Оказалось что каждая буква сказала правду
12.05.2021 Пригласительный школьный этап ВОШ по математике 3-6 класс задания и ответы
ПОДЕЛИТЬСЯ
Задания и ответы пригласительного этапа 2021 года ВОШ (Сириус) по математике для 3, 4, 5, 6 класса всероссийской олимпиады школьников, дата проведения онлайн олимпиады: 12.05.2021 (12 мая 2021 год).
Ссылка для скачивания заданий для 3 класса: скачать задания
Ссылка для скачивания заданий для 4 класса: скачать задания
Ссылка для скачивания заданий для 5 класса: скачать задания
Ссылка для скачивания заданий для 6 класса: скачать задания
Ответы и решения для 3,4,5,6 класса: скачать ответы
Пригласительный этап ВОШ 2021 по математике 3 класс задания:
1)Вася на следующий день после своего дня рождения сказал: «Жаль, что мой день рождения в этом году не в субботу, ведь в этом случае ко мне бы пришло больше гостей! Но суббота будет послезавтра…» В какой день недели у Васи был день рождения?
2)Кубик повернули вокруг указанной оси так, что отмеченная грань повернулась указанным образом. А в вершину с каким номером перешла точка A?
3)Несколько букв А и несколько букв Б сидели на трубе. После того, как несколько А упало и несколько Б пропало, на трубе остались всего три буквы и между ними произошёл следующий диалог: Первая буква: «Буква Б среди нас одна.» Вторая буква: «Я здесь одна такая буква.» Третья буква: «Букв А тут точно меньше двух.» Оказалось, что каждая буква сказала правду, если она А, и соврала, если она Б. Определите, где какая буква.
4)Замените картинки на цифры так, чтобы суммы по столбцам и по строкам были равны указанным. Одинаковые картинки соответствуют одинаковым цифрам, а разные — разным. Какое число после замены картинок на цифры получится под таблицей?
6)Петя умеет рисовать всего 4 вещи: солнце, мячик, помидор и банан. Зато крайне правдоподобно! Сегодня он нарисовал несколько вещей, среди которых ровно 19 жёлтых, 22 круглых и 17 съедобных. Какое наибольшее количество мячиков он мог нарисовать? Петя считает, что все помидоры круглые и красные, все мячики круглые и могут быть любого цвета, а все бананы жёлтые и не круглые.
7)Катя коротает время, пока родители работают. На листке бумаги она задумчиво в два ряда нарисовала Чебурашек (в каждом ряду оказался нарисован хотя бы один Чебурашка). Потом, подумав, между каждыми двумя соседними Чебурашками в ряду она нарисовала по крокодилу Гене. А затем слева от каждого Чебурашки — по старухе Шапокляк. И напоследок между каждыми двумя персонажами в ряду она нарисовала по Кракозябре. Внимательно посмотрев на рисунок, она поняла, что красиво получились у неё только Кракозябры, и яростно стёрла всех остальных. В итоге родители увидели два ряда Кракозябр: всего 29 штук. Сколько Чебурашек было стёрто?
8)У берега реки покачивался небольшой плот. К берегу подошли 5 мышат весом по 60 г, 3 крота весом по 90 г и 4 хомячка весом по 120 г. Какое минимальное количество граммов должен выдерживать плот, чтобы все звери смогли на нём переправиться на другой берег, возможно, за несколько ходок «туда сюда»? Плот не может передвигаться по реке без гребца.
Видеоразбор заданий олимпиады для 3 класса:
Пригласительный этап ВОШ 2021 по математике 4 класс задания:
1)Поставьте в соответствие каждой букве цифру 1,2,3,4,5 так, чтобы выполнялись все неравенства. К К > А Разным буквам должны соответствовать разные цифры. В качестве ответа запишите число КНИЖКА.
2)Вторник будет через пять дней после позавчера. А какой день недели будет завтра?
3)Сколько на данной картинке существует прямоугольников со сторонами, идущими по линиям сетки? (Квадрат также является прямоугольником.)
4)Четыре девочки: Катя, Оля, Лиза и Рита — встали в круг в некотором порядке. На них были платья разных цветов: розовое, зелёное, жёлтое и голубое. Известно, что: на Оле было не розовое и не голубое платье; девочка в зелёном платье стоит между Ритой и девочкой в жёлтом; Катя не в зелёном и не в голубом платье; Лиза стоит между Катей и девочкой в розовом платье. Кто во что одет?
5)Напишите наибольшее девятизначное число, в котором встречаются все чётные цифры. (Чётные цифры: 0,2,4,6,8.)
6)Часть цифр в прямоугольнике уже расставлена. Расставьте на оставшихся местах цифры так, чтобы: сумма цифр в каждом столбце была одинаковой; сумма цифр в каждой строчке была одинаковой; сумма цифр в красных клетках была равна сумме цифр в любой строчке. В качестве ответа введите трёхзначное число ABC (т. е. составленное из цифр, оказавшихся на местах букв A, B, C).
7)У берега реки стоит Белоснежка, а рядом с ней 7 гномов в следующем порядке слева направо: Весельчак, Соня, Умник, Чихун, Ворчун, Скромник и Простачок. У берега качается лодка, вмещающая только 3 гномов и Белоснежку. Белоснежка единственная умеет грести. Любые два гнома, стоящие рядом в изначальном ряду, поссорятся без присмотра Белоснежки. Белоснежка должна перевезти всех гномов на другой берег и никого не поссорить. Отметьте всех, кого Белоснежка возьмёт с собой в последнюю поездку.
8)Если в числе 79777 зачеркнуть цифру 9, получится число 7777. Сколько существует различных пятизначных чисел, из которых можно получить 7777, зачеркнув одну цифру?
Видеоразбор заданий олимпиады для 4 класса:
Пригласительный этап ВОШ 2021 по математике 5 класс задания:
1)Саша выписал на доску все двузначные числа, делящиеся на 6, а затем стёр те из них, которые оканчиваются не на 4. Какое наибольшее число в итоге оказалось написано на доске?
2)На столе лежат апельсин, банан, мандарин, персик и яблоко. Их веса равны 100 г, 150 г, 170 г, 200 г, 280 г, но неизвестно, какой фрукт сколько весит. Известно, что: персик легче апельсина; мандарин тяжелее банана, но легче персика; яблоко легче мандарина; банан и мандарин вместе тяжелее апельсина. Какой фрукт сколько весит?
3)На стене висят часы с кукушкой. Когда начинается новый час, кукушка говорит «ку-ку» количество раз, равное числу, на которое показывает часовая стрелка (например, в 19:00 «ку-ку» звучит 7 раз). Как-то утром Максим подошёл к часам, когда на них было 9:05. Он стал крутить пальцем минутную стрелку, пока не перевёл часы на 7 часов вперёд. Сколько раз за это время прозвучало «ку-ку»?
4)На дискотеку по случаю окончания учебного года пришло в два раза больше мальчиков, чем девочек. Маша посчитала, что девочек, кроме неё самой, на дискотеке на 9 меньше, чем мальчиков. Сколько мальчиков пришло на дискотеку?
5)Из клетчатого квадрата 7×7 вырезали голубые треугольники. Чему равна площадь оставшейся фигуры? Длина стороны каждой клетки равна 1 см. Ответ дайте в квадратных сантиметрах.
6)На доске написано одно трёхзначное число и два двузначных. Сумма чисел, в записи которых есть семёрка, равна 214. А сумма чисел, в записи которых есть тройка, равна 75. Найдите сумму всех трёх чисел.
7)Вася хочет расставить в квадратики числа от 1 до 6 (каждое — по одному разу) так, чтобы выполнялось следующее условие: если два квадратика соединены, то в том, который выше, число больше. Сколько существует способов это сделать?
8)В стране 100 городов: 30 из них находятся в горной части страны, а 70 — в равнинной. В течение трёх лет между городами устанавливали авиасообщение. Каждый год в стране открывалось 50 новых авиарейсов: все города случайным образом разбивались на 50 пар, и между городами из одной пары открывался рейс. Через три года оказалось, что из 150 открытых рейсов ровно 23 соединяют пару «горных» городов. Сколько рейсов соединяют пару «равнинных» городов?
Видеоразбор заданий олимпиады для 5 класса:
Пригласительный этап ВОШ 2021 по математике 6 класс задания:
2)Для приготовления одной порции салата требуются 2 огурца, 2 помидора, 75 грамм брынзы и 1 перец. На складе ресторана есть 92 перца, 6,6 кг брынзы, 180 помидоров и 181 огурец. Сколько порций получится?
3)Витя и его мама одновременно вышли из дома и пошли в противоположные стороны с одинаковой скоростью: Витя — в школу, а мама — на работу. Через 16 «> 16 минут Витя понял, что у него нет ключей от дома, а вернётся из школы он раньше мамы, поэтому он стал догонять её, увеличив скорость в пять раз. Через сколько минут с того момента, как он понял, что надо забрать ключи, Витя догонит маму?
4)Алексей, Борис, Вениамин и Григорий подозреваются в ограблении банка. Полиции удалось выяснить следующее: если Алексей невиновен, то Вениамин виновен, а Борис невиновен; если Григорий виновен, то Борис и Вениамин невиновны; если Алексей виновен, то Вениамин тоже виновен; если Вениамин виновен, то кто-то из двух — Борис и Григорий — точно виновен. Отметьте тех, кто участвовал в ограблении.
6)С дерева сорвали несколько апельсинов (не обязательно равной массы). Когда их взвесили, то оказалось, что масса любых трёх апельсинов, взятых вместе, составляет меньше 4% от суммарной массы остальных апельсинов. Какое наименьшее количество апельсинов могло быть сорвано?
8)Существует ровно 120 способов закрасить пять клеток в таблице 5×5 так, чтобы в каждом столбце и в каждой строке была закрашена ровно одна клетка. Существует ровно 96 способов закрасить пять клеток в таблице 5×5 без угловой клетки так, чтобы в каждом столбце и в каждой строке была закрашена ровно одна клетка. Сколько существует способов закрасить пять клеток в таблице 5×5 без двух угловых клеток так, чтобы в каждом столбце и в каждой строке была закрашена ровно одна клетка?
Видеоразбор заданий олимпиады для 6 класса:
Решение логических задач (с использованием кейс-метода)
Решение логических задач (с использованием кейс-метода)
Предмет: Информатика и ИКТ
Время занятия: 2 урока
Вид кейса: обучающий
Тип кейса: аналитический
Тема урока: Решение логических задач.
Цель: Учить обучающихся к работе со специальным набором учебно-методических материалов (кейсом) по решению логических задач и максимально активизировать каждого обучающегося в самостоятельную работу по решению кейса.
— развивать инициативу, любознательность, умственную активность;
— формировать коммуникативные навыки, умения вырабатывать и аргументировать самостоятельные решения, навыки сотрудничества в группах.
Оборудование: набор учебно-методических материалов (кейс) для самостоятельной работы, компьютеры подключенные к интернету и локальной сети, мультимедиа проектор, интерактивная доска.
На уроке учитель сообщает тему урока и дает комментарии об объеме работ, формулирование вместе с учащимися цели и задач урока, ознакомление с критериями оценок и прогнозируемого результата, объяснение порядка работы с кейсом.
Затем идет проверка домашнего задания (краткое изложение обучающимися домашнего задания – творческая практическая работа кейса и их обсуждение).
ЗАДАНИЕ ПОДГРУППАМ: Три школьника, Миша (М), Коля (К) и Сергей (С), остававшиеся в классе на перемене, были вызваны к директору по поводу разбитого в это время окна в кабинете. На вопрос директора о том, кто это сделал, мальчики ответили следующее:
Миша: «Я не бил окно, и Коля тоже…»
Коля: «Миша не разбивал окно, это Сергей разбил футбольным мячом!»
Сергей: «Я не делал этого, стекло разбил Миша».
Стало известно, что один из ребят сказал чистую правду, второй в одной части заявления соврал, а другое его высказывание истинно, а третий оба факта исказил. Зная это, директор смог докопаться до истины. Кто разбил стекло в классе? В ответе запишите только первую букву имени.
Для решения проблемы для обучающихся подготовлен кейс, в котором предложены задания и несколько способов их решения. Обучающиеся изучают материалы кейса заранее, часть заданий по работе с кейсом выполняется дома индивидуально каждым (творческая практическая работа).
Далее идет ознакомление обучающихся с заданием кейса в бумажном и электронном виде (в школьных компьютерах через локальную сеть).
Затем идет распределение обучающихся на подгруппы (3-5 человек) и организуется работа в подгруппах.
— обсуждение решения проблемы по заданию кейса, выявление и формулировка проблемы, поиск аргументов и решений (обучающийся, познакомившись с заданием, самостоятельно анализирует ситуацию, представляют свои решения в дискуссии с другими членами подгруппы);
— выбор лучшего решения в рамках подгруппы и организация презентаций решений в подгруппах.
— выступления капитанов подгрупп, каждая группа предлагает свою версию выполненного задания (публичная, устная презентация решений);
— участие в обсуждении обучающихся других подгрупп;
— участие в обсуждении учителя.
Решение логических задач
· таблицы истинности логических операций «И», «ИЛИ», «НЕ», «ЕСЛИ…, ТО…», «ТОГДА И ТОЛЬКО ТОГДА»
· логическое произведение A∙B∙C∙… равно 1 (выражение истинно) только тогда, когда все сомножители равны 1 (а в остальных случаях равно 0);
· логическая сумма A+B+C+… равна 0 (выражение ложно) только тогда, когда все слагаемые равны 0 (а в остальных случаях равна 1);
· правила преобразования логических выражений.
Законы алгебры логики
Задача 1:
Классный руководитель пожаловался директору, что у него в классе появилась компания из 3-х учеников, один из которых всегда говорит правду, другой всегда лжет, а третий говорит через раз то ложь, то правду. Директор знает, что их зовут Коля, Саша и Миша, но не знает, кто из них правдив, а кто – нет. Однажды все трое прогуляли урок астрономии. Директор знает, что никогда раньше никто из них не прогуливал астрономию. Он вызвал всех троих в кабинет и поговорил с мальчиками. Коля сказал: «Я всегда прогуливаю астрономию. Не верьте тому, что скажет Саша». Саша сказал: «Это был мой первый прогул этого предмета». Миша сказал: «Все, что говорит Коля, – правда». Директор понял, кто из них кто. Расположите первые буквы имен мальчиков в порядке: «говорит всегда правду», «всегда лжет», «говорит правду через раз». (Пример: если бы имена мальчиков были Рома, Толя и Вася, ответ мог бы быть: РТВ)
Решение (вариант 1, метод рассуждений):
1) во-первых, есть «точная» информация, которая не подвергается сомнению:
все трое прогуляли урок астрономии в первый раз
2) запишем высказывания мальчиков:
Коля: 1. Я всегда прогуливаю астрономию. 2. Саша врет.
Саша: 1. Я в первый раз прогулял астрономию.
Миша: 1. Коля говорит правду.
3) известно, что один из них все время лжет, второй – говорит правду, а третий говорит правду через раз (то есть, из двух его высказываний одно истинно, а второе – ложно; если у нас есть только одно высказывание «полу-лжеца», оно может быть как истинным, так и ложным)
4) сопоставив первое высказывание Коли и высказывание Саши с «точной» информацией, сразу определяем, то тут Коля соврал, а Саша сказал правду; это значит, что второе высказывание Коли – тоже неверно, поэтому мальчик Коля всегда лжет
5) тогда один из оставшихся, Саша или Миша, говорит правду всегда, а второй – через раз
6) Мишино высказывание неверно, поскольку мы уже определили, что Коля лжет; это значит, что Миша не всегда говорит правду, он – «полу-лжец»
7) тогда получается, что Саша всегда правдив, и действительно, его высказывание верно
8) таким образом, верный ответ – СКМ (Саша – правдив, Коля – лжец, Миша – «полу-лжец» ).
Задача 2.
Классный руководитель пожаловался директору, что у него в классе появилась компания из 3-х учеников, один из которых всегда говорит правду, другой всегда лжет, а третий говорит через раз то ложь, то правду. Директор знает, что их зовут Коля, Саша и Миша, но не знает, кто из них правдив, а кто – нет. Встретив однажды всех троих в коридоре, директор решил поговорить с мальчиками. Коля сказал: «Саша всегда лжет». Саша сказал: «Коля прав». Директору стало все понятно. Расположите первые буквы имен мальчиков в порядке: «говорит всегда правду», «всегда лжет», «говорит правду через раз». Например: если бы имена мальчиков были Рома, Толя и Вася, ответ мог бы быть: РТВ.
Решение (вариант 1, метод рассуждений):
1) в отличие от предыдущей задачи, здесь нет точной информации
2) у нас всего два высказывания мальчиков:
Коля: Саша всегда лжет
3) в отличие от предыдущей задачи, второе высказывание связано с первым: Сашино утверждение относится к данному конкретному высказыванию Коли, а не к честности Коли вообще
4) в такой ситуации нужно предположить, что истинно одно из высказываний и проверить, не приводит ли это к противоречию
5) предположим, что Коля сказал правду; тогда получается, что Саша (который всегда лжет) солгал и на этот раз; однако если Саша солгал, то получается, что Коля сказал неправду, то есть, мы пришли к противоречию, и Коля в самом деле солгал
6) если Коля солгал, то получается, что Саша тоже солгал, то есть, оба мальчика сказали неправду; отсюда следует, что один из них – лжец, а второй «полу-лжец», тогда как Миша (ничего не сказавший) говорит всегда правду
7) остается определить, кто из двоих (Коля или Саша) лжец, а кто – «полу-лжец»
8) с первого взгляда кажется, что это невозможно сделать, но ложные утверждения двух мальчиков разные: Коля говорит (неправду) о том, что Саша всегда лжет, а Саша говорит только о последнем (предыдущем) утверждении Коли; на этой разнице и основано решение
9) мы уже выяснили, что Коля солгал, то есть Саша не всегда лжет, он – «полу-лжец»; тогда сразу получается, что Коля – лжец
10) таким образом, верный ответ – МКС (Миша – правдив, Коля – лжец, Саша – «полу-лжец»).
Задача 3.
Мама, прибежавшая на звон разбившейся вазы, застала всех трех своих сыновей в совершенно невинных позах: Саша, Ваня и Коля делали вид, что происшедшее к ним не относится. Однако футбольный мяч среди осколков явно говорил об обратном.
– Кто это сделал? – спросила мама.
– Коля не бил по мячу, – сказал Саша. – Это сделал Ваня.
Ваня ответил: – Разбил Коля, Саша не играл в футбол дома.
– Так я и знала, что вы друг на дружку сваливать будете, рассердилась мама. Ну, а ты что скажешь? – спросила она Колю.
– Не сердись, мамочка! Я знаю, что Ваня не мог этого сделать. А я сегодня еще не сделал уроки, – сказал Коля.
Оказалось, что один из мальчиков оба раза солгал, а двое в каждом из своих заявлений говорили правду. Кто разбил вазу?
Решение (вариант 1, метод рассуждений):
1) запишем высказывания трех мальчиков в краткой форме:
Саша: 1. это не Коля 2. это Ваня
Ваня: 1. это Коля 2. это не Саша
Коля: 1. это не Ваня
обратите внимание, что у Коли всего одно высказывание, которое «относится к делу»; то, что он сделал или не сделал уроки, никак не проясняет ситуацию с разбитой вазой
2) итак, двое мальчиков сказали правду;
— это не могут быть Саша и Ваня, потому что их первые высказывания противоречат одно другому
— это не могут быть Саша и Коля, поскольку высказывание Коли противоречит второму высказыванию Саши
— поэтому правду сказали Ваня и Коля, а Саша – соврал
3) таким образом, вазу разбил Коля
Решение (вариант 2, преобразование логических выражений):
1) применим к этой задаче формальный аппарат математической логики; введем высказывания:
С: вазу разбил Саша
В: вазу разбил Ваня
К: вазу разбил Коля
2) запишем с помощью этих обозначений утверждения мальчиков:
Саша: 1. 2.
Ваня: 1. 2.
Коля: 1.
3) читаем условие: «один из мальчиков оба раза солгал, а двое в каждом из своих заявлений говорили правду»;
4) как записать «Саша два раза солгал»? в этом случае оба его утверждения неверны, поэтому и
, что равносильно
5) как записать «Саша два раза сказал правду»? в этом случае оба его утверждения неверны, поэтому и
, что равносильно
6) если Коля солгал, а Саша и Ваня сказали правду, то
и
и
заменив «И» на умножение, получаем ; учитывая, что
, получаем в левой части равенства ноль; так как в правой части – единица, этого не может быть (равенство ложно при любых значениях
)
7) если Ваня солгал, а Саша и Коля сказали правду, то
и
и
заменив «И» на умножение, получаем ; учитывая, что
, получаем, что это равенство ложно при любых значениях
(этого не может быть)
8) остается последний возможный вариант: если Саша оба раза солгал, а Ваня и Коля сказали правду, то
и
и
заменив «И» на умножение, получаем ; упростив это выражение с учетом равенств
и
, получим
; то есть, при этом предположении вазу разбил Коля, а не Ваня и не Саша;
9) таким образом, вазу разбил Коля
10) при несколько измененном условии нам, возможно, пришлось бы использовать дополнительные условия (вазу разбил только один из мальчиков, а не два и не три), но здесь они не пригодились.
Решение (вариант 3, метод подбора):
1) запишем высказывания трех мальчиков в краткой форме:
Саша: 1. Коля не разбивал 2. Ваня разбил
Ваня: 1. Коля разбил 2. Саша не разбивал
Коля: 1. Ваня не разбивал
2) оформим эти данные в виде таблицы, где в строках записаны высказывания мальчиков, а в столбцах – информация, которая в них содержится: