Объекты теплогенерации что это
теплогенерирующие объекты
Смотреть что такое «теплогенерирующие объекты» в других словарях:
система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… … Словарь-справочник терминов нормативно-технической документации
основная — 3.2 основная общеобразовательная школа: Школа, организуемая как самостоятельное общеобразовательное учреждение с 1 по 9 класс включительно. Источник: ТСН 31 328 2004: Общеобразовательные школы. Республика Саха (Якутия) Смотри также родственные… … Словарь-справочник терминов нормативно-технической документации
СЗФО — Северо Западный ФО (Русский Север) Центр ФО г. Санкт Петербург Территория площадь 1 677 900 км² (9,8 % от РФ) Население 13 501 038 чел. (9,51 % от РФ, 1 января 2008) Плотность 8,52 чел./км² (2002) % городского на … Википедия
Северо-Западный Федеральный округ — Северо Западный ФО (Русский Север) Центр ФО г. Санкт Петербург Территория площадь 1 677 900 км² (9,8 % от РФ) Население 13 501 038 чел. (9,51 % от РФ, 1 января 2008) Плотность 8,52 чел./км² (2002) % городского на … Википедия
Северо-западный федеральный округ — Северо Западный ФО (Русский Север) Центр ФО г. Санкт Петербург Территория площадь 1 677 900 км² (9,8 % от РФ) Население 13 501 038 чел. (9,51 % от РФ, 1 января 2008) Плотность 8,52 чел./км² (2002) % городского на … Википедия
Северо-западный федеральный округ России — Северо Западный ФО (Русский Север) Центр ФО г. Санкт Петербург Территория площадь 1 677 900 км² (9,8 % от РФ) Население 13 501 038 чел. (9,51 % от РФ, 1 января 2008) Плотность 8,52 чел./км² (2002) % городского на … Википедия
Северо-западный федеральный округ Российской Федерации — Северо Западный ФО (Русский Север) Центр ФО г. Санкт Петербург Территория площадь 1 677 900 км² (9,8 % от РФ) Население 13 501 038 чел. (9,51 % от РФ, 1 января 2008) Плотность 8,52 чел./км² (2002) % городского на … Википедия
Что такое теплогенератор
Теплогенератор — это устройство, вырабатывающее тепло и нагнетающее тёплый поток воздуха посредством сжигания различных видов топлива. Теплогенераторы могут работать практически на любом топливе — на газообразном, жидком, твердом. Применяются теплогенераторы, как правило, для воздушного отопления помещений больших размеров. У нас можно купить теплогенератор для отопления дома, ангара, теплицы и других зданий. В продаже имеются газовые и дизельные промышленные теплогенераторы, теплогенераторы на отработанном масле и твердом топливе по выгодным ценам.
Устройство теплогенератора
Теплогенератор состоит из:
корпуса
вентилятора (различной мощности, по заказу)
теплообменника с камерой сгорания (из чёрной или нержавеющей стали, под заказ, в зависимости от условий эксплуатации)
горелки (встроенной или навесной)
автоматики (встроенной или опции)
К теплогенератору подводится топливопровод и отходит труба для выхлопных газов.
Как работает теплогенератор для воздушного отопления?
Принцип действия теплогенератора
Горелка обеспечивает сжигание топлива в камере сгорания. Горячие газы, полученные в камере сгорания, направляются в теплообменник. Вентилятор, в свою очередь, создает воздушный поток, который поступает в теплообменник и нагревается. Затем этот нагретый воздух распределяется по помещению через решетки в корпусе теплогенератора или через систему подключенных к нему вентиляционных каналов. При этом достигается увеличение температуры подаваемого воздуха на 40-70 градусов, что позволяет создавать на базе теплогенераторов также и системы приточной вентиляции помещений.
Преимущества использования теплогенератора для отопления
Какие бывают теплогенераторы
По типу используемого топлива различают газовые и дизельные теплогенераторы, теплогенераторы на отработке, на твердом топливе. То, на каком топливе теплогенератор работает, зависит от горелки. Купить горелку для теплогенератора можно в нашем интернет-магазине отопительного оборудования.
Газовые теплогенераторы для воздушного отопления получили наиболее широкое распространение – газовое топливо отличается доступностью и низкой стоимостью, не требует складирования и загрузки, экономично используется. Теплогенераторы на газовом топливе имеют самый высокий КПД – до 90-91%.
Дизельные теплогенераторы для отопления промышленных помещений оборудуются форсункой, которая распыляет топливо по камере сгорания. Дизельные теплогенераторы дешевле всех остальных типов, не требуют разрешения на установку и значительно проще в эксплуатации. Однако данные устройства требуют ежедневной заправки.
Теплогенераторы на отработанном масле выгодно купить, если необходима утилизация различного жидкого топлива, оставшегося после переработки – дизеля, печного топлива, другой отработки. Это значительно сэкономит расходы на отопление в автомастерских и автосервисах, технологических цехах и т.п.
Твердотопливные теплогенераторы отличаются конструктивно наличием колосников и дверцы загрузки топлива. Данные устройства сжигают дрова, брикеты торфа, каменный уголь, но имеют более низкий КПД по сравнению с газовыми и жидкотопливными теплогенераторами, а также большие габариты.
По типу корпуса выпускаются теплогенераторы вертикального и горизонтального типа.
Если Вы решили купить теплогенератор, также важно обратить внимание на то, куда и как необходимо установить отопительное оборудование. Мы продаем теплогенераторы с различным способом установки — мобильные и стационарные теплогенераторы, подвесные теплогенераторы воздушного отопления, а также теплогенераторы универсального монтажа. В зависимости от того, где устройство будет находиться, различают теплогенераторы уличного и внутреннего исполнения.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 20.01.2014 |
Размер файла | 736,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Конструктивные особенности теплогенерирующих установок
1.1 Конструктивные особенности котельных
2. Топочные и горелочные устройства
2.1 Топочные устройства
2.2 Горелочные устройства
2.3 Газовые запальные устройства
2.4 Газомазутные горелки
2.5 Тягодутьевые устройства
3. Безопасность работы котельных установок
3.1 Арматура и гарнитура
3.2 Контрольно-измерительные приборы
3.3 Водоуказательные приборы
3.4 Приборы для измерения расхода
3.6 Системы автоматики регулирования
3.7 Приборы безопасности
Перечень источников литературы
Альтернативы энергосбережению в настоящее время, безусловно, нет.
Поэтому покрытие дефицита энергии следует осуществлять за счет таких ее источников, которые обладали бы уникальными свойствами: были возобновляемыми, экологически чистыми и не приводили бы к поступлению на планету дополнительного количества теплоты. Такими источниками являются солнечная энергия, энергия ветра и биомассы, энергия морских волн и приливов, геотермальная энергия и ряд других нетрадиционных и возобновляемых источников энергии.
1. Конструктивные особенности теплогенерирующих установок
Теплогенерирующей установкой (ТГУ) называют комплекс устройств и механизмов, предназначенных для производства тепловой энергии в виде водяного пара или горячей воды. Водяной пар используют для получения электроэнергии на теплоэлектроцентралях (ТЭЦ) или теплоэлектростанциях (ТЭС), технологических нужд промышленных предприятий и сельского хозяйства, а также для нагрева в паровых подогревателях воды, направляемой в системы теплоснабжения. Горячую воду используют для отопления, вентиляции и горячего водоснабжения жилых, общественных и производственных зданий и сооружений, а также для коммунально-бытовых нужд населения. Для отопления и вентиляции также используют и нагретый воздух.
Системой теплоснабжения называют комплекс устройств, производящих тепловую энергию и доставляющих ее в виде водяного пара, горячей воды и нагретого воздуха потребителю.
Основные тенденции развития теплогенерирующих установок включают применение централизованного теплоснабжения и автоматизированных систем управления (АСУ), использование альтернативных источников энергии (водородной, солнечной, геотермальной, ветровой, приливов и отливов), местных и вторичных энергоресурсов, отходов промышленности, сельского и городского хозяйства, обеспечение минимальных выбросов вредных веществ в атмосферу. В связи с разнообразием различных видов энергии, теплоносителей и условий работы применяют следующие теплогенерирующие установки и соответствующие методы производства тепловой энергии.
7. Для систем теплоснабжения также используют производство тепловой энергии из биомассы, сельскохозяйственных и городских отходов, а также устройства, в которых энергия с низким энергетическим потенциалом преобразуется в высокопотенциальную тепловую энергию другого теплоносителя с затратами других видов энергии, подводимых извне (например, электроэнергии в тепловых насосах).
Эффективность ТГУ определяется совершенством технологической схемы преобразования энергии, стоимостью исходного источника энергии, а также параметрами, которые должен иметь теплоноситель.
1. Конструктивные особенности теплогенерирующих установок
При сжигании органического топлива горючие химические элементы (метан, углерод, водород, сера), входящие в состав топлива, соединяются с кислородом воздуха, выделяют теплоту и образуют продукты сгорания (двуокись углерода, водяные пары, сернистый газ).
В котельный агрегат необходимо:
— подать некоторое количество топлива и окислителя (воздуха); обеспечить полное сгорание топлива и передачу теплоты от топочных газов рабочему телу; удалить продукты сгорания топлива;
Производительность теплогенератора определяется количеством теплоты или пара, получаемого в процессе сжигания топлива.
От высокотемпературных продуктов сгорания органического топлива тепловая энергия передается трубам суммарным потоком теплоты: конвекцией и лучеиспусканием. Затем от внешней поверхности кипятильных труб к внутренней через слой сажи, металлическую стенку и слой накипи теплота передается путем теплопроводности, а от внутренней поверхности труб к воде благодаря теплопроводности и конвекции.
На рис. 1 приведена принципиальная схема котельной установки, работающей на природном газе или мазуте.
Рис. 1.1. Принципиальная схема котельной установки
Вода после водоподготовки (умягчения и деаэрации) питательным насосом нагнетается вначале в водяной экономайзер, а затем в верхний барабан парового котельного агрегата, где вырабатывается сухой насыщенный пар. Для производства перегретого пара дополнительно устанавливается пароперегреватель. Воздух, необходимый для горения топлива, дутьевым вентилятором нагнетается в топку котла либо предварительно нагревается в воздухоподогревателе. Котельная или теплогенерирующая установка также включает в себя: горелочные устройства для подачи и подготовки топлива к сжиганию; дымосос для удаления продуктов сгорания; дымовую трубу; арматуру и гарнитуру различного назначения. Все эти установки размещаются в специальном промышленном здании, называемом котельной.
На рис. 2 и 3 приведен план и продольный разрез котельной с двумя котлами ДКВР-4-13, работающей на природном газе или мазуте.
Рис. 2. План котельной с двумя котлами ДКВР-4-13
Рис. 3. Продольный разрез котельной с двумя котлами ДКВР-4-13
Котельной называется комплекс устройств и механизмов для превращения химической энергии органического топлива в тепловую энергию.
Котельная включает в себя несколько котельных установок, дымовую трубу для отвода дымовых газов в атмосферу, теплообменники, деаэратор, баки, насосы (питательные, сетевые, подпиточные и другие), разные вспомогательные устройства и машины, предназначенные для обеспечения длительной и надежной работы котельных агрегатов, в том числе и приборов, позволяющих контролировать ход процессов в котельном агрегате. В котельной также имеются помещения для различных вспомогательных служб и мастерских. Для удаления очаговых остатков топлива и золы из дымовых газов при сжигании твердого топлива в котельных имеются системы шлако- и золоудаления.
Снабжение котельной топливом может осуществляться различными путями: по трубопроводам, по железной дороге и автотранспортом. На территории котельной обычно проложены трубопроводы, подводящие природный газ к котельным агрегатам, и газорегуляторные пункты (ГРП) для приема, очистки и снижения давления газа перед котлами. При использовании жидкого топлива, подаваемого в железнодорожных или автомобильных цистернах, на территории котельной предусмотрены устройства для приемки, разгрузки, слива, хранения и подачи жидкого топлива по емкостям, аппараты для подогрева, фильтрации и транспортировки в котельную.
На территории котельной также располагаются склады для хранения материалов и запасных частей, необходимых при эксплуатации и ремонте оборудования; устройства для приемки и преобразования электрической энергии, потребляемой котельной. На территории котельной регламентировано устройство проездов и площадок разного назначения, зеленой зоны для защиты окружающего пространства.
Теплогенераторы с давлением выше 0,07 МПа (0,7 кгс/см 2 ) и температурой выше 115°С подлежат регистрации в государственной организации, контролирующей правильность конструкции котельного агрегата, соответствие установленным правилам и нормам оборудования и здания котельной и соблюдение обслуживающим персоналом Правил устройства и безопасной эксплуатации паровых и водогрейных котлов.
Размеры зданий котельных, проходы между стенами и оборудованием, материалы, из которых они выполняются, определяются Правилами и нормами Госгортехнадзора Украины.
Эффективность работы котельных во многом определяется правильностью выбора метода сжигания топлива, совершенством оборудования и приборов, своевременностью и качеством проведения пусконаладочных работ, квалификацией обслуживающего персонала и др.
2. Топочные и горелочные устройства
2.1 Топочные устройства
Для сжигания природного газа, мазута и пылевидного твердого топлива обычно используют камерные топки, общая принципиальная схема которой приведена на рис. 4.
В конструкции камерной топки можно выделить четыре основных элемента: топочную камеру, экранную поверхность, горелочное устройство и систему удаления шлака и золы.
Рис. 4. Принципиальная схема камерной топки
Обмуровкой называют ограждения, отделяющие топочную камеру и газоходы котельного агрегата от внешней среды. Обмуровку выполняют из красного или диатомового кирпича, огнеупорного материала или из металлических щитов с огнеупорами. Внутренняя часть обмуровки в топке, или футеровка, со стороны топочных газов и шлаков, выполняется из огнеупорных материалов: шамотного кирпича, шамотобетона и других огнеупорных масс. Обмуровка и футеровка должны быть достаточно плотными, особо высокоогнеупорными, стойкими к химическому воздействию шлаков и иметь малый коэффициент теплопроводности.
Обмуровка может опираться непосредственно на фундамент, на металлические конструкции (каркас) или крепиться на трубах экранов топочной камеры и газоходов. Поэтому существует три конструкции обмуровки:
Каркас служит для крепления и поддержания всех элементов котельного агрегата (барабанов, поверхностей нагрева, трубопроводов, обмуровки, лестниц и площадок) и представляет собой металлические конструкции обычно рамного типа, соединенные с помощью сварки или закрепленные болтами на фундаменте.
2. Экранная радиационная поверхность нагрева выполнена из стальных труб диаметром 51…76 мм установленным с шагом 1,05…1,1. Экраны воспринимают теплоту за счет радиации и конвекции и передают ее воде или пароводяной смеси, циркулирующим по трубам. Экраны защищают обмуровку от мощных тепловых потоков.
3. Система удаления шлака и золы используется в камерных топках только при сжигании твердого пылевидного топлива.
Воздушные регистры. При любом виде топлива (газообразное, жидкое или пылевидное) воздух в основном (кроме инжекционных горелок) нагнетается дутьевым вентилятором в топку через воздушные регистры или воздухонаправляющие аппараты, что обеспечивает интенсивное завихрение и выход (подачу) топливно-воздушной смеси в наиболее узком сечении амбразуры топки со скоростью 25…30 м/с.
Воздухонаправляющее устройство представляет собой лопаточный завихритель осевого типа с подвижными, поворачивающимися вокруг своей оси лопатками. Возможна и установка неподвижных профильных лопаток под углом 45…50° к потоку воздуха. Завихрение потока воздуха интенсифицирует процессы смесеобразования и горения, но при этом увеличивается сопротивление по воздушному тракту. Направляющие аппараты удобны для автоматического регулирования производительности вентиляторов и дымососов.
2.2 Горелочные устройства
теплогенерирующий котельная топка горелка
В зависимости от вида сжигаемого топлива различают множество конструкций горелочных устройств.
1. При сжигании твердого пылевидного топлива применяют горелки смешивающего типа.
2. При сжигании мазута применяют форсунки и мазутные горелки: механические, ротационные и паровоздушные (паромеханические).
Рис. 5 Принципиальная схема горелки для сжигания пылевидного твердого топлива
Рис. 6 Принципиальная схема механической форсунки
Механическая форсунка. Принципиальная схема форсунки приведена на рис. 6.
Достоинства: не требуются мощные нефтяные насосы и тонкая очистка мазута от примесей; широкий диапазон регулирования (15…100 %). Недостатки: сложная конструкция и повышенный уровень шума.
Паровоздушная или паромеханическая форсунка. Топливо подается в канал, по внешней поверхности которого поступает пар (давлением 0,5…2,5 МПа) или сжатый воздух. Пар выходит из канала со скоростью до 1000 м/с и распыляет топливо (мазут) на мельчайшие частички. Природный газ также поступает по каналу в топку. Воздух нагнетается в топку вентилятором через амбразуру.
3. Газовые горелки. Газогорелочные устройства (горелки) предназначены для подачи к месту горения (в топку) газовоздушной смеси или раздельно газа и воздуха, устойчивого сжигания и регулирования процесса горения. Основной характеристикой является тепловая мощность горелки, т.е. количество теплоты, выделяемое при полном сжигании газа, поданного через горелку, и определяется произведением расхода газа на его низшую теплоту сгорания.
Основные параметры горелок: номинальная тепловая мощность, номинальное давление газа (воздуха) перед горелкой, номинальная относительная длина факела, коэффициенты предельного и рабочего регулирования горелки по тепловой мощности, удельная металлоемкость, давление в камере сгорания, шумовая характеристика.
Существуют три основных метода сжигания газа.
По способу подачи воздуха для горения различают следующие конструкции горелок.
1. Горелки с поступлением воздуха к месту горения за счет разрежения в топке, создаваемого дымовой трубой или дымососом, или конвекции.
Смешение газа с воздухом происходит не в горелке, а за ней, в амбразуре или топке, одновременно с процессом горения. Такие горелки называют диффузионными, они равномерно прогревают всю топку, имеют простую конструкцию, работают бесшумно, факел устойчив по отношению к отрыву, проскок пламени невозможен.
2. Горелки с инжекцией воздуха газом, или инжекционные. Схема инжекционной горелки приведена на рис. 7.
Рис. 7. Схема инжекционной горелки
Струя газа, поступающего из газопровода под давлением, выбрасывается из одного или нескольких сопл с большой скоростью, в результате скорость потока увеличивается, а давление в камере смешения снижается.
3. Горелки с инжекцией газа воздухом. В них для инжекции газа используется энергия струй сжатого воздуха, создаваемого вентилятором, а давление газа перед горелкой поддерживается постоянным с помощью специального регулятора. Достоинства: подача газа в смеситель возможна со скоростью, близкой к скорости воздуха; возможность использования холодного или нагретого воздуха с переменным давлением. Недостаток: использование регуляторов.
4. Горелки с принудительной подачей воздуха без предварительной подготовки газовоздушной среды. Смешение газа с воздухом происходит в процессе горения (т.е. вне горелки), и длина факела определяет путь, на котором это смешение заканчивается. Для укорочения факела газ подают в виде струек, направленных под углом к потоку воздуха, осуществляют закручивание потока воздуха, увеличивают разницу в давлениях газа и воздуха и т.п. По методу подготовки смеси, данные горелки являются диффузионными (проскок пламени невозможен), они применяются как резервные при переводе одного топлива на другое в котлах ДКВР, в виде подовых и вертикально-щелевых.
5. Горелки с принудительной подачей воздуха и предварительной подготовкой газовоздушной смеси, или газомазутные горелки. Они имеют наибольшее распространение и обеспечивают заранее заданное количество смеси до выхода в топку. Газ подается через ряд щелей или отверстий, оси которых направлены под углом к потоку воздуха. Для интенсификации процесса смесеобразования и горения топлива воздух к месту смешения с газом подают закрученным потоком, для чего используют: лопаточные аппараты с постоянным или регулируемым углом установки лопаток, улиточную форму корпуса горелки, тангенциальную подачу или тангенциальные лопаточные закручиватели.
2.3 Газовые запальные устройства
Газовые запальные устройства предназначены для розжига основних горелок и контроля наличия пламени. Их можно разделить:
2. Стационарный запальник повышает безопасность и облегчает розжиг основной горелки. Факел должен быть устойчивым на всех режимах работы агрегата, надежно поджигать газовоздушную смесь основной горелки, легко зажигаться переносным запальником или электрическим устройством.
Стационарный запальник может быть:
· отдельным блоком газовой горелки или ее частью; однофакельным или многофакельным; включаться от основной горелки (в период розжига) или работать постоянно;
· зажигаться электрически или дистанционно. Газ к стационарному запальнику подают от газопровода до запорных устройств основной горелки.
Также применяются электрозапальник ЭЗ или запально-контрольная горелка типа ЗК-Н.
2.4 Газомазутные горелки
В настоящее время на водотрубных котлах (ДЕ, ДКВР) и водогрейных агрегатах (КВ-ГМ) устанавливаются газомазутные горелки различных конструкций, удовлетворяющие требованиям экономичной и безопасной эксплуатации. Главным при этом является обеспечение примерно равного качества сжигания и длины факела на обоих видах топлива (природном газе и мазуте).
Газомазутные горелки представляют собой комплекс из газовой горелки и мазутной форсунки и в зависимости от конструкции предназначены для раздельного или совместного сжигания газового и жидкого топлива.
Для установки горелки во фронтовой стенке (обмуровке) котла выполняют амбразуру.
В теплогенераторах ДКВР наибольшее распространение получили короткофакельные газомазутные горелки ГМГ и их модернизированный вариант ГМГм.
Горелка ГМГм отличается от ГМГ устройством газового насадка, имеющего два ряда газовыпускных отверстий, направленных под углом 90° друг к другу, которые закручивают поток первичного и вторичного воздуха, что обеспечивает снижение коэффициента избытка воздуха до 1,05, повышение КПД котла на 1 %, а также улучшает его эксплуатационные показатели.
Площадь сечения трубопровода вторичного воздуха должна быть в 1,5…2 раза больше площади сечения патрубка первичного воздуха горелки.
При установке на котле несколько горелок их производительность регулируют изменением тепловой мощности всех горелок одновременно, так как включение или отключение части горелок приводит к их перегреву и выходу из строя оставшихся в работе. Регулирование тепловой мощности производится изменением расхода топлива и количеством соответственно вторичного воздуха (шибер первичного воздуха открыт полностью).
Газомазутная горелка ГМГм состоит из газовоздушной части, паро-механической форсунки, лопаточных завихрителей первичного и вторичного воздуха, монтажной плиты со стаканом для установки запально-защитного устройства и заглушки для закрывания форсуночного канала при снятии форсунки. Закрутка воздуха в горелке обоими регистрами производится в одну сторону (правого или левого вращения в зависимости от компоновки завихрителя). В качестве стабилизатора пламени используется конический керамический туннель.
При переходе с газового топлива на жидкое (мазут) в форсунку предварительно подают пар, затем мазут под давлением 0,2…0,5 МПа. После его воспламенения отключают газ и регулируют режим. Для перехода с жидкого топлива на газовое снижают давление мазута до 0,2…0,5 МПа и постепенно подают газ. После воспламенения газа прекращают подачу мазута и устанавливают заданный режим.
Перед розжигом горелки на мазуте следует проверить положение мазутной форсунки и продуть ее паром. Первоначально розжиг рекомендуется производить на газе или легком топливе (дизельное топливо, керосин).
При их отсутствии растопку производят дровами с последующим переходом на мазут. При работе горелок на мазуте в пределах 70…100 % от номинальной тепловой мощности, достаточно механического распыления мазута, а на более низких нагрузках (менее 70 %) для распыления применяют пар под давлением 0,15…0,2 МПа. Расход пара около 0,3 кг на 1 кг мазута. Для распыления не рекомендуется использовать пар с высокой влажностью (увеличение влажности снижает качество распыления) и пар с температурой более 200°С (возрастает опасность коксования распылителей).
Горелку ГМГм выключают плавным, пропорциональным уменьшением подачи топлива и вторичного воздуха. После полного прекращения подачи топлива воздух должен поступать в горелку для охлаждения 10…12 минут. После этого полностью закрывают шибер вторичного, а затем первичного воздуха и вынимают форсунку из горелки для того, чтобы в топке не образовалась газовоздушная, огнеопасная смесь.
Уменьшение угла раскрытия туннеля, неправильная установка или засорение форсунки при сжигании мазута способствуют образованию кокса в туннеле, вибрации и росту сопротивления горелки по воздуху.
В котлах ДЕ устанавливают горелки ГМ или ГМП, конструкции которых одинаковы. На фронтовой стене каждого котла расположена одна горелка, которая крепится с помощью специального фланца. Отверстие, образующееся при снятии фланца с завихрителем, используется в качестве лаза.
В форсуночный узел входит паро-механическая (основная) форсунка, расположенная по оси горелки и устройство, смещенное относительно оси, предусматривающее установку сменной форсунки, которая включается на непродолжительное время, необходимое для замены основной форсунки.
Газовая часть горелки состоит из газового кольцевого коллектора прямоугольной формы (в сечении) с газовыпускными отверстиями и подводящей трубы. К торцу коллектора приварен кольцевой обод полукруглой формы. Внутри коллектора имеется разделительная обечайка, которая способствует более равномерному распределению газа по коллектору. Воздухонаправляющее устройство представляет собой лопаточный завихритель осевого типа с неподвижными профильными лопатками, установленными под углом 45°. Воздух, поступающий по воздуховоду, ограниченному фронтом котла и металлической стенкой, делится на два потока: первичный направляется в воздушный короб горелки, закручивается в завихрителе и, смешиваясь с газом, участвует в процессе сжигания в первой половине футерованной камеры сгорания котла; вторичный воздух поступает в камеру сгорания через щель, обеспечивая полное сгорание газа.
Мазутные форсунки могут быть паро-механические или акустические.
Паро-механические форсунки конструктивно идентичны форсункам горелок ГМГм. Акустические форсунки отличаются от паро- механических форсунок отсутствием парового завихрителя, который заменяется специальной втулкой.
Паро-механическая форсунка состоит из распыливающей головки, ствола и корпуса. Распыливающая головка является основным узлом форсунки и состоит из парового и топливного завихрителей, распределительной шайбы, прокладки, втулки и накидной гайки. Мазут проходит по внутренней трубе ствола и попадает в топливную ступень форсунки. Пар проходит по наружной трубе ствола и попадает в паровую ступень форсунки.
Все горелки ГМ оборудованы запально-защитным устройством с ионизационным датчиком ЗЗУ-4.
Газовая часть состоит из газораздающей кольцевой камеры и двухгазоподводящих труб, соединенных с приемным патрубком. Газораздающая камера расположена у устья горелки и имеет один ряд газовыпускных отверстий. Опорная труба поддерживает газораздающую камеру снизу, а рамки служат для центровки завихрителя вторичного воздуха.
Воздухонаправляющее устройство вторичного воздуха состоит из воздушного короба, завихрителя, переднего кольца, образующего устье горелки и амбразуры. Завихритель вторичного воздуха (осевого типа с гнутыми лопатками, установленными под углом 40° к оси горелки) можно перемещать вручную вдоль оси горелки по направляющим рамы с помощью подшипников, тяг и рукояток. Задняя часть наружного обода завихрителя служит воздушным шибером.
Ротационная мазутная форсунка представляет собой полый вал ротор, на котором закреплены гайки питателя и распыливающий стакан.
В передней части форсунки к кожуху на резьбе крепится завихритель первичного воздуха, лопатки которого наклонены к оси форсунки на 30°, а корпус имеет окна для подвода воздуха к завихрителю. Первичный воздух к форсунке подается от вентилятора высокого давления, а для регулирования его количества внутри патрубка первичного воздуха установлен шибер. При сжигании мазута недопустимо нагарообразование на внутренней стенке стакана. После отключения форсунки ее выводят из воздушного короба и очищают внутреннюю поверхность стакана деревянным или алюминиевым ножом и промывают соляркой. Повышенный шум и вибрация свидетельствуют об износе подшипников, несимметричности факела, смещения ротора форсунки.
2.5 Тягодутьевые устройства
Дымовые трубы предназначены для удаления топочных дымовых газов и рассеивания вредных соединений (содержащихся в продуктах сгорания) в атмосферном воздухе, с целью снижения их концентрации в атмосфере на уровне дыхания до необходимых параметров.
Продукты сгорания содержат токсичные вещества, оказывающие вредное воздействие на биосферу (оксиды углерода, серы и азота и др.).
Содержание вредных веществ в воздухе определяется их концентрацией количеством вещества (мг) находящегося в 1 м 3 воздуха (мг/м 3 ). Максимальная концентрация вредных веществ, не оказывающих вредного влияния на здоровье человека, называется предельно допустимой концентрацией (ПДК). Высота дымовой трубы проектируется таким образом, чтобы предупредить недопустимое загрязнение воздушного бассейна в районе котельной.
Дымовые трубы работают в сложных условиях: при перепадах температуры, давления, влажности, агрессивном воздействии дымовых газов, ветровых нагрузках и нагрузках от собственного веса. Для котельной проектируется обычно одна общая для всех котлов дымовая труба. Дымовые трубы сооружаются по типовым проектам из кирпича, железобетона или металла.
Железобетонные трубы обладают высокой механической прочностью, однако они не способны противостоять воздействию сернистых соединений, влаги и повышенной температуре дымовых газов. Поэтому внутреннюю поверхность железобетонного ствола футеруют красным или кислотоупорным кирпичом либо покрывают изоляцией (стеклотканью).
Для предупреждения проникновения дымовых газов в толщу стен кирпичных и железобетонных труб не допускается положительное статическое давление на стенки ствола дымовой трубы. Для устранения избыточного статического давления наиболее целесообразно устанавливать диффузоры в верхней части трубы. Они позволяют уменьшить сопротивление газового тракта в случае его заноса золой или при подключении дополнительных котлов, а также снизить расход энергии на транспортировку дымовых газов по тракту.
Высота дымовых труб зависит от высоты застройки, предельно допустимых концентраций вредных веществ (ПДК) и может быть от 30 до 180 м.
Однако применение высоких труб не всегда оправдано и поэтому чаще используют невысокие трубы с установкой дутьевого вентилятора и дымососа.
Установка дутьевого вентилятора и дымососа обеспечивает более надежную и эффективную работу котельных установок, позволяет поддерживать заданное разряжение или давление в топке, автоматизировать подачу воздуха и топлива в топку, а также использовать КИПиА.
Забор воздуха для дутья осуществляется из верхней зоны котельного зала и частично снаружи с помощью специального клапана.
Дутьевой вентилятор и дымосос должны синхронно работать так, чтобы в топке котла поддерживалось разрежение 1,5…3 мм вод. ст., а за котлом 4…6 мм вод. ст., чтобы при открытых дверках или гляделках пламя не выбрасывалось из топки. При разрежении в топке более 8…10 мм вод. ст. происходит значительный подсос холодного воздуха в топку, что резко снижает температуру топочных газов и увеличивает расход топлива. Для измерения небольших давлений или разрежений и получения точных показаний применяют жидкостный тягонапоромер с наклонной трубкой (ТНЖ).
Отдельные котельные агрегаты (МЗК-7АГ и др.), имеющие герметичную стальную обшивку, работают с наддувом воздуха и обеспечивают избыточное давление внутри котла 40 мм вод. ст., а сопротивление воздушного и газового трактов (воздуховода, горелок, газохода, дымовой трубы) преодолевается за счет напора, создаваемого только дутьевым вентилятором.
3. Безопасность работы котельных установок
3.1 Арматура и гарнитура
1. Вентиль состоит из корпуса, внутри которого имеется перегородка с горизонтальным седлом, из клапана, шпинделя маховика, коронки, сальниковой гайки и втулки (рис. 8).
- спайка упаковка что это
- Общественные обсуждения что это