Одна аминокислота кодируется более чем одним триплетом

§ 23. Генетический код и его свойства

1. Что такое ген? Что представляет собой генетический код?

Ген — участок молекулы ДНК, содержащий информацию о первичной структуре определенного белка, рРНК или тРНК.

Генетический код — это система записи информации о первичной структуре белков в виде последовательности нуклеотидов ДНК (мРНК).

2. Охарактеризуйте свойства генетического кода.

Триплетность. Каждая аминокислота кодируется триплетом (кодоном) – сочетанием из трёх последовательно расположенных нуклеотидов.

Неперекрываемость. Один и тот же нуклеотид не может входить одновременно в состав двух соседних триплетов.

Однозначность. Каждый триплет кодирует только одну аминокислоту.

Избыточность (вырожденность). Одна и та же аминокислота может кодироваться несколькими разными триплетами (от 2 до 6). Исключение составляют метионин и триптофан – каждая из этих аминокислот кодируется лишь одним триплетом.

Непрерывность. Между триплетами нет знаков препинания, то есть информация в пределах одного гена считывается непрерывно.

Универсальность. У всех живых организмов одним и тем же триплетам соответствуют одни и те же аминокислоты, что свидетельствует о единстве происхождения живых организмов.

3. Что представляют собой стоп-кодоны? Какую роль играет стартовый кодон АУГ?

Стоп-кодоны – это триплеты, которые не кодируют аминокислоты, а служат сигналами окончания синтеза белка. В иРНК терминирующими кодонами являются УАА, УАГ и УГА, в ДНК им соответствуют АТТ, АТЦ и АЦТ.

Правильное считывание генетического кода обеспечивается только в том случае, если оно начинается со строго определённого пункта. В молекуле иРНК считывание начинается с кодона АУГ, поэтому данный триплет называется стартовым (инициирующим).

4. Почему аминокислота кодируется не одним и не двумя, а тремя последовательно расположенными нуклеотидами?

В состав ДНК и РНК входит по четыре типа нуклеотидов. При этом кодировать необходимо 20 белокобразующих аминокислот. Если бы за одну аминокислоту «отвечал» один нуклеотид, то можно было бы закодировать лишь 4 аминокислоты. Нуклеотидных дуплетов (по два) хватило бы только на 4 2 = 16 аминокислот. Нетрудно подсчитать, что число возможных комбинаций из четырёх типов нуклеотидов по три составляет 4 3 = 64. Этого более чем достаточно для кодирования 20 аминокислот, входящих в состав белков.

5. Молекула мРНК начинается со следующей последовательности нуклеотидов: АУГГУАЦЦУУГГЦАЦ… С какой последовательности аминокислотных остатков начинается белок, закодированный этой мРНК? Для решения используйте таблицу генетического кода (см. табл. 14).

Разобьём мРНК на триплеты и с помощью таблицы генетического кода определим последовательность аминокислотных остатков закодированного белка.

мРНК: АУГ ГУА ЦЦУ УГГ ЦАЦ.

Ответ: белок начинается со следующей последовательности аминокислотных остатков: Мет–Вал–Про–Трп–Гис.

6. Как вы думаете, какое биологическое значение имеет свойство вырожденности генетического кода?

Благодаря свойству вырожденности повышается надёжность воспроизведения генетической информации, т.к. при нарушениях нуклеотидной последовательности ДНК или иРНК (а именно – при определённых заменах нуклеотидов) изменившиеся триплеты могут кодировать те же самые аминокислоты. Например, в иРНК триплет ЦУА кодирует аминокислоту лейцин (Лей), и замена третьего нуклеотида (А) на любой другой, либо замена первого нуклеотида на урацил (У) не приводят к изменению смысла триплета.

7. Действие некоторых факторов (рентгеновских лучей, ультрафиолетового излучения, определенных химических веществ и др.) или ошибки, иногда возникающие при репликации, могут приводить к изменению последовательности нуклеотидов ДНК. При этом может происходить вставка или выпадение нуклеотидов либо замена одних нуклеотидов на другие. Как вы считаете, какие изменения чаще приводят к нарушению нормального функционирования клеток (и даже к их гибели) — вставки и выпадения или же замены нуклеотидов ДНК? Обоснуйте ответ.

К нарушению нормального функционирования клеток чаще приводят вставки или выпадения нуклеотидов, поскольку такие изменения приводят к сдвигу рамки считывания, из-за чего меняется исходный смысл гена и синтезируется совершенно другой белок (либо внутри гена возникает стоп-кодон и процесс биосинтеза белка обрывается).

Замена одного нуклеотида на другой ведёт к изменению лишь одного кодона без сдвига рамки считывания. Поэтому в синтезируемом белке одна аминокислота может быть заменена на другую, причём не обязательно, поскольку генетический код обладает свойством вырожденности.

Суть происходящего можно объяснить учащимся, проведя аналогию со следующим примером. В предложении ЖИЛ БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ заключён определённый смысл. Если произвести замену одной буквы на другую (наподобие замены одного нуклеотида на другой), смысл меняется незначительно, например ЖИВ БЫЛ КОТ ТИХ БЫЛ СЕР… Вставка или выпадение буквы (по аналогии – нуклеотида) приводит к потере смысла (изменению всей первичной структуры белка), например, ЖИБ ЫЛК ОТТ ИХБ ЫЛС ЕРМ…

Источник

Что такое генетический код и как он работает?

Содержание:

Независимо от того, сколько морфологического разнообразия мы, живые существа, представляем, все мы объединены под одной крышей: нашей основной функциональной единицей является клетка. Если у живого существа есть клетка, на которой основана вся его морфологическая структура, она известна как одноклеточная (случай простейших или бактерий), тогда как те из нас, у кого их несколько (от нескольких сотен до сотен миллиардов), являются многоклеточными существами.

Таким образом, каждый организм начинается с клетки, и поэтому некоторые молекулярные объекты, такие как вирусы, не считаются строго «живыми» с биологической точки зрения. В свою очередь, исследования показали, что каждая клетка содержит колоссальные 42 миллиона белковых молекул. Поэтому неудивительно, что, по оценкам, 50% веса сухих живых тканей состоят исключительно из белков.

Почему мы предоставляем все эти, казалось бы, несвязанные данные? Сегодня мы приходим, чтобы разгадать секрет жизни: генетический код. Каким бы загадочным оно ни казалось на первый взгляд, мы заверяем вас, что вы сразу поймете эту концепцию. Речь идет о клетках, белках и ДНК. Останься, чтобы узнать.

Что такое генетический код?

Характеристики генетического кода были установлены в 1961 году Фрэнсисом Криком, Сиднеем Бреннером и другими сотрудниками молекулярных биологов. Этот термин основан на ряде предпосылок, но сначала мы должны уточнить некоторые термины, чтобы понять их. Действуй:

Основы генетического кода

Когда мы разберемся с этими основными терминами, пришло время изучить основные особенности генетического кода, установленные Криком и его коллегами. Это следующие:

Раскрытие генетического кода

У нас уже есть терминологическая база и теоретические основы. Пришло время применить их на практике. Прежде всего, мы вам скажем, что Каждый нуклеотид получает название на основе буквы, что обусловлено азотистым основанием, которое он представляет.. Азотистыми основаниями являются следующие: аденин (A), цитозин (C), гуанин (G), тимин (T) и урацил (U). Аденин, цитозин и гуанин универсальны, тимин уникален для ДНК, а урацил уникален для РНК. Если вы видите это, как вы думаете, что это значит?:

Пора восстановить условия, описанные выше. CCT является частью цепи ДНК, то есть 3 разных нуклеотидов: один с основанием цитозина, другой с основанием цитозина и третий с основанием тимина. Во втором случае, выделенном жирным шрифтом, мы имеем дело с кодоном, поскольку это «тадуцидируемая» генетическая информация ДНК (отсюда урацил там, где раньше был тимин) в цепи РНК.

Таким образом, мы можем утверждать, что CCU является кодоном, который кодирует аминокислоту пролин. Как мы уже говорили, генетический код вырожден. Таким образом, аминокислота пролин также кодируется другими кодонами с другими нуклеотидами: CCC, CCA, CCG. Таким образом, аминокислота пролин кодируется всего 4 кодонами или триплетами.

Следует отметить, что для кодирования аминокислоты необходимы не 4 кодона, а то, что любой из них действителен. Обычно, незаменимые аминокислоты кодируются 2,3,4 или 6 различными кодонами, кроме метионина и триптофана которые отвечают только на один.

Почему так много сложностей?

Сделаем расчеты. Если бы каждый кодон кодировался только одним нуклеотидом, могли бы образоваться только 4 разные аминокислоты. Это сделало бы синтез белка невозможным, поскольку в целом каждый белок состоит примерно из 100-300 аминокислот. В генетический код входит всего 20 аминокислот.Но они могут быть расположены по-разному на «конвейере», давая начало различным белкам, присутствующим в наших тканях.

С другой стороны, если бы каждый кодон состоял из двух нуклеотидов, общее количество возможных «диплетов» было бы 16. Мы все еще далеки от цели. Теперь, если бы каждый кодон состоял из трех нуклеотидов (как и в случае), количество возможных перестановок увеличилось бы до 64. Принимая во внимание, что существует 20 незаменимых аминокислот, с 64 кодонами это дает для кодирования каждой из них и, кроме того, предлагать разные варианты в каждом случае.

Прикладной вид

Нам не хватает места, но действительно сложно сконцентрировать столько информации в нескольких строках. Следуйте за нами на следующей диаграмме, потому что мы обещаем вам, что закрыть весь этот терминологический конгломерат намного проще, чем кажется:

CCT (ДНК) → CCU (РНК) → пролин (рибосома)

Эта небольшая диаграмма выражает следующее: клеточная ДНК содержит 3 нуклеотида CCT, но она не может «выражать» генетическую информацию, поскольку изолирована от клеточного аппарата в своем ядре.. По этой причине фермент РНК-полимераза отвечает за ТРАНСКРИБИРОВАНИЕ (процесс, известный как транскрипция) нуклеотидов ДНК в нуклеотиды РНК, которые образуют информационную РНК.

Теперь у нас есть кодон CCU в информационной РНК, который будет перемещаться из ядра через поры в цитозоль, где расположены рибосомы. Подводя итог, можно сказать, что информационная РНК передает эту информацию рибосоме, который «понимает», что аминокислота пролин должна быть добавлена ​​к уже построенной аминокислотной последовательности, чтобы дать начало конкретному белку.

Как мы уже говорили ранее, белок состоит примерно из 100-300 аминокислот. Таким образом, любой белок, образованный из порядка 300 аминокислот, будет кодироваться в общей сложности 900 триплетами (300×3) или, если хотите, 2700 нуклеотидами (300x3x3). Теперь представьте себе каждую букву в каждом из 2700 нуклеотидов, что-то вроде: AAAUCCCCGGUGAUUUAUAAGG (. ) Именно это расположение, это скопление букв и является генетическим кодом. Проще, чем казалось сначала, правда?

Резюме

Если вы спросите любого биолога, интересующегося молекулярной биологией, о генетическом коде, то наверняка поговорите около 4-5 часов. Поистине увлекательно знать, что секрет жизни, каким бы нереальным он ни казался, заключен в определенной последовательности «букв».

Так что, геном любого живого существа можно отобразить с помощью этих 4 букв. Например, согласно проекту «Геном человека», вся генетическая информация нашего вида состоит из 3 000 миллионов пар оснований (нуклеотидов), которые находятся на 23 парах хромосом в ядрах всех наших клеток. Конечно, какими бы разными ни были живые существа, у всех нас есть общий «язык».

Источник

Генетический код

Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Одна аминокислота кодируется более чем одним триплетом. Смотреть фото Одна аминокислота кодируется более чем одним триплетом. Смотреть картинку Одна аминокислота кодируется более чем одним триплетом. Картинка про Одна аминокислота кодируется более чем одним триплетом. Фото Одна аминокислота кодируется более чем одним триплетом

Одна аминокислота кодируется более чем одним триплетом. Смотреть фото Одна аминокислота кодируется более чем одним триплетом. Смотреть картинку Одна аминокислота кодируется более чем одним триплетом. Картинка про Одна аминокислота кодируется более чем одним триплетом. Фото Одна аминокислота кодируется более чем одним триплетом

Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.

Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке.

Содержание

Свойства

Таблицы соответствия кодонов мРНК и аминокислот

Генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5′ к 3′ концу мРНК.

UUU (Phe/F)Фенилаланин
UUC (Phe/F)Фенилаланин
UUA (Leu/L)Лейцин
UUG (Leu/L)Лейцин

UCU (Ser/S)Серин
UCC (Ser/S)Серин
UCA (Ser/S)Серин
UCG (Ser/S)Серин

UAU (Tyr/Y)Тирозин
UAC (Tyr/Y)Тирозин
UAA Ochre (Стоп)
UAG Amber (Стоп)

CUU (Leu/L)Лейцин
CUC (Leu/L)Лейцин
CUA (Leu/L)Лейцин
CUG (Leu/L)Лейцин

CCU (Pro/P)Пролин
CCC (Pro/P)Пролин
CCA (Pro/P)Пролин
CCG (Pro/P)Пролин

CAU (His/H)Гистидин
CAC (His/H)Гистидин
CAA (Gln/Q)Глутамин
CAG (Gln/Q)Глутамин

CGU (Arg/R)Аргинин
CGC (Arg/R)Аргинин
CGA (Arg/R)Аргинин
CGG (Arg/R)Аргинин

AUU (Ile/I)Изолейцин
AUC (Ile/I)Изолейцин
AUA (Ile/I)Изолейцин
AUG (Met/M)Метионин, Start [2]

ACU (Thr/T)Треонин
ACC (Thr/T)Треонин
ACA (Thr/T)Треонин
ACG (Thr/T)Треонин

AAU (Asn/N)Аспарагин
AAC (Asn/N)Аспарагин
AAA (Lys/K)Лизин
AAG (Lys/K)Лизин

AGU (Ser/S)Серин
AGC (Ser/S)Серин
AGA (Arg/R)Аргинин
AGG (Arg/R)Аргинин

GUU (Val/V)Валин
GUC (Val/V)Валин
GUA (Val/V)Валин
GUG (Val/V)Валин

GCU (Ala/A)Аланин
GCC (Ala/A)Аланин
GCA (Ala/A)Аланин
GCG (Ala/A)Аланин

GAU (Asp/D)Аспарагиновая кислота
GAC (Asp/D)Аспарагиновая кислота
GAA (Glu/E)Глутаминовая кислота
GAG (Glu/E)Глутаминовая кислота

GGU (Gly/G)Глицин
GGC (Gly/G)Глицин
GGA (Gly/G)Глицин
GGG (Gly/G)Глицин

Одна аминокислота кодируется более чем одним триплетом. Смотреть фото Одна аминокислота кодируется более чем одним триплетом. Смотреть картинку Одна аминокислота кодируется более чем одним триплетом. Картинка про Одна аминокислота кодируется более чем одним триплетом. Фото Одна аминокислота кодируется более чем одним триплетом

Одна аминокислота кодируется более чем одним триплетом. Смотреть фото Одна аминокислота кодируется более чем одним триплетом. Смотреть картинку Одна аминокислота кодируется более чем одним триплетом. Картинка про Одна аминокислота кодируется более чем одним триплетом. Фото Одна аминокислота кодируется более чем одним триплетом

2-е основание
UCAG
1-е
основание
U
Обратная таблица (указаны кодоны для каждой аминокислоты, а также стоп-кодоны)

Ala/AGCU, GCC, GCA, GCGLeu/LUUA, UUG, CUU, CUC, CUA, CUG
Arg/RCGU, CGC, CGA, CGG, AGA, AGGLys/KAAA, AAG
Asn/NAAU, AACMet/MAUG
Asp/DGAU, GACPhe/FUUU, UUC
Cys/CUGU, UGCPro/PCCU, CCC, CCA, CCG
Gln/QCAA, CAGSer/SUCU, UCC, UCA, UCG, AGU, AGC
Glu/EGAA, GAGThr/TACU, ACC, ACA, ACG
Gly/GGGU, GGC, GGA, GGGTrp/WUGG
His/HCAU, CACTyr/YUAU, UAC
Ile/IAUU, AUC, AUAVal/VGUU, GUC, GUA, GUG
STARTAUGSTOPUAG, UGA, UAA

Вариации стандартного генетического кода

В некоторых белках нестандартные аминокислоты, такие как селеноцистеин и пирролизин, вставляются рибосомой, прочитывающей стоп-кодон, что зависит от последовательностей в мРНК. Селеноцистеин сейчас рассматривается в качестве 21-й, а пирролизин 22-й аминокислот, входящих в состав белков.

Несмотря на эти исключения, у всех живых организмов генетический код имеет общие черты: кодон состоят из трёх нуклеотидов, где два первых являются определяющими, кодоны транслируются тРНК и рибосомами в последовательность аминокислот.

История представлений о генетическом коде

Тем не менее в начале 60-х годов XX века новые данные обнаружили несостоятельность гипотезы «кода без запятых». Тогда эксперименты показали, что кодоны, считавшиеся Криком бессмысленными, могут провоцировать белковый синтез в пробирке, и к 1965 году был установлен смысл всех 64 триплетов. Оказалось, что некоторые кодоны просто-напросто избыточны, то есть целый ряд аминокислот кодируется двумя, четырьмя или даже шестью триплетами.

Источник

32. Клетка как биологическая система Одна аминокислота кодируется более чем одним триплетом. Смотреть фото Одна аминокислота кодируется более чем одним триплетом. Смотреть картинку Одна аминокислота кодируется более чем одним триплетом. Картинка про Одна аминокислота кодируется более чем одним триплетом. Фото Одна аминокислота кодируется более чем одним триплетомЧитать 0 мин.

32.275. Генетический код и его свойства

Ранее мы подчёркивали, что нуклеотиды имеют важную для формирования жизни на Земле особенность ― при наличии в растворе одной полинуклеотидной цепочки спонтанно происходит процесс образования второй (параллельной) цепочки на основании комплементарного соединения родственных нуклеотидов. Одинаковое число нуклеотидов, в обоих цепочках и их химическое родство, является непременным условием для осуществления такого рода реакций. Однако при синтезе белка, когда информация с иРНК реализуется в структуру белка никакой речи о соблюдении принципа комплементарности идти не может. Это связано с тем, что в иРНК, и в синтезированном белке различно не только число мономеров, но и, что особенно важно, отсутствует структурное сходство между ними (с одной стороны нуклеотиды, с другой аминокислоты). Понятно, что в этом случае возникает необходимость создания нового принципа точного перевода информации с полинуклеотида в структуру полипептида. В эволюции такой принцип был создан и в его основу был заложен генетический код.

Генетический код ― это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны, соответствующие аминокислотам в белке.

Генетический код имеет несколько свойств:

Следует отметить, что некоторые авторы предлагают ещё и другие свойства кода, связанные с химическими особенностями входящих в код нуклеотидов или с частотой встречаемости отдельных аминокислот в белках организма и т.д. Однако эти свойство вытекают из вышеперечисленных, поэтому там мы их и рассмотрим.

Генетический код, как и многое сложно организованные система имеет наименьшую структурную и наименьшую функциональную единицу. Триплет ― наименьшая структурная единица генетического кода. Состоит она из трёх нуклеотидов. Кодон ― наименьшая функциональная единица генетического кода. Как правило, кодонами называют триплеты иРНК. В генетическом коде кодон выполняет несколько функций. Во-первых, главная его функция заключается в том, что он кодирует одну аминокислоту. Во-вторых, кодон может не кодировать аминокислоту, но, в этом случае, он выполняет другую функцию (см. далее). Как видно из определения, триплет ― это понятие, которое характеризует элементарную структурную единицу генетического кода (три нуклеотидов). Кодон ― характеризует элементарную смысловую единицу генома ― три нуклеотида определяют присоединение к полипептидной цепочки одной аминокислоты.

Элементарную структурную единицу вначале расшифровали теоретически, а затем её существование подтвердили экспериментально. И действительно, 20 аминокислот невозможно закодировать одним или двумя нуклеотидом т.к. последних всего 4. Три нуклеотида из четырёх дают 43 = 64 варианта, что с избытком перекрывает число имеющихся у живых организмах аминокислот (см.табл. 1).

Представленные в таблице 64 сочетания нуклеотидов имеют две особенности. Во-первых, из 64 вариантов триплетов только 61 являются кодонами и кодируют какую-либо аминокислоту, их называют смысловые кодоны. Три триплета не кодируют.

Таблица 1.

Одна аминокислота кодируется более чем одним триплетом. Смотреть фото Одна аминокислота кодируется более чем одним триплетом. Смотреть картинку Одна аминокислота кодируется более чем одним триплетом. Картинка про Одна аминокислота кодируется более чем одним триплетом. Фото Одна аминокислота кодируется более чем одним триплетом

Кодоны информационной РНК и соответствующие им аминокислотыявляются стоп-сигналами, обозначающие конец трансляции. Таких триплетов три ― УАА, УАГ, УГА, их ещё называют «бессмысленные» (нонсенс кодоны). В результате мутации, которая связана с заменой в триплете одного нуклеотида на другой, из смыслового кодона может возникнуть бессмысленный кодон. Такой тип мутации называют нонсенс-мутация. Если такой стоп-сигнал сформировался внутри гена (в его информационной части), то при синтезе белка в этом месте процесс будет постоянно прерываться ― синтезироваться будет только первая (до стоп-сигнала) часть белка. У человека с такой патологией будет ощущаться нехватка белка и возникнут симптомы, связанные с этой нехваткой. Например, такого рода мутация выявлена в гене, кодирующем бета-цепь гемоглобина. Синтезируется укороченная неактивная цепь гемоглобина, которая быстро разрушается. В результате формируется молекула гемоглобина, лишённая бета-цепи. Понятно, что такая молекула вряд ли будет полноценно выполнять свои обязанности. Возникает тяжёлое заболевания, развивающееся по типу гемолитической анемии (бета-ноль талассемия, от греческого слова «Таласа» ― Средиземное море, где эта болезнь впервые обнаружена).

Механизм действия стоп-кодонов отличается от механизма действия смысловых кодонов. Это следует из того, что для всех кодоны, кодирующие аминокислоты, найдены соответствующие тРНК. Для нонсенс-кодонов тРНК не найдены. Следовательно, в процессе остановки синтеза белка тРНК не принимает участие.

Кодон АУГ (у бактерий иногда ГУГ) не только кодируют аминокислоту метионин и валин, но и является инициатором трансляции.

61 из 64 триплетов кодируют 20 аминокислот. Такое трёхразовое превышение числа триплетов над количеством аминокислот позволяет предположить, что в переносе информации могут быть использованы два варианта кодирования. Во-первых, не все 64 кодона могут быть задействованы в кодировании 20 аминокислот, а только 20 и, во-вторых, аминокислоты могут кодироваться несколькими кодонами. Исследования показали, что природа использовала последний вариант.

Код, при котором одна аминокислота кодируется несколькими триплетами, называется вырожденным или избыточным. Почти каждой аминокислоте соответствует несколько кодонов. Так, аминокислота лейцин может кодироваться шестью триплетами — УУА, УУГ, ЦУУ, ЦУЦ, ЦУА, ЦУГ. Валин кодируется четырьмя триплетами, фенилаланин — двумя и только триптофан и метионин кодируются одним кодоном. Свойство, которое связано с записью одной и той же информации разными символами носит название вырожденность.

Число кодонов, предназначенных для одной аминокислоты, хорошо коррелируется с частотой встречаемости аминокислоты в белках. И это, скорее всего, не случайно. Чем больше частота встречаемости аминокислоты в белке, тем чаще представлен кодон этой аминокислоты в геноме, тем выше вероятность его повреждения мутагенными факторами. Поэтому понятно, что мутированный кодон имеет больше шансов кодировать туже аминокислоту при высокой его вырожденности. С этих позиций вырожденность генетического кода является механизмом защищающим геном человека от повреждений.

Необходимо отметить, что термин вырожденность используется в молекулярной генетики и в другом смысле. Так основная часть информации в кодоне приходится на первые два нуклеотида, основание в третьем положении кодона оказывается малосущественным. Этот феномен называют “вырожденностью третьего основания”. Последняя особенность сводит до минимума эффект мутаций. Например, известно, что основной функцией эритроцитов крови является перенос кислорода от легких к тканям и углекислого газа от тканей к легким. Осуществляет эту функцию дыхательный пигмент — гемоглобин, который заполняет всю цитоплазму эритроцита. Состоит он из белковой части ― глобина, который кодируется соответствующим геном. Кроме белка в молекулу гемоглобина входит ген, содержащий железо. Мутации в глобиновых генах приводят к появлению различных вариантов гемоглобинов. Чаще всего мутации связаны с заменой одного нуклеотида на другой и появлением в гене нового кодона, который может кодировать новую аминокислоту в полипептидной цепи гемоглобина. В триплете, в результате мутации может быть заменён любой нуклеотид ― первый, второй или третий.

Известно несколько сотен мутаций, затрагивающих целостность генов глобина. Около 400 из них связаны с заменой единичных нуклеотидов в гене и соответствующей аминокислотной заменой в полипептиде. Из них только 100 замен приводят к нестабильности гемоглобина и различного рода заболеваниям от легких до очень тяжелых. 300 (примерно 64%) мутаций-замен не влияют на функцию гемоглобина и не приводят к патологии. Одной из причин этого является упомянутая выше “вырожденность третьего основания”, когда замена третьего нуклеотида в триплете, кодирующем серин, лейцин, пролин, аргинин и некоторые другие аминокислоты приводит к появлению кодона-синонима, кодирующего ту же аминокислоту. Фенотипически такая мутация не проявится. В отличие от этого любая замена первого или второго нуклеотида в триплете в 100 % случаях приводит к появлению нового варианта гемоглобина. Но и в этом случае тяжёлых фенотипических нарушений может и не быть. Причиной этому является замена аминокислоты в гемоглобине на другую сходную с первой по физико-химическим свойствам. Например, если аминокислота, обладающая гидрофильными свойствами, заменена на другую аминокислоту, но с такими же свойствами.

Гемоглобин состоит из железопорфириновой группы гема (к ней и присоединяются молекулы кислорода и углекислоты) и белка — глобина. Гемоглобин взрослого человека (НвА) содержит две идентичные a-цепи и две b-цепи. Замена в гене, кодирующем b-цепь гемоглобина первого или второго нуклеотида практически всегда приводит к появлению в белка новых аминокислот, нарушению функций гемоглобина и тяжёлым последствия для больного. Например, замена “Ц” в одном из триплетов ЦАУ (гистидин) на “У” — приведет к появлению нового триплета УАУ, кодирующего другую аминокислоту — тирозин. Фенотипически это проявится в тяжёлом заболевании. Аналогичная замена в 63 положении b-цепи полипептида гистидина на тирозин приведет к дестабилизации гемоглобина. Развивается заболевание метгемоглобинемия. Замена, в результате мутации, глутаминовой кислоты на валин в 6-м положении b-цепи является причиной тяжелейшего заболевания — серповидно-клеточной анемии. Не будем продолжать печальный список. Отметим только, что при замене первых двух нуклеотидов может появится аминокислота по физико-химическим свойствам похожая на прежнюю. Так, замена 2-го нуклеотида в одном из триплетов, кодирующего глутаминовую кислоту (ГАА) в b-цепи на “У” приводит к появлению нового триплета (ГУА), кодирующего валин, а замена первого нуклеотида на “А” формирует триплет ААА, кодирующий аминокислоту лизин. Глутаминовая кислота и лизин сходны по физико-химическим свойствам — они обе гидрофильны. Валин — гидрофобная аминокислота. Поэтому, замена гидрофильной глютаминовой кислоты на гидрофобный валин, значительно меняет свойства гемоглобина, что, в конечном итоге, приводит к развитию серповидноклеточной анемии, замена же гидрофильной глютаминовой кислоты на гидрофильный лизин в меньшей степени меняет функцию гемоглобина — у больных возникает легкая форма малокровия. В результате замены третьего основания новый триплет может кодировать туже аминокислоты, что и прежней. Например, если в триплете ЦАУ урацил был заменён на цитозин и возник триплет ЦАЦ, то практически никаких фенотипических изменений у человека выявлено не будет. Это понятно, т.к. оба триплета кодируют одну и туже аминокислоту ― гистидин.

В заключении уместно подчеркнуть, что вырожденность генетического кода и вырожденность третьего основания с общебиологических позиция являются защитными механизмами, которые заложены в эволюции в уникальной структуре ДНК и РНК.

Каждый триплет (кроме бессмысленных) кодирует только одну аминокислоту. Таким образом, в направлении кодон ― аминокислота генетический код однозначен, в направлении аминокислота ― кодон ― неоднозначен (вырожденный).

И в этом случае необходимость однозначности в генетическом коде очевидна. При другом варианте при трансляции одного и того же кодона в белковую цепочку встраивались бы разные аминокислоты и в итоге формировались белков с различной первичной структурой и разной функцией. Метаболизм клетки перешёл бы в режим работы «один ген ― несколько поипептидов». Понятно, что в такой ситуации регулирующая функция генов была бы полностью утрачена.

Считывание информации с ДНК и с иРНК происходит только в одном направлении. Полярность имеет важное значение для определения структур высшего порядка (вторичной, третичной и т.д.). Ранее мы говорили о том, что структуры низшего порядка определяют структуры более высшего порядка. Третичная структура и структуры более высокого порядка у белков, формируются сразу же как только синтезированная цепочка РНК отходит от молекулы ДНК или цепочка полипептида отходит от рибосомы. В то время, когда свободный конец РНК или полипептида приобретает третичную структуру, другой конец цепочки ещё продолжает синтезироваться на ДНК (если транскрибируется РНК) или рибосоме (если транскрибируется полипептид).

Поэтому однонаправленный процесс считывания информации (при синтезе РНК и белка) имеет существенное значение не только для определения последовательности нуклеотидов или аминокислот в синтезируемом веществе, но для жёсткой детерминации вторичной, третичной и т.д. структур.

Код может быть перекрывающимся и не перекрывающимся. У большинства организмов код не перекрывающийся. Перекрывающийся код найден у некоторых фагов.

Сущность не перекрывающего кода заключается в том, что нуклеотид одного кодона не может быть одновременно нуклеотидом другого кодона. Если бы код был перекрывающим, то последовательность из семи нуклеотидов (ГЦУГЦУГ) могла кодировать не две аминокислоты (аланин-аланин) (рис.33, А) как в случае с не перекрывающимся кодом, а три (если общим является один нуклеотид) (рис. 33, Б) или пять (если общими являются два нуклеотида) (см. рис. 33, В). В последних двух случаях мутация любого нуклеотида привела бы к нарушению в последовательности двух, трёх и т.д. аминокислот.

Однако установлено, что мутация одного нуклеотида всегда нарушает включение в полипептид одной аминокислоты. Это существенный довод в пользу того, что код является не перекрывающимся. Неперекрываемость генетического кода связана с ещё одним свойством ― считывание информации начинается с определённой точки ― сигнала инициации. Таким сигналом инициации в иРНК является кодон, кодирующий метионин АУГ. Следует отметить, что у человека всё-таки имеется небольшое число генов, которые отступают от общего правила и перекрываются.

Между кодонами нет знаков препинания. Иными словами триплеты не отделены друг от друга, например, одним ничего не значащим нуклеотидом. Отсутствие в генетической коде «знаков препинания» было доказано в экспериментах.

Код един для всех организмов, живущих на Земле. Прямое доказательство универсальности генетического кода было получено при сравнении последовательностей ДНК с соответствующими белковыми последовательностями. Оказалось, что во всех бактериальных и эукариотических геномах используется одни и те же наборы кодовых значений. Есть и исключения, но их не много.

Первые исключения из универсальности генетического кода были обнаружены в митохондриях некоторых видов животных. Это касалось кодона терминатора УГА, который читался так же как кодон УГГ, кодирующий аминокислоту триптофан. Были найдены и другие более редкие отклонения от универсальности.

Для повторения:

Генетический код ― это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны, соответствующие аминокислотам в белке. Генетический код имеет несколько свойств.

1. Триплетность. Триплет состоит из трёх нуклеотидов. 61 кодон ― смысловые, т.е. кодируют какую-либо аминокислоту, три ― бессмысленные, т.е. не кодируют аминокислоты.

2. Вырожденность или избыточность. Одна аминокислота может кодироваться несколькими кодонами.

3. Однозначность. Один кодон кодирует только одну аминокислоту.

4. Полярность. Считывание информации с ДНК и с иРНК происходит только в одном направлении.

5. Неперекрываемость. Генетический код является не перекрывающимся.

6. Компактность. Между кодонами нет знаков препинания.

7. Универсальность. Код един для всех живущих на земле организмов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *