Около окружности описана равнобедренная трапеция докажите что ее диагональ проходит через середину
Основанием пирамиды является равнобедренная трапеция. Все боковые ребра пирамиды наклонены к основанию под углом 60°.
а) Докажите, что существует точка (центр описанной сферы), одинаково удаленная ото всех вершин пирамиды.
б) Найдите радиус данной сферы, если дополнительно известно, что основания трапеции равны 8 и 18, а ее боковая сторона равна 13.
а) Если все ребра пирамиды одинаково наклонены к основанию, то ее вершина проектируется в центр описанной вокруг основания окружности. Проведем через этот центр прямую, перпендикулярную основанию (она будет содержать высоту пирамиды). Построенная прямая — множество точек, равноудаленных от вершин основания. Рассмотрим плоскость, перпендикулярную боковому ребру и проходящую через его середину. Все точки этой плоскости равноудалены от концов ребра. Точка пересечения этой плоскости и ранее построенной прямой будет равноудалена ото всех вершин пирамиды и потому является центром описанной сферы.
б) Введем обозначения, как показано на рисунке. Пусть в основании лежит трапеция ABCD, точка O — центр описанной вокруг основания окружности, она также является проекцией вершины S на плоскость основания, BH — высота трапеции.
Высоту трапеции найдем из прямоугольного треугольника ABH: диагональ трапеции ВН найдем из прямоугольного треугольника ВНD:
Окружность, описанная вокруг трапеции, описана и вокруг треугольника BCD. Поскольку для радиуса описанной окружности получаем:
Далее находим высоту пирамиды:
По п. а) центр сферы лежит на прямой, содержащей высоту пирамиды. В этом случае радиус сферы высота пирамиды H и радиус окружности, описанной вокруг основания пирамиды связаны соотношением
Ответ: б)
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Около окружности описана равнобедренная трапеция докажите что ее диагональ проходит через середину
Около окружности с центром O описана трапеция ABCD с основаниями AD и BC.
а) Докажите, что AB — диаметр окружности, описанной около треугольника AOB.
б) Найдите отношение площади четырёхугольника, вершины которого — точки касания окружности со сторонами трапеции, к площади самой трапеции ABCD, если известно, что AB = CD, а основания трапеции относятся как 1 : 2.
а) Центр окружности, вписанной в угол, лежит на его биссектрисе, поэтому AO и BO — биссектрисы углов BAD и ABC соответственно. Следовательно,
Если угол, вписанный в окружность, прямой, то он опирается на диаметр. Следовательно, отрезок AB — диаметр окружности, описанной около треугольника AOB.
б) Пусть K, L, M и N — точки касания окружности со сторонами AB, BC, CD и AD данной трапеции соответственно. Тогда L — середина основания BC, потому что углы ABC и BCD равны, углы OBL и OCL равны и прямоугольные треугольники OBL и OCL равны по общему катету OL и острому углу. Аналогично N — середина основания AD. Обозначим CM = CL = BL = BK = x; DM = DN = AN = AK = y (x
Пусть площадь трапеции ABCD равна S, а площадь четырёхугольника KLMN равна S1. Тогда
а так как диагонали KM и LN четырёхугольника KLMN перпендикулярны, получаем, что
Следовательно,
Ответ: б)
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Около окружности описана равнобедренная трапеция докажите что ее диагональ проходит через середину
Около окружности с центром O описана трапеция ABCD с основаниями AD и BC.
а) Докажите, что окружность, построенная на отрезке AB как на диаметре, проходит через точку O.
б) Найдите отношение площади четырёхугольника, вершины которого — точки касания окружности со сторонами трапеции, к площади самой трапеции ABCD, если известно, что AB = CD, а основания трапеции относятся как 3 : 4.
а) Центр окружности, вписанной в угол, лежит на его биссектрисе, поэтому AO и BO — биссектрисы углов BAD и ABC соответственно. Следовательно,
Отрезок AB виден из точки O под углом 90°. Следовательно, точка O принадлежит окружности, построенной на отрезке AB как на диаметре.
б) Пусть K, L, M и N — точки касания окружности со сторонами AB, BC, CD и AD данной трапеции соответственно. Тогда L — середина основания BC, потому что углы ABC и BCD равны, углы OBL и OCL равны и прямоугольные треугольники OBL и OCL равны по общему катету OL и острому углу. Аналогично N — середина основания AD. Обозначим CM = CL = BL = BK = x; DM = DN = AN = AK = y (x
Пусть площадь трапеции ABCD равна S, а площадь четырёхугольника KLMN равна S1. Тогда
а так как диагонали KM и LN четырёхугольника KLMN перпендикулярны, получаем, что
Следовательно,
Ответ: б)
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Около окружности описана равнобедренная трапеция докажите что ее диагональ проходит через середину
Около окружности с центром O описана трапеция ABCD с основаниями AD и BC.
а) Докажите, что окружность, построенная на отрезке AB как на диаметре, проходит через точку O.
б) Найдите отношение площади четырёхугольника, вершины которого — точки касания окружности со сторонами трапеции, к площади самой трапеции ABCD, если известно, что AB = CD, а основания трапеции относятся как 3 : 4.
а) Центр окружности, вписанной в угол, лежит на его биссектрисе, поэтому AO и BO — биссектрисы углов BAD и ABC соответственно. Следовательно,
Отрезок AB виден из точки O под углом 90°. Следовательно, точка O принадлежит окружности, построенной на отрезке AB как на диаметре.
б) Пусть K, L, M и N — точки касания окружности со сторонами AB, BC, CD и AD данной трапеции соответственно. Тогда L — середина основания BC, потому что углы ABC и BCD равны, углы OBL и OCL равны и прямоугольные треугольники OBL и OCL равны по общему катету OL и острому углу. Аналогично N — середина основания AD. Обозначим CM = CL = BL = BK = x; DM = DN = AN = AK = y (x
Пусть площадь трапеции ABCD равна S, а площадь четырёхугольника KLMN равна S1. Тогда
а так как диагонали KM и LN четырёхугольника KLMN перпендикулярны, получаем, что
Следовательно,
Ответ: б)
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Около окружности описана равнобедренная трапеция докажите что ее диагональ проходит через середину
Дана равнобедренная трапеция ABCD с основаниями AD и BC. Окружность с центром O, построенная на боковой стороне AB как на диаметре, касается боковой стороны CD и второй раз пересекает большее основание AD в точке H, точка Q — середина CD.
а) Докажите, что четырёхугольник DQOH — параллелограмм.
б) Найдите AD, если ∠BAD = 75° и BC = 1.
а) Треугольник AOH равнобедренный и трапеция ABCD равнобедренная, поэтому ∠AHO = ∠OAH = ∠CDA. Значит, прямые OH и CD параллельны, а так как OQ — средняя линия трапеции, то параллельны прямые OQ и AD. Противоположные стороны четырёхугольника DQOH попарно параллельны, следовательно, DQOH — параллелограмм.
б) Пусть окружность с центром в точке O радиуса R касается стороны CD в точке P. В прямоугольных треугольниках OPQ и AHB имеем
Пусть AH = x. Поскольку трапеция ABCD равнобедренная, AD = 2AH + BC; DH = AH + BC = x + 1. Тогда
откуда x = 1. Значит, AD = 2x + 1 = 3.
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,