Окислительный стресс что это такое
Окислительный стресс
Биохимическая целостность мозга жизненно важна для нормального функционирования центральной нервной системы (ЦНС). Одним из факторов, способствующих церебральной биохимической недостаточности, является химический процесс, называемый окислительным стрессом.
Окислительный стресс возникает при чрезмерной продукции свободных радикалов в результате недостаточности противодействующей системы антиоксидантного ответа. Мозг с его высоким потреблением кислорода и высоким содержанием липидов очень чувствителен к окислительному стрессу. Следовательно, вызванное окислительным стрессом повреждение головного мозга обладает выраженным потенциалом для негативного воздействия на нормальные функции ЦНС.
Этиологические факторы окислительного стресса
Возможно, психологический стресс нарушает окислительно-антиоксидантный баланс в мозге, вызывая нарушение функции антиоксидантных ферментов. Это приводит к истощению глутатиона и увеличивает окислительный стресс. Одновременно возникающая токсичность глутамата, дисбаланс кальция и митохондриальное нарушение совместно усиливают окислительный стресс, вызывая биохимические расстройства в мозге. Это нарушает нейроциркуляцию и ослабляет гиппокампальные, миндалевидные и корковые связи, в конечном итоге вызывая поведенческие и когнитивные нарушения
Патогенез окислительного стресса
Окислительное фосфорилирование, происходящее в митохондриях, является основным источником АТФ. В качестве побочного продукта этот процесс приводит к образованию свободных радикалов или активных форм кислорода (ROS), активных форм азота (RNS) и радикалов, содержащих углерод и серу. В умеренных или низких количествах ROS считаются необходимыми для развития и функционирования нейронов, тогда как слишком высокие уровни опасны. Генерируемая ROS закись азота и оксид углерода способствуют важным физиологическим функциям, таким как длительное потенцирование (LTP) посредством глутамат-зависимых механизмов. В нормальных условиях антиоксидантная система нейтрализует вредные эффекты продукции ROS во время аэробного метаболизма, и таким образом мозг эффективно регулирует потребление кислорода и способность к выработке окислительно-восстановительного потенциала. Когда продукция ROS превышает поглощающую способность системы антиоксидантного ответа, происходит интенсивное окисление белка и перекисное окисление липидов, вызывающее окислительное повреждение, клеточную дегенерацию и даже функциональное снижение активности мозга. Например, высокие концентрации ROS, как сообщается в литературе, уменьшают LTP и синаптическую передачу сигналов и механизмы пластичности мозга.
Влияние оксидативного стресса на структуры мозга
Хорошо известно, что система DG-CA3 гиппокампа регулирует структурную пластичность, регенеративную / ремоделирующую способность, а также факторы нейрогенеза, такие как нейротрофический фактор мозга. Также было высказано предположение, что пирамидальные клетки CA1 и CA3 и гранулярные клетки DG очень чувствительны к окислительному повреждению. Таким образом, окислительное повреждение функции DG-CA может уменьшить пролиферацию клеток, нарушить способность ремоделирования, изменить структурную пластичность и нарушить нейрогенез, коллективно нарушая нормальную синаптическую нейротрансмиссию.
Миндалина и префронтальная кора
Антиоксиданты
В мозге действуют два вида защитных механизмов для борьбы с угрозой, создаваемой ROS: антиоксидантная ферментная система и низкомолекулярные антиоксиданты.
Таким образом, имеются свидетельства увеличения окислительного повреждения головного мозга при развитии патологий центральной нервной системы для нейродегенеративных заболеваний, включая болезнь Альцгеймера, болезнь Паркинсона и боковой амиотрофический склероз, цереброваскулярные расстройства, демиелинизирующие заболевания и психические расстройства. Несмотря на то, что окислительный стресс в основном связан с нейродегенеративными расстройствами, такими как болезнь Альцгеймера, болезнь Хантингтона и болезнь Паркинсона, его участие в нервно-психических расстройствах,включая тревожные расстройства и депрессию также не вызывает сомнений.
Нейродегенеративные расстройства
Психические расстройства
Участие механизмов окислительного стресса было также предполагается при некоторых психических заболеваниях, включая депрессию, тревожные расстройства, шизофрению и расстройства аутистического спектра. Предполагается, что низкий GSH-Px является фактором, способствующим структурным аномалиям мозга.
Депрессия
Шизофрения
Механизмы окислительного стресса также связаны с шизофренией и биполярным расстройством. Повышенные уровни активности SOD в плазме были зарегистрированы у пациентов с «хронической шизофренией», которым вводили антипсихотические препараты, и активность SOD отрицательно коррелировала с позитивными симптомами шизофрении. Уровни других антиоксидантов, включая глутатионпероксидазу (GSH-Px), также были вовлечены в патологический процесс при этом заболевании.
Биполярное аффективное расстройство
Терапия окислительного стресса
Возможно, жесткая регуляция окислительного стресса, либо путем усиления активности ферментов антиоксидантной защиты, либо путем непосредственного подавления прооксидантов, потенциально способна купировать острое или даже хроническое нейропсихиатрическое расстройство.
Окислительные стресс и антидепрессанты
Одна из гипотез предполагает, что антидепрессанты оказывают свое терапевтическое действие, подавляя провоспалительные цитокины и продукцию ROS / RNS или усиливая антиоксидантную защиту. Имеются убедительные данные, подтверждающие, что депрессия сопровождается окислительным стрессом и что, возможно, усиление антиоксидантной защиты является одним из механизмов, лежащих в основе нейропротекторного действия антидепрессантов.
Оксидативный стресс
Окислительный стресс (оксидативный стресс, от англ. oxidative stress) — это процесс повреждения клетки в результате окисления. Мы не будем углубляться в дебри химической терминологии. Скажем лишь, что такое окисление (из-за некоторых токсичных форм кислорода) очень плохо влияет на важные клетки в организме, в частности липиды и ДНК. При оксидативном стрессе лечение необходимо, так как поврежденные клетки могут разрушаться и вызывать патологии (заболевания) в организме.
Причины возникновения оксидативного стресса
Многие ученые и медики склоняются к мнению, что основные причины такого явления — это:
Последствия оксидативного стресса
Это неприятное явление имеет ряд последствий:
Понятно, что поврежденные клетки не могут выполнять свои функции, а значит, это станет причиной болей, неправильного функционирования соответствующего органа. Причем никогда нельзя точно предугадать, в каком месте вашего организма появятся эти свободные радикалы, приносящие такие неприятные последствия.
Профилактика и лечение оксидативного стресса
Издавна люди, которые не могли себе позволить разнообразное здоровое питание, чистый воздух и комфортные условия жизни, испытывали недомогания, болезни, в т. ч. душевные расстройства. Доказано, что увеличение свободных радикалов в наших организмах спровоцировано ухудшением экологии, обилием химических добавок в пище и других продуктах, постоянными стрессами и переутомлением.
Со свободными радикалами успешно справляются антиоксиданты. Где их взять? Около сотни лет назад ученые обратили внимание на природные флавоноиды — вещества, которые уменьшают воздействие солнечного ультрафиолета на растения, в которых содержатся. Нобелевский лауреат А. Сент-Георги открыл биофлавоноиды – смесь веществ, активно противодействующих свободным радикалам в организме человека. Больше всего их в зелени и свежих овощах.
Подобные полезные антиоксиданты содержатся в ягодах и фруктах (облепиха, смородина, яблоки, клюква, рябина, гранаты, лук, чеснок, лимон и др.), а также в продуктах, приготовленных из них. Кроме того, рекомендуется проводить больше времени на свежем воздухе, разнообразить свое питание и постараться меньше нервничать.
В качестве лечения оксидативного стресса (если вы понимаете, что одними продуктами питания не обойтись) специалисты-медики могут предложить медикаментозное лечение препаратами, содержащими необходимые дозы антиоксидантов в концентрированном виде. Это могут быть таблетки или инъекции лекарств, обладающих свойствами антиоксидантов и стабилизаторов метаболизма в вашем организме. В любом случае, если у вас возникли неприятные ощущения, мышечные боли, усталость, непонятная сыпь, расстройства желудка, обратитесь к терапевту, чтобы поставить правильный диагноз и начать своевременное лечение!
Текст проверен врачами-экспертами:
Заведующей социально-психологической службы МЦ «Алкоклиник», психологом Барановой Ю.П., врачом психиатром-наркологом Серовой Л.А.
Проконсультируйтесь
со специалистом
Окислительный стресс – глобальная проблема медицины критических состояний. Часть 1
Часть первая: Патофизиология окислительного стресса. Антиоксиданты-антигипоксаты
Профессор, академик РАЕН и МАНЭБ Назаров. И.П.
Окислительный стресс определяется как неустойчивое состояние в организме между прооксидантами и антиоксидантами. Прооксидантные факторы включают все элементы, которые играют активную роль в повышенном образовании свободных радикалов или других реактивных видов кислорода. В этих процессах участвуют как клеточные механизмы (специфические ферменты, дефекты в митохондриальном дыхании), так и экзогенные факторы (радиация, курение, загрязнение воздуха, заболевания, травмы, операции, лекарства и другое). Поскольку образование производных кислорода и уровень антиоксидантной защитной системы организма приблизительно сбалансированы, то легко сдвинуть баланс в пользу производных кислорода и нарушить биохимию клетки. Эта диспропорция называется окислительным стрессом.
Окислительный стресс является патогенетической основой критических состояний, изменения проницаемости клеточных мембран, функционирования мембраносвязанных ферментов и, в конечном итоге, приводит к тяжелым нарушениям клеточного метаболизма (С.С.Белоусов с соавт., 1998).
Фотоизображение клеток при помощи конфокального микроскопа
Здоровая клетка Белковые агрегаты, образующиеся в клетках
при окислительном процессе
Рис. 1. Патологическая роль окислительного стресса
Стабильность центрированного радикала зависит от положения окружающих его химических групп в молекуле. Так, например, некоторые нитроксильные радикалы, хотя и имеют не делокализованный электрон у атома кислорода, но стабильны благодаря наличию СН3-групп, которые «экранируют» радикальный центр от контакта с другими молекулами.
Сталкиваясь с молекулой, свободный радикал отрывает от нее атом водорода (рис.2). Образуется валентно насыщенная молекула, которая превращается в свободный радикал. Он может оторвать атом водорода от другой молекулы или прореагировать с другим радикалом или молекулой кислорода. Пероксидный радикал ROO отрывает атом водорода от другой молекулы и образуется органический пероксид ROOH. Эта вырожденная цепная реакция называется ПРОЦЕССОМ АВТООКИСЛЕНИЯ УГЛЕВОДОРОДОВ ИЛИ СВОБОДНО-РАДИКАЛЬНЫМ ОКИСЛЕНИЕМ (СРО).
Рис. 2. Свободно-радикальное окисление
Базисными механизмами патологии при любых критических состояниях являются свободно-радикальные процессы и изменения свойств биомембран клеток. При ишемии тканей, особенно мозга и миокарда, главная патологическая роль свободных радикалов заключается в том, что они активно взаимодействуют с молекулами, формирующими нейрональные и внутриклеточные мембраны. Повышается вязкость мембран, утрачивается их пластичность и функциональное состояние.
Восстановление кровотока в ранее ишемизированных тканях также представляет определенную опасность. Реперфузия обуславливает многократное повышение парциального давления кислорода с дальнейшим повышением свободно-радикальных процессов. При этом повреждается эндотелий капилляров, антикоагулянтная активность которых трансформируется в прокоагулянтную.
Лейкоциты и тромбоциты вследствие увеличивающейся адгезии закупоривают церебральные капилляры. Усугубляется этот процесс и увеличением ригидности эритроцитов, что резко усиливает нарушение оксигенации тканей, особенно мозга. Угнетаются процессы фибринолиза крови, расширяется зона повреждения тканей, инфаркта мозга, усиливается отек мозга. Имеется прямая зависимость между накоплением продуктов ПОЛ и тяжестью поражения мозга и других тканей. Наряду с этим активируются гены, ответственные за программированную гибель клетки – апоптоз.
Универсальные патогенетические механизмы патологических состояний:
1. Чрезмерное, неконтролируемое эндогенной антиоксидантной системой (АОС) усиление процессов ПОЛ.
2. ГИПОКСИЯ – недостаточное снабжение или потребление кислорода клетками и тканями организма. При этом гипоксия и ПОЛ усиливают взаимно друг друга, что ведет к нарушениям энергетических и метаболических процессов в клетках и тканях (рис.3).
Причины инициации (усиления) ПОЛ:
Основные патологические процессы, инициируемые чрезмерной активацией ПОЛ:
I. КЛЕТОЧНО-ТКАНЕВОЙ УРОВЕНЬ:
4. Апаптоз и некроз клеток;
5. Нарушение клеточной рецепции;
6. Энергетические и метаболические нарушения.
II. ОРГАНЫ И СИСТЕМЫ:
1. Функциональные нарушения;
2. Органическая патология.
Рис. 3. Окислительный стресс при гипоксии
Конечно, в организме существует эндогенная антиоксидантная система, но при критических уровнях гипоксии и ПОЛ она несостоятельна. Антиоксидантнаясистема (АОС) организма состоит из ферментов и водорастворимых, и жирорастворимых субстратов. Главным механизмом антиоксидантной защиты в естественных условиях является фермент супероксиддисмутаза (СОД), оксидность которой позволяет инактивировать свободные радикалы в месте образования, не допуская их диффузии.
Большинство клеток может переносить умеренную степень окислительного стресса благодаря тому, что они обладают репаративной системой, выявляющей и удаляющей поврежденные окислением молекулы, которые затем заменяются. Кроме того, клетки могут повысить свою антиоксидантную защиту в ответ наокислительный стресс. Однако при выраженном окислительном стрессе все молекулы живых организмов (липиды, белки, нуклеиновые кислоты и углеводы) могут быть потенциальными мишенями окислительного повреждения.
Поскольку формирование тканевой гипоксии, ПОЛ, митохондриальная дисфункция признаны пусковым звеном развития типового патологического процесса, использование антигипоксантов и антиоксидантов патогенетически обосновано при любой острой патологии.
Термин «антиоксиданты» появился ещё в 60-х годах XX века благодаря исследованиям Б. Н. Тарусова (1954), Н. М. Эмануэля (1963). Б. Н.Тарусов установил роль липидов, особенно ненасыщенных жирных кислот, как одного из основных субстратов биохимических процессов, провел скрининг радиозащитного влияния цистеина, глутатиона, тиомочевины. Н. М. Эмануэль и его ученики не только определили механизм действия антиоксидантов, но также дали определение антиоксидантов как соединений, угнетающих развитие свободнорадикального окисления.
Препараты антиоксиданты – это лекарственные средства различного химического строения, тормозящие или блокирующие процессы свободнорадикального окисления и/или способствующие увеличению в организме уровня веществ с антиокислительным действием (рис. 4).
По своим химическим свойствам антиоксиданты (АО) подразделяются на 2 группы: “ловушки радикалов”, непосредственно взаимодействующие сосвободными радикалами и “скавенжеры” (уборщики), разлагающие продуктысвободно – радикального окисления (СРО) с их последующей инактивацией и утилизацией.
Рис. 4. Механизм действия антиоксидантов
Разработано и изучается в настоящее время большое количество препаратов с антигипоксантными-антиоксидантными свойствами (мексидол, цитофлавин, танакан, актовегин, кортексин, цитофлавин, ПК-мерц, аминалон, цераксон, эспалипон, церебро и др.). Многие из них уже показали свою высокую эффективность у реанимационных больных, особенно в нейрореаниматологии (это отдельная тема). Однако в научном плане ОС, его значимость в критических состояниях и коррекция антиоксидантами (ОИМ, ЧМТ, кровопотеря, операции, анестезии и т.д.) изучены крайне, мало. А в практическом приложении мониторинг степени ОС и эффективность его коррекции антиоксидантами в больницах вообще не проводится.
Причинами такого положения, прежде всего, являются низкие знания врачей по ОС. Читая лекции на курсах повышения квалификации, мы убедились в том, что анестезиологи-реаниматологи слабо ориентируются в это проблеме. Уместно вспомнить слова В.И.Вернадского: «Нет неизлечимых заболеваний, есть недостаток знаний». Сдерживается применение антиоксидантов в практическом здравоохранении полным отсутствием в лабораториях и отделениях больниц аппаратуры, измеряющей и мониторирующей изменения АОС и ОС больных, не включение в «стандарты» лечения (за исключением терапии инсультов) данных препаратов. Между тем эмпирическая медицина уже опережает научные разработки и «стандарты» в лечении критических состояний. Так в Красноярской краевой больнице уже накоплен многолетний положительный опыт использования антиоксидантов-антигипоксантов в лечении тяжелой ожоговой и черепно-мозговой травмы, гнойно-септических состояний, операциях на головном мозге и сердце, комах различной этиологии.
На примере только одного препарата мексидола, из обширной группы антиоксидантов, можно понять насколько полезны и необходимы в интенсивной терапии критических состояний эти средства.
Мексидол – международное название оксиметилэтилперидина сукцинат. Обладает высокой биодоступностью и липофильностью. Быстро переходит из кровеносного русла в органы и ткани и быстро элиминируется из организма. Благодаря наличию в его составе производного 3-оксипиридина, являющегося активным носителем, проникает внутрь клетки и митохондрий (Дюмаев К.Н., 1995). Препарат практически не токсичен.
Рис. 5. Особенности реакции цикла Кребса, связанной с сукцинатом
1. Окисление сукцината – обязательное условие каталитического действия интермедиата на усвоение клеткой кислорода.
2. Для пополнения пула органических кислот достаточно введения одного сукцината.
3. Активность сукцинатдегидрогеназы не зависит от концентрации НАД и НАДхН.
4. Мощность системы энергопродукции, использующей ЯК, в сотни раз превосходит все другие системы.
5. Феномен быстрого окисления сукцината в цитоплазме клеток с восстановлением динуклеотидов.
Производные 3-оксипиридинов (как составная часть мексидола):
Проведенные экспериментальные и клинические исследования показали эффективность применения антиоксидантов в лечении ОИМ И ОНМК. При ишемии миокарда возникает ограничение зоны некроза в миокарде (рис.6); усиление биоэлектрической активности сердца; улучшение гемодинамики и толерантности сердца к нагрузкам.
Рис. 6. Ограничение зоны некроза миокарда мексидолом
Рис. 7. Влияние антиоксидантов на продолжительность жизни
Как оксидативный стресс влияет на здоровье мужчины?
Что же чувствует человек с синдромом?
Синдром хронической усталости тесно связан с оксидативным стрессом.
Оксидативный, или окислительный, стресс – это патологическое состояние, происходящее в нашем организме на клеточном уровне, при котором клетка подвергается разрушительному воздействию активных форм кислорода (свободных радикалов) [2]. Окислительный стресс опасен последствиями для здоровья и уже всерьез беспокоит врачей всего мира.
Из-за чего возникает оксидативный стресс?
Как распознать оксидативный стресс?
Если вы обнаружили у себя/вашего мужчины большинство признаков, вам пора обратить внимание на ваш образ жизни и здоровье.
Как оксидативный стресс влияет на здоровье мужчины?
Сегодня как никогда актуальна проблема негативного влияния свободных радикалов на репродуктивную функцию [3] у мужчин. При возникшем дисбалансе антиоксидантов и активных форм кислорода повреждается генетический материал, находящийся в сперматозоидах. Повышенная чувствительность сперматозоидов к активным формам кислорода обусловлена высоким содержанием в их мембранах жирных кислот, окисление которых вызывает повреждение половых клеток. При таких повреждениях шанс стать отцом сильно снижается.
Как противостоять свободным радикалам?
Чтобы избежать проблем рекомендуется изменить образ жизни:
Рекомендуем вам расстаться с вредными привычками, включить в свой ритм жизни спорт и фитнес, прогулки на свежем воздухе.
Придерживайтесь принципов здорового питания (больше овощей, фруктов, ягод), соблюдайте режим дня: ложитесь спать вовремя.
И, конечно, учитесь держать свои эмоции в пределах нормы: не нервничайте по пустякам. Если вы чувствуете, что у вас проблемы – обратитесь к грамотному психологу или психотерапевту. Он выслушает и поможет разобраться с основными проблемами, и, при необходимости, назначит курс седативных препаратов.
Продукты питания, рекомендуемые при противооксидантной терапии:
Но для большинства людей этих рекомендации недостаточно, потому что многие из нас живут в больших городах и подвержены внешним негативным факторам, усиливающим оксидативный стресс.
Уровень загрязнения окружающей среды неудовлетворительный из-за загазованности воздуха выхлопными газами и обилия промышленных предприятий. Кроме того, качество продуктов питания, которые мы покупаем, не гарантирует суточный рацион витаминов и минералов.
Для решения этой проблемы люди привыкли использовать БАД к пище, содержащие те или иные полезные вещества, которые тяжело получить с пищей.
БАД. Не является лекарственным средством.
Имеются противопоказания. Перед применением необходимо ознакомиться с инструкцией или проконсультироваться со специалистом.
1. Fulle, S., Pietrangelo, T., Mancinelli, R. et al. Specific correlations between muscle oxidative stress and chronic fatigue syndrome: a working hypothesis. J Muscle Res Cell Motil 28, 2007, pp. 355–362
2. D. John Betteridge. What is oxidative stress? Metabolism. Volume 49, Issue 2, Supplement 1, February 2000, pp 3-8
3. Brody Steven A. Мужское бесплодие и окислительный стресс: роль диеты, образа жизни и пищевых добавок. Андрология и генитальная хирургия, № 3, 2014, с. 33-41.
4. Зверев Я.Ф. Флавоноиды глазами фармаколога. Антиоксидантная и противовоспалительная активность // Обзоры по клинической фармакологии и лекарственной терапии. 2017. Т. 15. № 4. с. 5-13
Окислительный стресс что это такое
Окислительный стресс. Патогенез большинства заболеваний включает избыточную активацию свободно-радикальных процессов, нарушение функционирования систем антиоксидантной защиты, что неизбежно приводит к формированию в организме окислительного стресса (ОС). Механизмы формирования ОС при разных патологиях довольно универсальны и связаны, в первую очередь, с нарушением гомеостаза и окислительно-восстановительных процессов. Основными мишенями повреждения в организме в условиях ОС являются молекулы белков, липидов и нуклеиновых кислот, которые подвергаются окислительной модификации и в дальнейшем, как правило, не способны выполнять свои функции. В связи с этим поиск и разработка способов коррекции окислительного стресса являются крайне актуальной проблемой современной медицины. Один из способов, который может быть эффективен в клинических условиях, заключается в применении веществ, обладающих широким спектром антиокислительного действия, так называемых антиоксидантов.
Классификация антиоксидантов. До сих пор не существует единой классификации антиоксидантов, что во многом обусловлено их большим разнообразием, различиями химической структуры и молекулярных механизмов, благодаря которым обеспечивается антиоксидантная защита биомолекул. Антиоксиданты могут быть донорами протонов, хелаторами ионов металлов переменной валентности, могут предотвращать развитие цепных окислительных процессов, локально снижать концентрацию кислорода и предотвращать его включение в окисление, переводить перекиси в стабильные продукты окисления, инактивировать свободные радикалы и др. [15]. Чаще всего антиоксидант обладает каким-либо преимущественным механизмом действия в организме, хотя зачастую обеспечивает свой эффект благодаря одновременному влиянию на разные звенья метаболизма по нескольким механизмам.
Условно выделяют две основные группы антиоксидантов: природные и синтетические. Существуют также вещества – синергисты, которые обладают низким антиоксидантным эффектом, но способны усиливать эффект других антиоксидантов (к ним можно отнести, например, лимонную и никотиновую кислоты). Группа природных антиоксидантов самая многочисленная и включает вещества, выделенные из растительных и животных тканей. На растительных компонентах основаны многие биологически активные добавки, обладающие антиоксидантными свойствами. Они составляют существенную часть фармакологического рынка. К природным антиоксидантам относятся также ферменты (супероксиддисмутаза, каталаза, глутатионовая система и др.), неферментные соединения – белки (альбумин, трансферрин, ферритин, лактоферрин, церулоплазмин), низкомолекулярные соединения (витамины Е и С, убихинон, билирубин, мочевая кислота, стероидные гормоны и др.). К группе синтетических антиоксидантов относятся многие лекарственные препараты, тормозящие или блокирующие процессы свободнорадикального окисления, такие, например, как дибунол, эмоксипин, пробукол и др.
По способности растворяться в разных средах различают гидрофильные (аскорбиновая и мочевая кислоты, цистеин, карнозин и др.) и липофильные (токоферолы, ретинол, билирубин и др.) антиоксиданты. Существует деление антиоксидантов по принципу их действия: антиоксиданты прямого действия обладают непосредственными антирадикальными свойствами, которые можно обнаружить в тестах in vitro. У антиоксидантов косвенного действия антиоксидантный эффект является опосредованным и проявляется в результате их влияния на синтез и превращение жизненно-важных биологически активных веществ (ферментов, витаминов, гормонов и др.).
Выбор антиоксидантов для использования в медицине. Накоплен обширный экспериментальный и клинический материал по использованию антиоксидантов. В медицине главным образом их используют в качестве дополнительных средств к базовой терапии. Многие лекарственные препараты кроме основного терапевтического эффекта проявляют и антиоксидантные свойства, как, например, гепатопротекторы (карсил, легалон, гептрал и др.), препараты, используемые при лечении сердечно-сосудистой и неврологической патологии (мексидол, эмоксипин, актовегин, кортексин, реамберин и др.). Однако в зависимости от условий и концентрации антиоксиданты могут проявлять и противоположное антиоксидантному – прооксидантное – действие. Известно, например, что каротины являются полиненасыщенными соединениями, поэтому сами могут окисляться по радикальному механизму и выступать в качестве прооксидантов. В определенных условиях, например, в присутствии ионов металлов переменной валентности, прооксидантный эффект проявляет аскорбат. Витамин Е как антиоксидант наиболее эффективен в комплексе с другими жиро- и водорастворимыми восстановителями (аскорбиновой кислотой, убихиноном, флавоноидами), в отсутствие которых он быстро инактивируется или переходит в токофероксильный радикал, способный инициировать новые цепи окисления ненасыщенных липидов, то есть тоже становится прооксидантом [15].
Выбор конкретного антиоксиданта, точные показания и противопоказания к его применению пока недостаточно разработаны для каждого конкретного заболевания. Нет информации о взаимодействии лекарственных средств природного происхождения с синтетическими препаратами. Кроме того, антиоксиданты могут вызывать аллергические реакции, обладать токсичностью, проявлять низкую эффективность, не всегда поддаются стандартизации, сохраняется также возможность их передозировки и т.д. Поэтому поиск веществ с максимальным антиоксидантным действием и минимальными побочными эффектами в условиях ОС продолжается и остается важной проблемой. В идеале анитоксидант должен проявлять выраженное антиоксидантное действие в широком диапазоне концентраций, быть природным, гидрофильным, обладать хорошей биодоступностью, быть нетоксичным и не образовывать токсичных продуктов при взаимодействии с активными формами кислорода, не оказывать негативных эффектов в случае передозировки, иметь хорошую совместимость с другими препаратами.
Основные свойства карнозина. Многочисленные литературные источники, а также собственный опыт работы, позволяют предполагать, что антиоксидант карнозин – природный дипептид β-аланил-L-гистидин – отвечает практически всем требованиям, предъявляемым к идеальному антиоксиданту. Он синтезируется и содержится в мышечной и нервной ткани человека, легко усваивается и проникает через гематоэнцефалический барьер, обладает высокой биодоступностью и мембраностабилизирующим действием, относится к низкомолекулярным гидрофильным антиоксидантам прямого действия, хотя способен оказывать и опосредованное влияние на систему антирадикальной защиты организма [3]. Об опосредованном действии карнозина свидетельствуют, в частности, результаты экспериментов, проведенных на крысах, которые показали, что карнозин ускоряет метаболизирование кортизола и норадреналина, высвобождающихся в кровь животных при стрессе [42]. Снижение уровня гормонов стресса в крови опосредованно приводит к снижению выраженности ОС. Кроме того, у карнозина не выявлено побочных эффектов, к нему нет привыкания, нет опасности его передозировки, он не накапливается в организме при длительном применении, так как его избыток подвергается расщеплению ферментом карнозиназой на составляющие аминокислоты, которые легко выводятся из организма [3].
Первые положительные биологические эффекты карнозина объясняли его рН-буферными свойствами, однако после выявления его прямого антиоксидантного действия [23], карнозин стали рассматривать не только как буфер для протонов, но и как буфер для металлов с переменной валентностью и активных форм кислорода, то есть как классический антиоксидант. В последующем были выявлены антигликирующие [39], антикросслинкинговые [40] свойства карнозина, которые являются, по сути, отражением его антиоксидантных эффектов.
Клиническое применение карнозина. Создателями первой инъекционной лекарственной формы карнозина были ученые Харьковского физиотерапевтического института. При его введении подкожно по 0,5–1,0 мг (курс состоял из 12–15 инъекций) была получена высокая терапевтическая эффективность при лечении инфекционных и ревматических полиартритов, язвенных заболеваний желудочно-кишечного тракта [17, 29]. Позже было продемонстрировано положительное действие карнозина при заживлении ран роговицы [31] и ткани легкого [20]. Большое место в изучении ранозаживляющего действия карнозина принадлежит японским исследователям. Ими был создан препарат Z-103 на основе комплексного соединения, образуемого карнозином и ионами цинка (L-карнозин-Zn2+), который обладал выраженным противоязвенным эффектом, уменьшал повреждение слизистой желудка, вызванное разными формами стресса и химическими агентами [47]. Японским ученым принадлежит и приоритет использования карнозина при онкологических заболеваниях [49]. Карнозин (3 г/день) в сочетании с радиотерапией при лечении больных раком молочной железы значительно снижал побочные эффекты облучения – радиационное повреждение кожи, интоксикацию организма, повышал иммунитет и увеличивал вероятность излечения в несколько раз. Карнозин оказался эффективным и для предупреждения кахексии, вызываемой химиотерапией при лечении рака (2 г/день в течение 10 дней перед интенсивной химиотерапией) [49]. В экспериментальных исследованиях на культурах опухолевых клеток показано, что карнозин способен полностью подавлять пролиферацию глиобластомы человека, при этом обнаружено снижение уровня активных форм кислорода и повышение активности митохондриальной супероксиддисмутазы в клетках опухоли [22].
Отечественным ученым принадлежит приоритет открытия способности карнозина предотвращать возрастное помутнение хрусталика глаза [4]. Основной причиной помутнения хрусталика при старческой катаракте являются свободнорадикальные реакции, приводящие к окислительной модификации липидов и белков кристаллинов тканей глаза. В ходе развития катаракты в хрусталике происходит значительное снижение эндогенных антиоксидантов глутатиона и карнозина. В клинических исследованиях была доказана эффективность препарата в виде глазных капель для лечения катаракты, содержащего 5 %-й раствор карнозина. Позже при разработке глазных капель был успешно применен природный дипептид, родственный карнозину, N-ацетилкарнозин [34]. Карнозин в виде 5 %-го раствора успешно использовали и для лечения сезонного аллергического риноконьюнктивита, при этом отпадала необходимость дополнительного назначения антигистаминных препаратов [2]. Карнозин нашел свое применение и для лечения воспалительных заболеваний пародонта у пациентов с несъемными ортодонтическими конструкциями: 5 %-й раствор этого дипептида оказывал выраженное иммунокоррегирующее действие и повышал активность ферментов антиоксидантной защиты в слюне [25].
Карнозин успешно применяют в кардиологической практике. В Центре сердечно-сосудистой хирургии им. А.Н. Бакулева используют кардиоплегический раствор, содержащий L-карнозин и N-ацетилкарнозин, при операциях на остановленном сердце, что позволяет в несколько раз увеличить длительность операции без признаков некротического повреждения тканей сердца в операционном поле [5].
В настоящее время в России в качестве источника карнозина часто применяют таблетированную биологически активную добавку под названием севитин. Каждая таблетка севитина содержит 0,15 или 0,25 грамм карнозина. Благодаря работам, проводимым в Московском Научном центре неврологии по изучению биологических свойств карнозина (севитина), было показано, что этот препарат способствует восстановлению мозгового кровообращения и поддержанию функционального состояния сердечно-сосудистой системы, оказывает регулирующее действие на активность иммунной системы [24]. Проводятся исследования, направленные на получение новых карнозин-содержащих препаратов для использования в клинических условиях. Имеются сообщения о создании и испытании нанокомплексов, содержащих карнозин, включенный в состав фосфолипидных наноструктур [13]. Использование таких нанокомплексов позволяет обеспечить устойчивость карнозина к действию карнозиназы при его доставке к месту назначения, что может существенно увеличить эффективность воздействия этого дипептида.
Применениее карнозина при психоневрологических и психических расстройствах. Известно, что ОС развивается при болезни Паркинсона и Альцгеймера [46], при инсульте [38], неврозах [1], шизофрении [26], депрессии [10], при аддиктивных расстройствах, в частности, при алкоголизме [21, 41, 50]. Клетки нервной системы очень чувствительны к свободнорадикальному окислению в силу многих факторов: высокой интенсивности обменных процессов и высокого уровня потребления кислорода, большого количества липидов с полиненасыщенными жирными кислотами, повышенного содержания связанных ионов железа (индукторов окисления) и низкого содержания его белков-переносчиков, образования активных форм кислорода в ходе клеточного метаболизма, которые выполняют в нейрональных клетках функцию вторичных мессенджеров, участия свободных радикалов в нейрорегуляции и др. [3, 15]. Именно это определяет особую необходимость защиты клеток нервной ткани от свободно-радикального окисления с помощью природных антиоксидантов, способных преодолевать гематоэнцефалический барьер, к которым относится и карнозин.
Положительные результаты были получены при добавлении карнозина (2,0 г/сутки) к базовой терапии больных с хронической дисциркуляторной энцефалопатией. Такое лечение приводило к повышению устойчивости липопротеинов плазмы крови к Fe2+-индуцированному окислению, стабилизации эритроцитов по отношению к кислотному гемолизу, интенсификации дыхательного взрыва лейкоцитов и усилению эндогенной антиоксидантной защиты организма, улучшению когнитивных функций головного мозга пациентов [6]. То есть карнозин оказывал антиоксидантный, мембраностабилизирующий и иммуномодулирующий эффекты при данной патологии.
Существенное улучшение клинического состояния пациентов наблюдалось при введении карнозина в дозе 1,5 г/сут в течение 30 дней дополнительно к традиционной терапии при лечении болезни Паркинсона [28]. Использование карнозина позволило снизить токсические эффекты базовой терапии (побочные действия антипаркинсонных препаратов). У больных отмечалось статистически значимое уменьшение неврологической симптоматики (улучшение координации движений). Была выявлена положительная корреляция между активацией антиоксидантного фермента супероксиддисмутазы в эритроцитах и снижением неврологической симптоматики. Добавление карнозина в схему лечения приводило к достоверному снижению гидроперекисей в липопротеинах плазмы крови и значительно увеличивало сопротивляемость липопротеинов низкой и очень низкой плотности к Fe2+-индуцируемому окислению, а также к уменьшению количества окисленных белков в плазме крови. Таким образом, добавление карнозина к базисной терапии значительно улучшало не только клинические показатели, но и повышало антиоксидантный статус организма у пациентов с болезнью Паркинсона.
Успешное применение карнозин нашел и при шизофрении. Рандомизированное двойное слепое плацебо-контролируемое исследование выявило, что включение карнозина (2,0 г/сут) в качестве дополнения к основной терапии при лечении больных шизофренией улучшало когнитивные функции пациентов [35].
Коррекция окислительного стресса карнозином у больных алкоголизмом. Доказано, что у больных алкоголизмом ОС вносит большой вклад в формирование соматических осложнений [19], нарушение иммунного статуса [9, 11], индукцию апоптоза [36]. При алкоголизме важную роль в формирование ОС может вносить этанол, концентрация которого в организме больного существенно превышает норму, а также токсический метаболит этанола – ацетальдегид [8], уровень которого в организме также возрастает при алкогольной интоксикации. Ацетальдегид способен связываться со многими биологическими молекулами (белками плазмы, гемоглобином, факторами свертывающей системы крови, липидами и др.), образуя с ними альдегидные аддукты, которые откладываются и накапливаются в различных тканях (печени, мозге, сердце, мышцах, кишечнике) [43, 48].
Высокие показатели окислительной модификации биомолекул и активности аминотрансфераз сыворотки крови обнаружены у больных алкоголизмом, находящихся в состоянии абстиненции [7]. В другой работе повышенное содержание карбонилированных белков и активности аминотрансфераз сыворотки крови выявлено у пациентов с алкогольным делирием, инфицированных вирусами гепатита С или иммунодефицита человека [30]. Показана взаимосвязь между уровнем окисления (карбонилирования) белков плазмы крови с тяжестью проявлений абстинентного синдрома у пациентов [16]. Есть мнение, что метаболической основой возникновения алкогольного психоза является накопление ацетальдегида, который, взаимодействуя с серотонином, образует токсические продукты, обладающие галлюциногенными свойствами [12]. У больных алкогольным делирием с преобладанием психотического компонента выявлено повышенное содержание окисленных белков в эритроцитах, в плазме крови и низкий уровень ПОЛ [18]. Высокое содержание окисленных белков наблюдалось и у больных с алкогольной энцефалопатией [14]. Таким образом, активация свободно-радикальных процессов, приводящая к накоплению продуктов окислительной модификации биомолекул, вносит существенный вклад в клиническое течение алкоголизма и может определять его особенности, что делает крайне важным изучение эффектов антиоксидантов при данной патологии.
Проведено специальное плацебо-контролируемое исследование эффективности карнозина при коррекции ОС у больных алкогольной зависимостью на этапе формирования ремиссии [21, 32]. Больные после базового лечения принимали карнозин в дозе 1,2 г/сут в течение одного месяца вне стационара. Отмечено, что после лечения в стационаре в организме больных сохранялся ОС на высоком уровне. Через один месяц, в течение которого проводилось исследование, в группе сравнения (у больных, не принимавших никаких препаратов на этапе формирования ремиссии), выраженность ОС осталась на том же уровне, что и в начале исследования. В группе больных, которые принимали карнозин, отмечалось достоверное снижение карбонилированных белков и продуктов ПОЛ в плазме крови до величин, соответствующих здоровым лицам. Прием пациентами карнозина в течение месяца приводил также к повышению активности СОД плазмы и снижению активности аминотрансфераз сыворотки крови. Эти результаты показывают, что прием карнозина эффективно снижает выраженность ОС в организме больных алкоголизмом. При этом нежелательных побочных эффектов не наблюдалось.
Защита карнозином биомолекул от окисления, индуцированного этанолом и ацетальдегидом in vitro. В экспериментальных исследованиях было доказано, что карнозин в концентрации 5 мМ повышает устойчивость эритроцитов больных алкоголизмом к гемолизирующему действию кислоты [44], подавляет окислительную модификацию белков и липидов плазмы крови, вызванную как этанолом, так и ацетальдегидом. Методом электрофореза в полиакриламидном геле выявлено, что инкубация крови с ацетальдегидом приводит к появлению высокомолекулярных белков в плазме, которые не обнаружены ни в контрольных образцах, ни в образцах с этанолом. Это свидетельствует об ацетальдегид-индуцируемом образовании белковых агрегатов, которые образуются в результате свободнорадикального окисления. В образцах крови с ацетальдегидом, в которые был добавлен карнозин, высокомолекулярных белков не выявлялось. То есть карнозин препятствовал ацетальдегид-индуцируемому образованию агрегатов белков плазмы крови. В целом эти исследования показали, что положительный эффект карнозина при лечении больных алкоголизмом может быть обусловлен, в том числе, и способностью этого дипептида защищать белки и липиды от окислительного повреждения, вызванного этанолом и ацетальдегидом.
Применение карнозина при физиологических состояниях, сопровождающихся активацией свободно-радикальных процессов. ОС может развиваться не только при патологических процессах, но и при больших физических нагрузках, а также при физиологическом старении организма. Поэтому уже сегодня карнозин находит широкое применение как общеукрепляющее средство для здоровых людей в условиях физического и психологического напряжения, при действии различных неблагоприятных факторов, в экстремальных условиях. Карнозин применяют для ускорения процессов восстановления утомленных мышц и повышения их работоспособности у спортсменов [33] и у здоровых пожилых людей, стремящихся к активному образу жизни [37]. В экспериментальных условиях было показано геропротекторное действие карнозина. В опытах с использованием специально выведенной линии быстростареющих мышей было доказано, что включение в их рацион карнозина приводит к замедлению процесса старения животных за счет повышения антиоксидантного статуса их организма [27]. Есть сообщения об антистрессорном действии карнозина, а также о возможном его использовании у людей, страдающих нарушениями сна [24]. Перспективны разработки использования карнозина в косметической отрасли, что подтверждают имеющиеся данные о способности карнозина предотвращать структурные изменения коллагена в коже, препятствовать потере ее эластичности [45].
Заключение
Представленные данные об успешном использовании карнозина при разных патологиях и при физиологических состояниях, сопровождающихся активацией свободно-радикального окисления, демонстрируют перспективность использования карнозина в качестве эффективного антиоксиданта, протектора тканей от различных неблагоприятных факторов, индуцирующих развитие окислительного стресса.