Ограничитель импульсных перенапряжений опс1 для чего нужен
Подключение опс-1
Ограничитель импульсных перенапряжений — устройство, призванное защитить внутренние распределительные электроцепи зданий от грозовых всплесков и импульсных перенапряжений. К примеру, ограничитель способен защитить сети от молниевых ударов, сетевых бросков напряжения и прочего. Какие имеет ОПС-1 технические характеристики? Как выглядит схема подключения у ограничителя импульсных перенапряжений ОПС1? Об этом и другом далее.
Технические характеристики ОПС-1
ОПС-1 — серия коммутационных ограничителей импульсных перенапряжений, которые защищают сети от вредоносных импульсов. В конструктивном плане имеют стандартные модули с 18 миллиметровой шириной под установку на монтажный тип рейки. Содержат твердотельные композитные варисторы из карбидового цинка и механизмы, отвечающие за визуальный контроль изнашиваемости варистора и аварийного предохранителя. Благодаря карбиду цинка снижают сопротивление в 1000 раз во время появления на сменном модуле напряжения, значение которого превышает предельно допустимое.
Каждый ОПС-1 имеет количество модулей от 1 до 4 штук в однофазной и трехфазной сети. Есть класс, номинальное напряжение, рабочее протекторное напряжение (500-1000 вольт), номинальное количество тока ограничителя (5-10 ампер), ток, который разрядник принимает при атмосферном разряде (40-65 килоампер) и напряжение, до которого уменьшается значение при разрыве (от 0,25 до 1,2 киловатт).
Обратите внимание! Бывает четыре класса защиты. Первый класс устройств не применяется в бытовых установках, а нужен только для того, чтобы защитить линию электрической передачи. Второй класс используется, чтобы защитить высоковольтные скачки напряжения, которые вызваны ударом молнии к линии электрической передачи.
Третий класс нужен, чтобы защищать от перенапряжений с низкими сетевыми значениями. Защитные устройства ставятся в бытовом распределительном устройстве. Четвертый класс используется, чтобы защищать электрические устройства, которые чувствительны к импульсным помехам и всплескам в однофазной сети. Они монтируются в распределительном типе щитка, за розеткой в электрокоробке или около защищаемого устройства.
Технические характеристики
Расшифровка аббревиатуры и базовый принцип работы
Расшифровывается ОПС-1 в электрике как ограничитель перенапряжений системы. Работает устройство просто. Выступает часто как пожарная сигнализация.
Аббревиатурная расшифровка
Главный элемент агрегата — это варистор, являющийся специальным проводником в электрике. Пропускает электрический ток через себя, который многократно возрос, по сравнению с номинальным напряжением. В итоге нагрузка шунтируется, преобразовывается и рассеивается. Создается тепловая энергия или нагревание корпуса. В большинстве случаев есть окно, благодаря которому можно осуществить визуальное определение работоспособности варистора. Также это устройство имеет предохранитель, нацеленный на защиту оборудования от действия сверхтоков.
Обозначение на принципиальных схемах
Основные символы, которые используются в случае обозначения разрядных устройств от сверхтоков, представлены в следующем изображении. Первое условное обозначение — общий разрядник, второе — трубчатый разрядник, третье — вентильный и магнитовентильный разрядник, а последнее — ограничитель перенапряжения.
Обозначение на принципиальной схеме
Безопасность и эффективность ограничителя
Каждым производителем рекомендуется использование дополнительного предохранителя для защиты сети при повреждении разрядного устройства и при коротком замыкании фазового провода. В бытовых установках дополнительный предохранитель не нужен, поскольку защита от сверхтока происходит благодаря одному прерывателю или предохранителю. Один аппарат способен защитить сеть от перебоев.
Эффективность ограничителя
Схемы подключения
На примере ниже показано осуществление правильного зонального подключения ограничителя перенапряжения. Подобная схема весьма эффективна. Именно концепция трехступенчательной защиты, где размещается устройство внутри помещения, чрезвычайно популярна на практике. При этом для каждой зоны ставится соответствующий ограничительный класс.
Следует обратить внимание! При установке оборудования необходимо соблюдать приличное расстояние между устройствами. Они должны быть приближены друг к другу примерно на 10 метров. Этот момент указывает каждая опс 1 схема подключения.
В целом, ОПС-1 — устройство защиты от импульсных перенапряжений, созданное для защиты электрической цепи от возникающих кратковременно напряжений между фазой и землей. Появляются импульсные перенапряжения как внутри сети, так и вне ее. ОПС-1 расшифровывается как ограничитель импульсов и имеет свой базовый принцип работы. Условно обозначается на принципиальной схеме прямоугольником. Представлен по разному в схемах подключения.
Одними из устройств из серии “быть или не быть?”…ему в щите учета – являются ограничители импульсных перенапряжений
Одними из устройств из серии “быть или не быть?”…ему в щите учета – являются ограничители импульсных перенапряжений ⚡⚡⚡ Они еще называются УЗИП, ОИН, ОПС-1 … и т.п. Существует их бесчисленное множество, бывают они различных классов, бывают разных производителей. Ставить или не ставить, схема подключения такого устройства все это мы затронем в данной статье!
Сначала я расскажу о тех ограничителях перенапряжений, которые я использую для установки в щиты учета моих заказчиков. Свой выбор я остановил на устройстве под названием ОИН-1 от концерна АО “Энергомера”.
Основным критерием выбора данного ограничителя для меня являлось наличие на складе поставщика и цена, последний критерий имеет бОльшее значение, т.к. на мой взгляд необходимость установки таких изделий крайне мала, но об этом немного позднее. Для сравнения комплект ограничителей ОИН-1 АО “Энергомера” на три фазы стоит около 900 рублей, ближайший “конкурент” это ОПС-1 3Р D от ИЭК стоит в районе 3500. Функции выполняемые данными ограничителями абсолютно одинаковые, а если нет разницы зачем Вам платить больше?!
Что же касается схемы подключения УЗИП, ОИН, ОПС и прочих аналогичных устройств. В щите учета подключаются они с нижних клемм вводного автомата, а вывод и ограничителя идет на шину ГЗШ, в нашем случае это проходной блок.
Схема подключения ограничителей перенапряжения УЗИП,ОПС-1, ОИН и прочих идентична и для других производителей. Отличие возможно лишь в том, что если берете трехполюсный ограничитель то у него выводной проводник уже собран из трех в один.
По опыту работы могу сказать, что не во всех сетевых организациях в технических условиях для заявителей существует такое требование об установке импульсных ограничителей. Мне такое требование встречалось в Нижегородской области и в Краснодарском крае.
Давайте сначала затронем практическую часть вопроса. Чтобы понимать ставить или не ставить нужно понимать, что может быть источником такого перенапряжения, а их всего два:
2. коммутационные перенапряжения.
Чтобы понимать ставить или нет ограничитель для защиты от импульсных(грозовых) перенапряжений нужно знать каким проводом выполнена магистраль, к которой наш щит учета будет подключен. Если магистраль выполнена голым проводом вероятность попадания молнии есть, если самонесущим изолированным (СИП), – вероятность попадания молнии крайне мала.Кроме того, нужно иметь ввиду в каком регионе у нас будет установка нашего щита учета. Ниже карта с числом грозовых часов в году:
Как мы видим на данной карте на севере страны очень маленькое число грозовых часов и ограничитель в нашем щите учета просто займет место и не будет выполнять полезных функций. Чем южнее, тем число грозовых часов в году больше и вероятность возникновения первого источника перенапряжения выше.
Что касается коммутационных перенапряжений. Данные перенапряжения возникают при оперативных переключениях на подстанциях. Чем мы ближе находимся от нашей подстанции, тем выше вероятность коммутационного перенапряжения.
Для себя я сделал выбор не в пользу установки ограничителей импульсных перенапряжений, так как моя магистральная линия выполнена проводом СИП, и участок находится на краю деревни где нет крупных подстанций и число грозовых часов в нашем регионе небольшое.
Как мы видим на общем виде щита учета, из-за установки ограничителя у нас не хватило места для установки розетки и автомата для розетки. Можно конечно купить корпус с бОльшими размерами, но опять же это будет стоить для нас дороже. И на мой взгляд розетка с автоматом в щите учета куда полезнее нежели ограничитель импульсных перенапряжений.
Давайте теперь рассмотрим юридическую сторону вопроса. Сразу хочется оговориться, что у меня нет юридического образования и это исключительно мои мысли, которые возникли изучая нормативные документы.
Действительно в ПУЭ есть пункт 7.1.22 где сказано что должны устанавливаться ограничители перенапряжения при воздушном вводе, но в пункте 7.1 сказано, что глава 7 распространяется на – ” жилых зданий, перечисленных в СНиП 2.08.01-89 “Жилые здания”(этот СНИП распространяется на проектирование жилых зданий (квартирных домов, включая квартирные дома для престарелых и семей с инвалидами, передвигающимися на креслах-колясках, в дальнейшем тексте – семей с инвалидами, а также общежитий), высотой до 25 этажей включительно.); общественных зданий, перечисленных в СНиП 2.08.02-89 “Общественные здания и сооружения” (за исключением зданий и помещений, перечисленных в гл. 7.2)( данный СНИП распространяется на проектирование общественных зданий (высотой до 16 этажей включ.) и сооружений, а также помещений общественного назначения, встроенных в жилые здания. При проектировании помещений общественного назначения, встроенных в жилые здания и встроенно-пристроенных к ним, следует дополнительно руководствоваться СНиП 31-01-2003.); административных и бытовых зданий, перечисленных в СНиП 2.09.04-87“( данный СНИП распространяется на проектирование административных и бытовых зданий1 высотой (по СНиП 21-01-97) до 50 м, включая мансардный этаж, и помещений предприятий.). Все эти СНИПы относятся к многоквартирным домам, административным зданиям, общественным и тп зданиям. Т.е. в пункте 7.1 не указано, что пункт 7.1.22 распространяет свое действие на индивидуальные жилые дома.
Кроме того, в соответствии с Постановлением Правительства РФ от 27.12.2004 N 861 (ред. от 28.07.2017)
25(1). В технических условиях для заявителей, предусмотренных пунктами 12.1 и 14(физ. лица до 15кВт, то есть наш случай) настоящих Правил, должны быть указаны:
а) точки присоединения, которые не могут располагаться далее 25 метров от границы участка, на котором располагаются (будут располагаться) присоединяемые объекты заявителя;
а(1)) максимальная мощность в соответствии с заявкой и ее распределение по каждой точке присоединения к объектам электросетевого хозяйства;
(пп. “а(1)” введен Постановлением Правительства РФ от 04.05.2012 N 442)
б) обоснованные требования к усилению существующей электрической сети в связи с присоединением новых мощностей (строительство новых линий электропередачи, подстанций, увеличение сечения проводов и кабелей, замена или увеличение мощности трансформаторов, расширение распределительных устройств, модернизация оборудования, реконструкция объектов электросетевого хозяйства, установка устройств регулирования напряжения для обеспечения надежности и качества электрической энергии), обязательные для исполнения сетевой организацией за счет ее средств;
в) требования к приборам учета электрической энергии (мощности), устройствам релейной защиты и устройствам, обеспечивающим контроль величины максимальной мощности;
г) распределение обязанностей между сторонами по исполнению технических условий (мероприятия по технологическому присоединению в пределах границ участка, на котором расположены энергопринимающие устройства заявителя, осуществляются заявителем, а мероприятия по технологическому присоединению до границы участка, на котором расположены энергопринимающие устройства заявителя, включая урегулирование отношений с иными лицами, осуществляются сетевой организацией).
(пп. “г” в ред. Постановления Правительства РФ от 24.09.2010 N 759)
(см. текст в предыдущей редакции).
Т.е. в технических условиях заявителей не должно быть требований к устройствам ограничивающим импульсные перенапряжения. Возможно если только притянуть “их за уши” как «устройства релейной защиты» коими такие устройства не являются.
Теперь мы с Вами знаем, как практические вопросы установки ограничителей так и юридические. Выбор всегда за Вами! Для себя я этот выбор уже сделал!
Не забывайте заходить на YOUTUBE и ставить палец вверх у видео про УЗИП,ОИН,ОПС.
Купить надежный щит учета очень просто – достаточно всего лишь отправить заявку по удобным для Вас каналам связи!
Что такое ограничители импульсных перенапряжений
В промышленных и бытовых электрических сетях устанавливается оборудование, которое работает в заданных пределах силы тока и напряжения. Однако на питающих трансформаторных подстанциях, мощных силовых электродвигателях приходится периодически менять режимы работы. Переходной процесс характеризуется резким импульсным повышением электрических параметров сети. Наиболее опасными являются атмосферные разряды в виде молний, где импульсный скачок перенапряжения достигает критической величины способной вывести из строя электрическое оборудование. Для предотвращения таких аварийных ситуаций используется ограничитель импульсных напряжений.
Принцип работы
В импульсных переходных процессах изменение напряжения происходит значительно быстрее, чем силы тока. Поэтому классические всем известные защитные автоматы по току здесь будут неэффективны. Наличие в составе ограничителя с полупроводниковым элементом, имеющим нелинейную вольтамперную характеристику, обеспечивает приборы электрической сети защитой от высокого импульса напряжения.
Как видно из графика, при номинальном значении напряжения сопротивление полупроводника (его называют варистором) достаточно большое и ток, проходящий через него практически нулевой (зона 1). При действии на варистор высоковольтных импульсов (зона 2) сопротивление его резко уменьшается, приближаясь к почти нулевому значению (зона 3). В таком варианте варистор ограничителя будет выступать в качестве шунтирующего соединения воспринимающего на себя всю токовую нагрузку, которая направляется на заземляющий контур.
Конструкция
Кроме основного элемента — варистора с нелинейными характеристиками, ограничитель перенапряжения отличает специальный корпус из фарфора или полимера. Сам варистор изготавливается в большинстве случаев из вилитовых дисков (из особого керамического состава с основой в виде оксидов цинка со специальными добавками). Диски покрываются изолирующей обмазкой и устанавливаются в корпусе.
В зависимости от условий эксплуатации ограничители перенапряжения могут иметь различные исполнения.
На изображении цифрами обозначены следующие конструктивные элементы:
Технические характеристики
Помимо конструктивного исполнения не менее важным фактором при выборе необходимого ограничителя (импульсных) перенапряжений (ОПН) служат его следующие основные технические параметры.
Классификация ограничителей (импульсных) перенапряжений определяется государственными стандартами. В нормативных документах обозначаются основные требования к устройствам защиты в зависимости от характера источника. Различаются следующие группы защиты от перенапряжения:
В зависимости от принадлежности к конкретному виду решаемого вопроса ограничители импульсных перенапряжений могут отличаться друг от друга такими параметрами.
Керамические ОПН обладают хорошей устойчивостью к солнечному свету, имеют достаточную механическую прочность, что расширяет возможности эксплуатации в разных условиях. Ограничивают применение лишь большие весовые характеристики и характер распространения осколков при разрыве с точки зрения безопасности.
Полимерные ОПН успешно конкурируют с фарфоровыми. При многократно меньших весовых характеристиках и практически безопасным в случае разрушения избыточным давлением, они нисколько не уступают по диэлектрическим свойствам. К недостаткам относится способность к покрытию поверхности пылью, что повышает ток утечки и вызывает пробой изоляции. В эксплуатации они больше подвержены влиянию солнечной радиации и колебаниям температур внешней среды, чем фарфоровые ограничители (импульсных) перенапряжений.
Что означает аббревиатура УЗИП
УЗИП расшифровывается, как устройство защиты от импульсных перенапряжений. В перечень входящих в УЗИП приборов кроме ограничителей перенапряжения входят уже устаревающие вентильные и искровые разрядники. Последние применяются в сетях высокого напряжения (ЛЭП).
Применение в качестве материала варисторов полупроводников, позволило сделать габариты УЗИП настолько компактными, что стало возможным применение в качестве защиты от импульса напряжения в частных домах и квартирах.
Как подключить УЗИПы в домашних условиях
Правила устройства энергоустановок регламентируют обязательную установку УЗИП в домах, где электроснабжение производится проводами воздушных линий и с относительно длительным периодом наличия гроз. На рынке присутствует большое количество моделей УЗИП таких, например, как ограничители импульсных напряжений ОИН 1, ОПС 1, ОПН — РВ и много других, габариты которых позволяют разместить их во вводном щитке электроснабжения частного дома.
Электроснабжение дома может быть организовано по однофазной или трехфазной схемах. Различными могут быть и организация системы заземления домашней электросети.
На представленном ниже изображении — схема подключения УЗИП в однофазную электрическую схему. Система заземления с двумя нулевыми проводами: один выступает в качестве нейтрального проводника соединенного с землей, а второй используется как защитный провод.
На следующем изображении представлена схема подключения УЗИП в трехфазную электрическую схему. Конструкция устройства защиты и счетчика выполнены для трехфазной сети. Заземление оборудовано по тому же принципу, что и в примере с подключением в однофазную цепь.
Рекомендации по монтажу
Если следовать рекомендациям по установке и подключению ограничителя импульсных перенапряжений, устройство будет гарантировать безопасную работу бытового оборудования.
Удары молнии, обрывы линий электропередач или аварии на трансформаторных подстанциях предсказать невозможно. Установка ОПН защитит от непредвиденных неприятностей.
Видео по теме
ОПС1: особенности проверки и применения (2012)
«Варисторные ограничители импульсных перенапряжений ОПС1 давно и с успехом используются для построения защит и предотвращения повреждений сетей электропитания и электроустановок от опасных перенапряжений. Прошу рассказать подробнее, каким образом работает эта защита и что представляет собой варистор?»
Олег КАЛИКА, г. Мариуполь, Украина
ОПС1 относится к устройствам защиты от импульсных перенапряжений (УЗИП) и применяется для защиты электросети от кратковременных, чрезвычайно высоких для данной электросети напряжений, возникающих между фазами либо между фазой и землей. Причины возникновения импульсных перенапряжений могут находиться как внутри электросети, так и вне нее. Внутренними источниками импульсных перенапряжения являются, как правило, коммутации реактивных нагрузок, электростатический разряд, пробой изоляции и т.п. Особенную опасность при этом представляют импульсы, возникающие при отключении индуктивной нагрузки, так как при коммутации вся запасенная энергия «выбрасывается» в сеть в виде высоковольтного импульса. Электростатический же разряд опасен главным образом тем, что при работе технологического оборудования он накапливается, и при достижении критической энергии может разрядиться в непредсказуемом месте, чем вызовет импульс перенапряжения.
Существует несколько типов устройств защиты от импульсных перенапряжений: разделительные трансформаторы, разрядники, защитные диоды. Если говорить о самом распространенном УЗИП для бытового применения в распределительных щитах, вводных распределительных устройствах жилых и промышленных помещений, то это, несомненно, устройства на базе варисторов. Основным преимуществом такого типа УЗИП являются небольшие габаритные размеры, отсутствие выброса горячего газа при срабатывании защиты, а так же простота применения.
Что такое варистор?
То есть при приложении к варистору небольшого напряжения, ток через варистор не протекает, но если постепенно повышать напряжение, то наступит момент, при котором ток через варистор начинает проходить. Именно эту особенность варистора и используют для защиты от импульсных перенапряжений.
Для изготовления варисторов используются полупроводниковые материалы с высокой стабильностью при повышенных температурах, так как при работе варистора вся мощность выделяется в малом объеме. Существуют несколько типов варисторов, однако самыми распространенными являются два типа: варисторы, изготавливаемые с применением карбида кремния SiC и варисторы, изготавливаемые с применением оксида цинка ZnO. Варисторы, изготовленные на основе оксида цинка, обладают вольт-амперной характеристикой с высокой нелинейностью, однако значительно более сложны в изготовлении по сравнению с варисторами на основе карбида кремния.
Принцип работы варистора
Нелинейность вольт-амперной характеристики варистора связана с процессами, происходящими при протекании тока в местах контактов поверхностей кристаллов карбида кремния. Поверхности кристаллов имеют разнообразную форму и расположены хаотично. При небольшом приложенном напряжении ток протекает только через участки кристаллов которые, соприкасаются друг с другом. При повышении напряжения пропорционально увеличивается ток, протекающий через эти соприкасающиеся участки, и начинает протекать ток между участками кристаллов с малыми зазорами между поверхностями, при этом участки пропускающие ток начинают разогреваться. Новые проводящие цепочки кристаллов включаются параллельно, их становится все больше. Чем выше напряжение, тем больший ток проходит через кристаллы, что влечет за собой еще больший разогрев в местах их соприкосновения. Повышение температуры полупроводникового карбида кремния приводит к уменьшению сопротивления, то есть при определенном приложенном напряжении сопротивление варистора уменьшится настолько, что через него начнет проходить ток.
Таким образом, при построении защиты от импульсных перенапряжений необходимо выбирать такие варисторы, которые не будут пропускать через себя ток при номинальном напряжении электроустановки. А при повышении напряжения будут «открываться», пропуская опасный импульс напряжения через себя, тем самым защищая установку.
При длительной работе варистора в составе ограничителя импульсных перенапряжений неизбежна деградация рабочих характеристик и изменения вольт-амперной характеристики. Причинами таких изменений являются длительное приложение номинального напряжения и импульсные воздействия.
При режиме длительного приложения номинального напряжения изменение характеристик обусловлено длительной работой варистора на номинальном напряжении и номинальной частоте. За изменения характеристик варистора при таком режиме работы отвечает связующее вещество, которое связывает кристаллы карбида кремния.
Импульсные воздействия на варистор. В процессе эксплуатации ограничитель и входящий в состав варистор, неоднократно подвергаются грозовым и коммутационным воздействиям, что, несомненно, приводит к ухудшению вольт-амперной характеристики. При этом импульс напряжения не обязательно должен быть выше порога срабатывания варистора, практика показывает, что основное изменение ВАХ происходит на участках малых токов.
Испытание классификационного напряжения
То есть то напряжение, при котором варистор «открывается» и пропускает через себя опасный импульс напряжения, к примеру, для ВАХ варистора, изображенной на рис. 1, классификационное напряжение будет составлять 60 В.
В измерении классификационного напряжения нет ничего сложного. К ограничителю прикладывают напряжение и постепенно поднимают его до значения, при котором через варистор начнет протекать ток 1 мА. Таким образом, измерение классификационного напряжения является контролем, не разрушающим работоспособности варистора. И проводить его можно как на новых варисторах, так и на варисторах в процессе эксплуатации.
Специалистами Технического департамента Группы компаний IEK были проведены статистические измерения классификационного напряжения для ограничителей ОПС1 торовой марки IEK®. Выборка составляла по 100 штук каждого типоисполнения ОПС1: ОПС1-В, ОПС1-С, 0nC1-D.
Измерение классификационного напряжения производилось двумя способами. Во-первых, на испытательном стенде для измерения классификационного напряжения ОПС1 завода-изготовителя. На этом стенде завод проводит стопроцентный контроль работоспособности всех изготавливаемых ограничителей перенапряжения. И, во-вторых, с помощью прибора Е6-24 производства НПФ «Радио-Сервис». Прибор представляет собой переносной мегаомметр с функцией измерения классификационного напряжения. Прибор производит измерение классификационного напряжения варисторов в автоматическом режиме, при подаче и плавном повышении постоянного напряжения и постоянном контроле тока, протекающего через варистор. Таким образом, при помощи Е6-24 можно проводить проверку работоспособности ОПС1 с минимальными трудозатратами.