Апофема — высота боковой грани правильной пирамиды, проведённая из её вершины (также апофемой называют длину перпендикуляра, опущенного из середины правильного многоугольника на одну из его сторон);
Боковые грани — треугольники, сходящиеся в вершине;
Боковые ребра — общие стороны боковых граней;
Вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания;
Высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра);
Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания;
Основание — многоугольник, которому не принадлежит вершина пирамиды.
Объем пирамиды через площадь основания и высоту
Объем пирамиды равен одной трети произведения площади основания S(ABCDEF) на высоту h (OS)
\[ \LARGE V = \frac<1> <3>\cdot S \cdot h \]
Калькулятор объема пирамиды через площадь основания и высоту
Объём усечённой пирамиды
\[ \LARGE V = \frac<1> <3>\cdot h \cdot \left( S_1 + \sqrt + S_2 \right) \]
Калькулятор объема усечённой пирамиды
Объём правильной пирамиды
Объем правильной пирамиды равен одной трети произведения площади правильного многоугольника, являющегося основанием S (ABCDEF) на высоту h (OS)
Калькулятор объёма правильной пирамиды
Объём правильной треугольной пирамиды
Объем правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC) на высоту h (OS)
Формулы объема пирамиды полной и усеченной. Объем пирамиды Хеопса
Умение вычислять объем пространственных фигур является важным при решение ряда практических задач по геометрии. Одной из распространенных фигур является пирамида. В данной статье рассмотрим формулы объема пирамиды как полной, так и усеченной.
Пирамида как объемная фигура
Каждый знает о египетских пирамидах, поэтому хорошо представляет, о какой фигуре пойдет речь. Тем не менее египетские каменные сооружения являются лишь частным случаем огромного класса пирамид.
Рассматриваемый геометрический объект в общем случае представляет собой многоугольное основание, каждая вершина которого соединена с некоторой точкой в пространстве, не принадлежащей плоскости основания. Данное определение приводит к фигуре, состоящей из одного n-угольника и n треугольников.
Вам будет интересно: Балбес – это кто? Сказка и реальность
Любая пирамида состоит из n+1 граней, 2*n ребер и n+1 вершины. Поскольку рассматриваемая фигура является совершенным полиэдром, то числа отмеченных элементов подчиняются равенству Эйлера:
Многоугольник, находящийся в основании, дает название пирамиды, например, треугольная, пятиугольная и так далее. Набор пирамид с разными основаниями приведен на фото ниже.
Точка, в которой n треугольников фигуры соединяются, называется вершиной пирамиды. Если из нее опустить на основание перпендикуляр и он пересечет его в геометрическом центре, тогда такая фигура будет называться прямой. Если это условие не выполняется, то имеет место наклонная пирамида.
Прямая фигура, основание которой образовано равносторонним (равноугольным) n-угольником, называется правильной.
Формула объема пирамиды
Для вычисления объема пирамиды воспользуемся интегральным исчислением. Для этого разобьем фигуру параллельными основанию секущими плоскостями на бесконечное число тонких слоев. Рисунок ниже показывает четырехугольную пирамиду высотой h и длиной стороны L, в которой четырехугольником отмечен тонкий слой сечения.
Площадь каждого такого слоя можно вычислить по формуле:
Чтобы получить формулу объема пирамиды, следует вычислить интеграл по всей высоте фигуры, то есть:
Подставляя зависимость A(z) и вычисляя первообразную, приходим к выражению:
Мы получили формулу объема пирамиды. Чтобы найти величину V, достаточно умножить высоту фигуры на площадь основания, а затем результат поделить на три.
Заметим, что полученное выражение справедливо для вычисления объема пирамиды произвольного типа. То есть она может быть наклонной, а ее основание представлять собой произвольный n-угольник.
Правильная пирамида и ее объем
Полученную в пункте выше общую формулу для объема можно уточнить в случае пирамиды с правильным основанием. Площадь такого основания вычисляется по следующей формуле:
Подставляя выражение для A0 в общую формулу, получаем объем правильной пирамиды:
Например, для треугольной пирамиды эта формула приводит к следующему выражению:
V3 = 3/12*L2*h*ctg(60o) = √3/12*L2*h.
Для правильной четырехугольной пирамиды формула объема приобретает вид:
V4 = 4/12*L2*h*ctg(45o) = 1/3*L2*h.
Определение объемов правильных пирамид требует знания стороны их основания и высоты фигуры.
Пирамида усеченная
Предположим, что мы взяли произвольную пирамиду и отсекли у нее часть боковой поверхности, содержащей вершину. Оставшаяся фигура называется усеченной пирамидой. Она состоит уже из двух n-угольных оснований и n трапеций, которые их соединяют. Если секущая плоскость была параллельна основанию фигуры, тогда образуется усеченная пирамида с параллельными подобными основаниями. То есть длины сторон одного из них можно получить, умножая длины другого на некоторый коэффициент k.
Рисунок выше демонстрирует усеченную правильную шестиугольную пирамиду. Видно, что верхнее основание ее так же, как и нижнее, образовано правильным шестиугольником.
Формула объема усеченной пирамиды, которую можно вывести, используя подобное приведенному интегральное исчисление, имеет вид:
V = 1/3*h*(A0 + A1 + √(A0*A1)).
Объем пирамиды Хеопса
Любопытно решить задачу на определение объема, который заключает внутри себя самая большая египетская пирамида.
В 1984 году британские египтологи Марк Легнер (Mark Lehner) и Джон Гудман (Jon Goodman) установили точные размеры пирамиды Хеопса. Ее первоначальная высота равнялась 146,50 метра (в настоящее время около 137 метров). Средняя длина каждой из четырех сторон сооружения составила 230,363 метра. Основание пирамиды с высокой точностью является квадратным.
Воспользуемся приведенными цифрами для определения объема этого каменного гиганта. Поскольку пирамида является правильной четырехугольной, тогда для нее справедлива формула:
Подставляем цифры, получаем:
V4 = 1/3*(230,363)2*146,5 ≈ 2591444 м3.
Объем пирамиды Хеопса равен практически 2,6 млн м3. Для сравнения отметим, что олимпийский бассейн имеет объем 2,5 тыс. м3. То есть для заполнения всей пирамиды Хеопса понадобится больше 1000 таких бассейнов!
Пирамида — это многогранник, у которого одна грань — основание пирамиды — произвольный многоугольник, а остальные — боковые грани — треугольники с общей вершиной, называемой вершиной пирамиды.
По числу углов основания различают пирамиды треугольные, четырёхугольные и т. д. Пирамида является частным случаем конуса.
Для расчета объемов других тел воспользуйтесь этим калькулятором: калькулятор объемов фигур.
Элементы пирамиды.
Вспомогательные формулы.
1. Боковая поверхность — это сумма площадей боковых граней:
2. Полная поверхность — это сумма площади боковой поверхности и площади основания:
3. Боковая поверхность — это сумма площадей боковых граней:
P — периметр основания,
n — число сторон основания,
α — плоский угол при вершине пирамиды.
Общая формула, по которой можно найти объем пирамиды.
Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS)
, где
S – площадь основания пирамиды,
h – высота пирамиды
— объём параллелепипеда;
Правильная пирамида.
Правильная пирамида — пирамида, в основании, которой лежит правильный многоугольник, а высота проходит через центр вписанной окружности в основание.
Формула для вычисления объема правильной пирамиды:
Правильная треугольная пирамида.
Правильная треугольная пирамида — пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.
Формула для нахождения объема правильной треугольной пирамиды:
Правильная четырехугольная пирамида.
Правильная четырехугольная пирамида — пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.
Формула для определения объема правильной четырехугольной пирамиды:
Тетраэдр.
Тетраэдр — пирамида, у которой все грани — равносторонние треугольники.
Формулы для вычисления объема тетраэдра:
— скрещивающиеся рёбра, — расстояние между a1 и a2, — угол между a1 и a2;
Усеченная пирамида.
Сечение параллельное основанию пирамиды делит пирамиду на две части. Часть пирамиды между ее основанием и этим сечением — это усеченная пирамида.
Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1 (abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.
1. Пусть SABC – треугольная пирамида с вершиной S и основанием АВС.
2. Дополним эту пирамиду до треугольной призмы с тем же основанием и высотой.
3. Эта призма составлена из трех пирамид:
1) данной пирамиды SABC.
3) и пирамиды SCBB1.
4. У второй и третьей пирамид равные основания СС1В1 и В1ВС и общая высота, проведенная из вершины S к грани параллелограмма ВВ1С1С. Поэтому у них равные объемы.
5. У первой и третьей пирамид тоже равные основания SAB и BB1S и совпадающие высоты, проведенные из вершины С к грани параллелограмма АВВ1S. Поэтому у них тоже равные объемы.
Значит, все три пирамиды имеют один и тот же объем. Так как сумма этих объемов равна объему призмы, то объемы пирамид равны SH/3.
Объем любой треугольной пирамиды равен одной трети произведения площади основания на высоту.
3. Закрепление нового материала. Решение упражнений.
1) Задача № 33 из учебника А.Н. Погорелова. Слайды 7, 8, 9
В правильной пирамиде высота проходит через центр окружности, описанной около основания. Тогда: (Приложение)
4. Исторические сведения о пирамидах. Слайды 15, 16, 17
Первым из наших современников, кто установил ряд необычных явлений, связанных с пирамидой, был французский ученый Антуан Бови. Исследуя пирамиду Хеопса в 30-х годах двадцатого столетия, он обнаружил, что тела мелких животных, случайно попавших в царскую комнату, мумифицировались. Причину этого Бови объяснил для себя формой пирамиды и, как оказалось, не ошибся. Его труды легли в основу современных исследований, в результате которых за последние 20 лет появилось множество книг и публикаций, подтверждающих, что энергия пирамид может иметь прикладное значение.
Цифровое значение кода, которым зашифрована в пирамиде информация о Вселенной, число 365, выбрано не случайно. Прежде всего, это годичный жизненный цикл нашей планеты. Кроме того, число 365 состоит из трех цифр 3, 6 и 5. Что они означают? Если в Солнечной системе Солнце проходит под номером 1, Меркурий – 2, Венера – 3, Земля – 4, Марс – 5, Юпитер – 6, Сатурн – 7, Уран – 8, Нептун – 9, Плутон – 10, то 3 – это Венера, 6 – Юпитер и 5 – Марс. Следовательно, Земля особенным образом связана именно с этими планетами. Сложив числа 3, 6 и 5, получаем 14, из которых 1 – это Солнце, а 4 – Земля.
Число 14 вообще имеет глобальное значение: на нем, в частности, основано строение кистей рук человека, общее число фаланг пальцев каждой из которых тоже 14. Этот код имеет отношение и к созвездию Большой Медведицы, в которую входит наше Солнце, и в котором некогда была еще одна звезда, погубившая Фаэтон, планету, находившуюся между Марсом и Юпитером, после чего в Солнечной системе появился Плутон, и изменились характеристики остальных планет.
— Специальные устройства в виде пирамид нейтрализуют негативное электромагнитное излучение на человека от компьютера, телевизора, холодильника и других электробытовых приборов.
— В одной из книг описан случай, когда пирамида, установленная в салоне автомобиля, сокращала расход топлива и снижала содержание СО в отработанных газах.
— Выдержанные в пирамидах семена огородных культур имели лучшую всхожесть и урожайность. В публикациях даже рекомендовалось замачивать семена перед посевом в пирамидной воде.
— Было обнаружено, что пирамиды благотворно влияют на экологическую обстановку. Устраняют патогенные зоны в квартирах, офисах и дачных участках, создавая положительную ауру.
— Голландский исследователь Пауль Дикенс в своей книге приводит примеры о лечебных свойствах пирамид. Он заметил, что с их помощью можно снимать головные боли, боли в суставах, останавливать кровотечения при небольших порезах и то, что энергия пирамид стимулирует обмен веществ и укрепляет иммунитет.
— В некоторых современных публикациях отмечается, что лекарства, выдержанные в пирамиде, сокращают курс лечения, а перевязочный материал, насыщаясь положительной энергетикой, способствует заживлению ран.
— Косметические крема и мази улучшают свое действие.
— Напитки, в том числе и спиртные, улучшают свои вкусовые качества, а вода, содержащаяся в 40-% водке становится целебной. Правда для того, чтобы зарядить положительной энергией стандартную бутылку 0,5 литра, понадобится высокая пирамида.
— В одной газетной статье рассказывается о том, что если хранить ювелирные изделия под пирамидой они самоочищаются и приобретают особый блеск, а драгоценные и полудрагоценные камни аккумулируют положительную биоэнергетику и потом постепенно ее отдают.
— По утверждению американских ученых, продукты питания, например крупа, мука, соль, сахар, кофе, чай, побывав в пирамиде, улучшают свои вкусовые качества, а дешевые сигареты становятся похожими на своих благородных собратьев.
По утверждению большинства исследователей, все это является доказательством существования энергии пирамид.
За 5000 лет своего существования, пирамиды превратились в некий символ, олицетворяющий стремление человека достичь вершины знаний.
5. Подведение итогов урока.
Список используемой литературы.
2) Погорелов А. В. Геометрия 10-11, издательство “Просвещение”.
Формула объема необходима для вычисления параметров и характеристик геометрической фигуры.
Объемы геометрических фигур.
Фигура
Формула
Чертеж
Параллелепипед.
Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.
Цилиндр.
Объем цилиндра равен произведению площади основания на высоту.
Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.
Пирамида.
Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).
Правильная пирамида — это пирамида, в основании, которой лежит правильный многоугольник, а высота проходит через центр вписанной окружности в основание.
Правильная треугольная пирамида — это пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.
Правильная четырехугольная пирамида — это пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.
Тетраэдр — это пирамида, у которой все грани — равносторонние треугольники.
Усеченная пирамида.
Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1(abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.
Конус — это тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность.
Усеченный конус получится, если в конусе провести сечение, параллельное основанию.
V = 1/3 πh (R 2 + Rr + r 2 )
Объем шара в полтора раза меньше, чем объем описанного вокруг него цилиндра.
Призма.
Объем призмы равен произведению площади основания призмы, на высоту.
Сектор шара.
Объем шарового сектора равен объему пирамиды, основание которой имеет ту же площадь, что и вырезаемая сектором часть шаровой поверхности, а высота равна радиусу шара.
Шаровой слой — это часть шара, заключенная между двумя секущими параллельными плоскостями.