кожи.

ИСТОЧНИКИ СВОБОДНЫХ РАДИКАЛОВ

По мнению ученых, считается нормальным, если примерно 5% веществ, образовавшихся в ходе химических реакций, — это свободные радикалы. В малом количестве они необходимы нашему организму, потому что только при их участии иммунная система может бороться с вирусами и болезнетворными микроорганизмами. Но избыток их губителен и, к сожалению, неизбежен.

Основными «фабриками» по производству свободных радикалов в нашем организме служат маленькие продолговатые тельца внутри живой клеткимитохондрии, самые главные её энергетические станции.

Возникнув в них, радикалы повреждают оболочки митохондрий, а также другие внутренние структуры клетки, и это усиливает их утечку. Со временем активных форм кислорода становится там все больше и больше, в результате чего они полностью разрушают клетку и распространяются по всему организму. Как «молекулярные террористы» они хаотично «рыщут» по всем живым клеткам и, внедряясь туда, повергают вокруг себя всё в хаос.

Свободные радикалы могут образовываться во многих продуктах нашего питания, например, таких, как: кондитерские изделия длительных сроков хранения, мясные продукты и продукты растительного происхождения. Особенно это касается жиров, содержащих ненасыщенные жирные кислоты, которые очень легко окисляются. Больше всего таких кислот в кукурузном и подсолнечном маслах, а меньше всего в оливковом и льняном маслах. В жареных продуктах как: чипсы, хрустящий картофель (жареный в большом количестве масла низкого качества), тесто для пиццы, жирные соусы и в продуктах с длительным сроком хранения жиры также быстро окисляются, и такая еда тоже содержит очень много свободных радикалов.

Источники внутри организма:

— в процессах образования энергии в митохондриях, например из углеродов;

— в процессе распада вредных жиров в организме при сжигании многонасыщенных жирных кислот;

— в воспалительных процессах, при нарушениях метаболизма – диабет

— в продуктах обмена веществ в толстом кишечнике.

Источники из окружающей среды:

— загрязненный воздух, дым промышленности, сигаретный дым, ионизированный воздух;

— высокообработанная, просроченная, испорченная еда и лекарства.

Кроме всего этого свободные радикалы могут также образовываться в нормальных процессах метаболизма, под влиянием солнечных лучей (фотолиз), радиоактивного облучения (радиолиз) и даже ультразвуков.

Необходимо запомнить:

1. чем дольше данный продукт был подвержен промышленной обработке, тем больше в нём свободных радикалов;

2. чем больше добавлено в его состав «улучшателей», наполнителей, искусственных красителей, консервантов, тем большая насыщенность таких продуктов свободными радикалами;

3. чем дольше срок хранения продукта, тем больше (как правило) свободных радикалов;

4. чем дольше жарите, печете, сохраняете, варите, тем больше окисляете продукты.

БОРЬБА СО СВОБОДНЫМИ РАДИКАЛАМИ

Итак, АНТИОКСИДАНТЫ — это биологически активные вещества (БАВ), блокирующие реакции свободно-радикального окисления и восстанавливающие окисленные соединения. Антиоксиданты бывают ферментной природы (ферменты (или энзимы), продуцируемые в т.ч. бактериями) и неферментные.

К неферментативным антиоксидантам можно отнести следующие вещества:

витамины А, Е, К, С, В6, РР, коэнзим Q10; биофлавоноиды (кверцетин, рутин, антоцианы, ресвератрол, гесперидин, катехины и др.), аминокислоты цистин и метионин, глютатион,; микроэлемент селен.

Биофлавоноиды способны снижать даже уровень холестерина в организме, а также тенденцию красных кровяных телец слипаться и образовывать тромбы, как впрочем и многое другое. Например доказано, что биофлавоноиды эффективно помогают снижать гипертонию и устранять разного рода аллергии.

Недавно в Бостонском Университете в США проводились исследования о качественном наличии антиоксидантов в различных продуктах питания. По итогам их исследований были выложены две сводные таблицы содержания антиоксидантов в продуктах

Продукты питания

Антиоксидантная способность / грамм

Продукты питания

Антиоксидантная способность / грамм

Пять лучших ягод и фруктов:

Пять лучших орехов:

Клюква

Пеканы

Черника (дикорос)

Грецкий орех

Чёрная слива

Фундук, лесной орех

Слива (тип не указан)

Фисташки

Черника (культивируемая)

Миндаль

Пять лучших овощей:

Пять лучших специй:

Маленькая красная фасоль

Гвоздика

Обычная красная фасоль

Молотая корица

Фасоль (разный цвет)

Душицы лист

Артишоки

Куркума

Чёрные бобы

Сушёная петрушка

Фрукты:

Овощи:

Чернослив

Капуста

Изюм

Шпинат

Черника

Брюссельская капуста

Ежевика

Ростки люцерны

Земляника

Брокколи (цветки)

Малина

Свёкла

Слива

Красный перец

Апельсины

Виноград красный

Зерно

Вишня

Баклажан

Вывод: антиоксиданты обезвреживают свободные радикалы, которые, в свою очередь, являются одной из главных причин старения и множества дегенеративных болезней.

Категория документа:

(c) Управление Федеральной службы по надзору
в сфере защиты прав потребителей и благополучия
человека по Республике Мордовия, 2006-2015 г.

Если Вы не нашли необходимую информацию, попробуйте зайти на старую версию сайта

Адрес: 430030, г. Саранск, ул. Дальняя, д. 7

Источник

Зачем организму нужны антиоксиданты, и где они содержатся?

Вы неоднократно слышали из уст докторов и производителей пищевой и косметической продукции умное слово «антиоксиданты»? Ваше представление об этих загадочных веществах ограничивается фразой «наверное, что-то хорошее»? Тогда этот материал для вас. 103.by повышает уровень медицинской грамотности населения и рассказывает о сложных понятиях простым языком.

Антиоксиданты борются против оксидантов

Чтобы разобраться, что такое антиоксиданты, необходимо познакомиться с понятием свободных радикалов, то бишь оксидантов. Говоря научным языком, свободные радикалы — это молекулы с неспаренным электроном. В небольшом количестве они наши помощники — участвуют в производстве гормонов и защищают организм от вирусов. А как только оксидантов становится слишком много, из товарищей они превращаются в заклятых врагов.

Оксиданты что это биохимия. Смотреть фото Оксиданты что это биохимия. Смотреть картинку Оксиданты что это биохимия. Картинка про Оксиданты что это биохимия. Фото Оксиданты что это биохимия

Свободные радикалы окисляют защитную мембрану клеток, в итоге последние гибнут либо мутируют. Инфаркт, инсульт, рак, атеросклероз и заболевания кожи нередко являются результатом негативного воздействия свободных радикалов.

Больше всего от оксидантов страдает кожа — увеличивается количество морщин, организм начинает преждевременно стареть.

Оксиданты что это биохимия. Смотреть фото Оксиданты что это биохимия. Смотреть картинку Оксиданты что это биохимия. Картинка про Оксиданты что это биохимия. Фото Оксиданты что это биохимия

Какие существуют причины множественного образования оксидантов? В первую очередь — это преобладание в рационе сахара, мяса, круп, пастеризованных молочных продуктов, мучных изделий. Во вторую — употребление несовместимых пищевых продуктов (белки+углеводы). Окислителями нередко становятся консерванты и пищевые добавки, алкоголь и табак.

Собственно, чтобы защитить наш организм от вредных свободных радикалов, природа придумала чудотворные антиоксиданты.

Что же такое антиоксиданты?

Простыми словами, антиоксиданты — это вещества, содержащиеся в пище, которые нейтрализуют свободные радикалы в организме. Действие антиоксидантов даже приводит к обновлению клеток кожи, ее омоложению. По этой причине они нередко входят в состав косметической продукции.

К наиболее известным антиокислителям относятся витамины С, А, Е, К, минеральные вещества — цинк, марганец, селен, медь, а также экстракты сосны, кедра и облепихи.

Оксиданты что это биохимия. Смотреть фото Оксиданты что это биохимия. Смотреть картинку Оксиданты что это биохимия. Картинка про Оксиданты что это биохимия. Фото Оксиданты что это биохимия

Прежде всего антиоксиданты содержатся в растительной пище. Это ягоды (чернослив, изюм, черника, ежевика, земляника, слива, вишня), фрукты (апельсин, красный виноград, банан, киви), овощи (все виды капусты, шпинат, красный перец, лук, баклажан), орехи (миндаль, грецкий, фундук) и специи (корица, куркума, гвоздика).

Антиоксиданты в организме не накапливаются, поэтому употреблять их нужно систематически. Однако принцип «чем больше, тем лучше» здесь не работает. В переизбытке эти вещества перестают препятствовать окислению и, наоборот, ускоряют его. О ежедневной безопасной дозе антиокислителей ученые спорят до сих пор.

Специалист по здоровому питанию, врач Владимир Третьякевич рекомендует в сутки употреблять от одной чайной ложки до одной столовой черники (или другой ягоды) на протяжении 10 месяцев (например, 5 недель есть ягоды, а на одну неделю делать перерыв). В год выходит совсем не много — от 1,5 до 4,5 кг. Врач подчеркивает, что важно не столько количество, сколько регулярность потребления.

Оксиданты что это биохимия. Смотреть фото Оксиданты что это биохимия. Смотреть картинку Оксиданты что это биохимия. Картинка про Оксиданты что это биохимия. Фото Оксиданты что это биохимия

А чтобы наверняка не прогадать с дозировкой, придерживайтесь принципа разнообразия. Не ограничивайте себя одним типом антиоксидантов, нацеливайтесь на широкий спектр антиокислителей в своем рационе. Таким образом, вы убьете двух зайцев: защитите организм от оксидантов и не переборщите с количеством антиокислителей в организме.

Источник

Антиоксиданты молодости

Многие из нас, надеясь вернуть ускользающую красоту, пытаются улучшить качество кожи при помощи декоративной косметики, дорогостоящих кремов и искусства пластического хирурга. Мы забываем, что результат таких мер носит временный характер, и не понимаем, что красота кожи – это в первую очередь ее здоровье, достичь которого невозможно, действуя только лишь извне.

Здоровье кожи берет начало изнутри.

Чтобы понять механизмы возрастных изменений кожного покрова, обратимся к его строению и фyнкциям.

Кожа представляет собой наружный покров человека, состоящий из трех слоев – эпидермиса, дермы и подкожно-жировой клетчатки. Эпидермис — самый поверхностный слой, на него возлагаются очень важные функции. В первую очередь это защитная фyнкция, также он участвует в процессах терморегуляции, дыхании. В нем содержится много рецепторов, которые определяют симптомы чувствительности (чувство боли, температурное воздействие и т.д.)

Старение кожного покрова запрограммировано генетически. С годами уменьшаются количество коллагеновых волокон, которые составляют ее базовый каркас, и содержание гиалуроновой кислоты в клетках. Также возрастным изменениям кожи способствуют нарушение кровообращения, уменьшение уровня женских половых гормонов, таких как эстрогены.

СВОБОДНЫЕ РАДИКАЛЫ И АНТИОКСИДАНТЫ

В последние годы получила свое распространение теория старения за счет воздействия свободных радикалов. Это специальные молекулы, у которых отсутствует один или несколько электpонов. Когда они попадают в клетки организмa, то забирают на себя недостающие электрoны. В связи с этим клeтки не могут полноценно работать, они находятся в так называемом окислительном процессе (окисляются).

Эти радикалы ускоряют старение, становятся причиной неправильной работы систем организма и воспалительных процессов в тканях — даже в нервной системе и клетках мозга, ослабляют иммунную систему.

АНТИОКСИДАНТЫ ДЛЯ ЖЕНЩИН

Целлюлит, дряблость кожи, тусклый цвет лица, морщины, пигментные пятна, тугоподвижность суставов — эти несовершенства говорят об атаке здоровых клеток свободными радикалами. На борьбу с ними, особенно в условиях жизни в городе, вступают СИЛЬНЕЙШИЕ АНТИОКСИДАНТЫ.

ИССЛЕДОВАНИЯ АНТИОКСИДАНТОВ доказали, что их прием способен продлить жизнь, молодость. А САМЫЕ СИЛЬНЫЕ АНТИОКСИДАНТЫ даже останавливают процессы старения.

Группы антиоксидантов – это биологически активные вещества, которые нейтрализуют свободные радикалы и не позволяют им разрушать здоровые клетки.

Таблица антиоксидантов различного происхождения.

А развитие воспалительных процессов через окисление свободными радикалами лежит в основе большей части заболеваний.
Оксилик – антиоксидантный комплекс витаминов, удобен тем, что содержит все 5 основных антиоксидантов.

ОСНОВНЫЕ АНТИОКСИДАНТЫ И АНТИОКСИДАНТНЫЕ СВОЙСТВА ВЕЩЕСТВ

БЕТА-КАРОТИН — АНТИОКСИДАНТ, наличие которого в овощах и фруктах определить легче всего. Этот микроэлемент придает им оранжевый, красный и желтый оттенки. Но не все знают, что этот ВИТАМИН С МОЩНЕЙШИМ АНТИОКСИДАНТОМ может придавать также темно-зеленый цвет (щавель, шпинат, болгарский перец). Витамин A – ВАЖНЕЙШИЙ ВИТАМИН-АНТИОКСИДАНТ. Он нормализует работу сальных желез, помогает тканям восстановиться, способствует быстрому образованию новых клеток. Этот АКТИВНЫЙ АНТИОКСИДАНТ в большой степени отвечает за здоровый и красивый внешний вид кожи.

ХОРОШИМ АНТИОКСИДАНТОМ ЯВЛЯЕТСЯ ВИТАМИН С – он нормализует холестерин, поддерживает уровень железа, регулирует пигментацию кожи. Этот микроэлемент стимулирует выработку коллагена, который делает кожу упругой, препятствует ломкости ногтей, укрепляет волосы.

ВИТАМИН E — АНТИОКСИДАНТ с незаменимыми для организма функциями. Он защищает от ультрафиолетовых лучей, способствует омоложению кожи. Сложно выбрать САМЫЙ ЛУЧШИЙ АНТИОКСИДАНТ, но многие ставят на первое место именно витамин E — он славится антиканцерогенным действием, а также тем, что не дает образовываться тромбам. Кроме того, витамин Е замедляет окисление жиров.

ХОРОШИЕ ВИТАМИНЫ С АНТИОКСИДАНТАМИ обязательно содержат селен, который прекрасно знаком подросткам и людям с проблемной кожей, ведь этот микроэлемент борется с угревой сыпью. Также ЭТОТ МОЩНЫЙ АНТИОКСИДАНТ поддерживает щитовидную железу в нормальном состоянии, борется с новообразованиями.

БАДЫ-АНТИОКСИДАНТЫ не обходятся и без ликопина. Данный микроэлемент улучшает внутриклеточный обмен и помогает снизить риск ожога. А также это мощная профилактика сердечно-сосудистых заболеваний. Ликопин стали включать в витаминные комплексы сравнительно недавно, поэтому можно пересчитать по пальцам те комплексы, которые содержат ценнейший антиоксидант.

Итак, ЛУЧШИЕ АНТИОКСИДАНТЫ — это те, которые укрепляют иммунитет, способствуют омоложению кожи, укрепляют стенки сосудов.

Коэнзим Q10, укрепляющий защитные функции организма и замедляющий старение.

Многие производители средств по уходу за кожей заботятся о красоте и молодости, добавляя в крема витаминные комплексы и антиоксиданты для большей эффективности наружного средства. Так, мы все обращаем внимание на косметику с коэнзимом Q10, витаминами А, E и С. В борьбе с возрастом все средства хороши.

ИСТОЧНИКИ АНТИОКСИДАНТОВ

Провитамин А – оранжевые и темно-зеленые овощи: шпинат, курага, батат (сладкий картофель). Но необходимое условие для его усвоения – добавление к овощам жира (сливочное и растительное масла).

Витамин С – цитрусовые, шиповник, смородина, земляника, болгарский перец, белокочанная капуста.

Витамин Е – зерновые, орехи, семена подсолнечника, ячневая крупа и лосось.

Селен – сардины, зерновые (особенно пшеница), печень, лук и чеснок, бразильский орех. Однако: переизбыток селена (более 700 мг в сутки) часто вызывает отравление.

Ликопин – многие овощи и фрукты красного цвета (томаты, розовый грейпфрут, арбуз, дыня, хурма и др.).

Специально произведенные таблетированные и капсулированные комплексы, антиоксидантный комплекс с селеном, то есть поливитамины, содержащие ценные вещества и минералы.

ПРЕПАРАТЫ — АНТИОКСИДАНТЫ

АНТИОКСИДАНТЫ И МИНЕРАЛЫ, которые составляют основу фармакологии антистарения, вывели ее на новые рубежи. Неэффективные бады уходят в прошлое, остаются только действенные, с проверенным механизмом действия.

Неспроста мы наблюдаем последние годы тенденцию к росту применения комплексов витаминов с антиоксидантами, на фоне приема которых мы и наши окружающие отмечаем изменения в лучшую сторону как в здоровье, так и внешнем виде, а рекомендации и названия этих средств переходят от одних потребителей к другим.

Например, в его состав входит органический селен вместе с цистеином и метионином – переносчиками в организме. Без этих аминокислот селен не работает «как нужно», а ведь этот микроэлемент более всего известен как «витамин долголетия».

Особенно ВИТАМИНЫ-АНТИОКСИДАНТЫ ДЛЯ ЖЕНЩИН должны содержать этот элемент. Также комплексы с антиоксидантным действием ценятся больше, если в их составе — пара ликопина и бета-каротина. Эти микроэлементы взаимно усиливают антиоксидантный эффект друг друга. Если говорить вкратце, Оксилик отличается синергидной комбинацией антиоксидантов в необходимых для организма дозах. Витамины С и Е, бета-каротин, ликопин, селен, которые входят в состав Оксилика, окружают фосфолипиды.

Подобный список антиоксидантов делает формулу Оксилика рабочей, а это весьма увеличивает всасываемость в ЖКТ и «повторяет» пищевой комплекс.

Как принимать:

Взрослым и детям старше 14 лет —
по 1 капсуле 1 раз в день вместе
с приемом пищи.

Продолжительность приема – 3-4 недели

Он не является лекарственным средством и хорошо переносится.
Однако перед применением любого препарата рекомендуется проконсультироваться с врачом.

АНАЛОГИ ОКСИЛИКА

Структурных аналогов Оксилика с похожими активными элементами не существует.

Чем можно заменить Оксилик? Возможно, комплексами, содержащими витамины С, Е, бета-каротин и селен. Либо витаминами и микроэлементами по отдельности.

И если вы выбираете комплекс, ориентируясь на содержание селена, выбирайте так называемые комплексы второго поколения, содержащие улучшенные соединения селена (связанные с органическими веществами). Цена аналогов Оксилика зависит от содержащихся элементов.

Список препаратов антиоксидантов

Глутаргин обеспечивающий защиту — антигипоксическую, антиоксидантную, кардио- и гепатопротекторную. Показан при заболеваниях печени (например, гепатит). От алкогольного отравления тоже избавляются с помощью глутаргина.

Липин — известен иммуномодулирующей защитой с сильными антиоксидантными свойствами.

Эпадол, Теком, Омакор восстанавливающие баланс полиненасыщенных жирных кислот.

Дибикор и Кратал – защищающие от стресса аминокислоты. Славятся гипогликемическими и нейромедиаторными функциями. Дибикор назначают при сахарном диабете и других дисфункциях эндокринной системы. Кратал назначается при вегетативных неврозах и после воздействия радиации.

Подводя итог, скажем: лучший антиоксидантный комплекс – это обогащение диеты продуктами с природными антиоксидантными свойствами, прием витаминных комплексов, использование полезной косметики с антиокислительными компонентами помогут компенсировать авитаминоз и нехватку данных веществ и бороться за сохранение молодости и здоровья.

Источник

Научная электронная библиотека

Оксиданты что это биохимия. Смотреть фото Оксиданты что это биохимия. Смотреть картинку Оксиданты что это биохимия. Картинка про Оксиданты что это биохимия. Фото Оксиданты что это биохимия

Попков В. М., Чеснокова Н. П., Ледванов М. Ю.,

Глава 2. ОБЩАЯ ХАРАКТЕРИСТИКА АНТИОКСИДАНТНЫХ СИСТЕМ МАКРООРГАНИЗМА Н.П. Чеснокова, Е.В. Понукалина, М.Н. Бизенкова, Г.А. Афанасьева

В процессе длительной эволюции сформировалась выраженная зависимость метаболических систем человека и большинства наземных животных от необходимости достаточного поступления кислорода в клетки. Очевидно, что пределы колебаний между критическими уровнями максимального и минимального поступления кислорода в клетки весьма динамичны, определяются не только спецификой структуры и функции клеток тех или иных тканей, но и активностью клеток в конкретно данный момент [22, 24, 35, 42, 64, 69].

Значительная часть кислорода подвергается в клетках двух – и тетраэлектронному восстановлению на внутренней мембране митохондрий при участии систем цитохром и цитохромоксидазы. Источником активных форм кислорода могут быть реакции, катализируемые цитохромом Р-450 в микросомальных фракциях клеток, особенно в гепатоцитах. В цитозоле клеток супероксидный анион–радикал генерируется от ксантиноксидазы [70, 106, 107, 109, 110].

Среди неферментативных путей образования активных форм кислорода (АФК) следует отметить аутоокисление гидрохинонов, лейкофлавинов, катехоламинов, тиолов. В инициации свободнорадикального окисления могут участвовать катион–радикалы молибдена, марганца, кобальта, железосерные кластеры [29, 35, 64, 73].

Важное место по своей биологической значимости среди первичных радикалов отводится нитроксиду (NO•), образуемому из L–аргинина при участии конституциональной NO–синтазы 3-го типа в эндотелии, конституциональной NO–синтазы
1-го типа в структурах центральной и периферической нервной систем, а также индуцибельной NO-синтазы эндотелия и макрофагов [75, 76, 96, 101]. Последняя экспрессируется лишь в условиях патологии под влиянием таких биологически активных веществ и гормонов, как адреналин, норадреналин, ацетилхолин, гистамин, АДФ, брадикинин, эндотелин и др. [88].

Таким образом, постоянно образующиеся в нашем организме первичные радикалы: супероксид (•ОО–), нитроксид (•NO), убихинон (•Q), а также вторичные радикалы – гидроксильный радикал (•ОН) и липидные радикалы являются не только необходимыми участниками многих внутриклеточных метаболических реакций в условиях нормы, но и требуют постоянной стабилизации уровня этих высокореактогенных окислителей за счет адекватной активации систем антирадикальной, антиоксидантной защиты организма [22, 24, 46].

Антиоксиданты – соединения, способные уменьшать интенсивность свободнорадикального окисления, нейтрализовать свободные радикалы за счет обмена своего атома водорода на кислород свободных радикалов. Антиоксиданты могут быть природными и синтетическими, имеют подвижный атом водорода в связи с наличием в молекуле нестойкой связи с углеродом (С–Н) или серой (S–Н). В результате взаимодействия со свободными радикалами возникают малоактивные радикалы самого антиоксиданта, не способные к продолжению цепи [11, 46, 62, 111, 137, 141, 142, 148, 135].

До настоящего момента нет единой классификации систем антиоксидантной защиты клеток. Высказывается точка зрения о нескольких уровнях защиты клеток макроорганизма от активных форм кислорода [90], которые могут быть представлены следующим образом:

1-й уровень – системная защита клеток за счет значительного снижения напряжения кислорода в тканях по сравнению с атмосферным воздухом;

2-й уровень – обеспечивается в процессе четырехэлектронного восстановления основной массы внутриклеточного кислорода при участии цитохромоксидазы без освобождения свободных радикалов;

3-й уровень – ферментативное удаление образовавшихся супероксидного анион-радикала и перекиси водорода;

4-й уровень – наличие ловушек свободных радикалов (антиоксидантов);

5-й уровень – ферментативное восстановление гидроперекисей полиненасыщенных жирных кислот [46, 83].

Число эндогенных соединений, относимых к антиоксидантам, постоянно возрастает. Некоторыми авторами предпринята попытка классификации антиоксидантов с точки зрения их ММ на 2 группы:

I группа. Высокомолекулярные соединения – ферменты антиоксидантной защиты, а также белки, способные связывать ионы Fe и Cu, являющиеся катализаторами свободнорадикальных процессов. Антиоксидантные ферменты (супероксиддисмутаза (СОД), церулоплазмин, каталаза, глутатионзависимые ферменты) обеспечивают комплексную антирадикальную защиту биополимеров [28, 35].

Для ферментативных антиоксидантов характерны высокая специфичность, строго определенная органная и клеточная локализация, а также использование в качестве катализаторов металлов Cu, Fe, Mn, Zn, Se [42, 82].

К числу белков, обладающих способностью связывать металлы с переменной валентностью и соответственно обладающих антиоксидантными свойствами, относят альбумины крови, трансферрин, ферритин, лактоферрин. Многие из них весьма эффективны в ингибировании свободнорадикальных процессов, но слабо проникают через мембраны и тканевые барьеры.

При этом можно говорить о своеобразных антиоксидантных цепях переноса электронов, эффективность функционирования которых определяется работой всех компонентов.

В настоящее время представлена и несколько иная систематизация уровней защиты биосистем от повреждающего воздействия свободных радикалов [34].

Первая линия защиты – ферменты антиоксидантной системы, ингибирующие инициацию перекисного окисления липидов и предотвращающие окислительную деструкцию нелипидных компонентов;

Вторая линия защиты представлена низкомолекулярными антиоксидантами;

Третья линия защиты – ферментами, метаболизирующими конечные продукты перекисного окисления липидов (альдегидов, эпоксидов, алкенов, алкоголя). К этим ферментам защиты могут быть отнесены эпоксидгидролазы, альдегидредуктазы, цитохром Р-450 [29, 70].

Авторы полагают, что можно выделить и четвертую линию защиты, обеспечивающую репаративную регенерацию поврежденных молекул, в частности, восстановление дисульфидных связей белков, регенерацию антиоксидантов.

К пятой линии защиты они относят систему ингибирования перекисных и свободнорадикальных процессов, включающую циклические нуклеотиды, простагландины, лейкотриены.

В качестве линии антиоксидантной защиты рекомендуют выделить и пространственный фактор, определяющий пространственную координацию внутриклеточных кислород – транспортных процессов и метаболизм активированных форм кислорода [29, 34]. Причем, антиоксидантный контроль в электрон-транспортных системах обеспечивается за счет плотной и упорядоченной упаковки мембранных структур.

Как известно, электронный транспорт локализован в гидрофильных зонах, а ненасыщенные жирные кислоты – в гидрофобных участках мембран. В то же время «упаковку» фосфолипидов обеспечивают холестерин, альфатокоферол, липид–белковое взаимодействие. На субклеточном уровне пространственный фактор реализуется за счет сближения прооксидантных и антиоксидантных компонентов и систем. Одним из примеров реализации структурного и пространственного принципов организации антиоксидантной защиты клеток является наличие пероксисом, включающих оксидазы и каталазы [11, 106, 110, 146].

Таким образом, рассматривая в общем виде антиоксидантные системы, следует иметь в виду, что организм располагает ферментативными системами, ингибирующими ПОЛ на этапе инициации. Так, СОД инактивирует супероксид анион – радикал, субстратами действия глутатионпероксидазы и каталазы являются перекись водорода и гидроперекиси липидов [37, 91].

Самым распространенным соединением в тканях, содержащим значительное количество сульфгидрильных групп, является глутатион (гамма-глутамил-цистеинглицин). В роли восстановителя в указанном трипептиде выступает тиольная группа цистеинового остатка. Глутатион обеспечивает инактивацию перекиси водорода и гидроперекисей липидов, служит коферментом при восстановлении в нижних дыхательных путях метгемоглобина, нейтрализует озон и NO [46, 64].

Антиоксидантная и антирадикальная защита клеток обеспечивается глутатионпероксидазой – селенсодержащим ферментом. Активность глутатионпероксидазы усиливается витаминами группы С и А, которые способствуют усвоению селена, его транспорту и утилизации. Глутатионпероксидаза в комплексе с восстановленным глутатионом превращает липоперекиси в менее токсичные оксикислоты, предотвращая свободнорадикальную дезорганизацию клетки [64].

Важную роль в антиоксидантной защите играют карнозин и его производные. Как известно, карнозин является природным дипептидом, способным метаболизироваться в организме человека и животных, обладает стабилизирующим эффектом в отношении pH среды, а также способностью взаимодействия с гидроксильным радикалом, супероксид анион – радикалом и гипохлорид-анионом с последующей их инактивацией [13]. Карнозин регулирует за счет антиоксидантных свойств поведенческие реакции. Установлено, что комбинация липидного антиоксиданта (?-токоферола) и водорастворимого (карнозина) обладает синергетическим эффектом торможения ПОЛ. Очевиден и тот факт, что липидный антиоксидант (витамин К3) в присутствии восстановленного глутатиона становится источником генерации супероксидного аниона [29]. Таким образом, свойства липидных антиоксидантов определяются биохимическим окружением карнозина, и в случае отсутствия системы регенерации возможно появление его прооксидантных
эффектов [62, 73].

Образующиеся в организме свободные радикалы антиоксидантов малоактивны и выводятся из организма в виде продуктов взаимодействия с другими антиоксидантами – токоферолами, хинонами, витаминами группы К, Se-содержащими соединениями.

В зависимости от особенностей структуры различают жирорастворимые биоантиоксиданты (фосфолипиды, токоферолы, витамин А, каротиноиды, убихинон, витамины группы К, стероидные гормоны), а также водорастворимые. Группа водорастворимых антиоксидантов включает аскорбиновую, лимонную, никотиновую кислоты; Se-содержащие соединения – цистеин, гомоцистеин, липоевую и бензойную кислоты, церулоплазмин; фенольные соединения – полифены, флавоноиды, трансферрин, лактоферрин, альбумин, мочевину и мочевую кислоту.

Указанные водорастворимые антиоксиданты проявляют свои эффекты в цитозоле клеток, межклеточной жидкости, плазме, крови и лимфе. Жирорастворимые биоантиоксиданты защищают от свободнорадикальной дезорганизации биологические мембраны [34, 46, 70, 111].

Витамин А участвует в окислительно-восстановительных реакциях благодаря наличию двойных связей в молекуле, тормозит превращение сульфгидрильных групп в дисульфиды, влияет на процессы клеточной дифференцировки, пролиферации, репродуктивные процессы [34, 46].

Наиболее активным водорастворимым антиоксидантом является аскорбиновая кислота, способная формировать окислительно-восстановительную систему вместе с дегидроаскорбиновой кислотой. Аскорбиновая кислота стимулирует активность системы цитохром, в частности цитохрома Р-450, процессы фагоцитоза, усиливает антиоксидантные свойства b-каротина и токоферола, активирует пролиферативную активность лимфоидной ткани и стимулирует иммунные реакции [46, 146].

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *