О чем теория относительности
Что такое Общая теория относительности Эйнштейна?
Общая теория относительности является основным строительным блоком современной физики. Она объясняет гравитацию, основываясь на способности пространства «изгибаться», или, говоря точнее, связывает силу тяжести с изменяющейся геометрией пространства-времени. Альберт Эйнштейн основал «Общую» теорию относительности (ОТО) в 1915 году, через десять лет после создания «специальной» теории, применив универсальную скорость света и предположив, что законы физики остаются неизменными в любой данной системе отсчета. Но так ли сложна ОТО, как может показаться на первый взгляд?
Общая теория относительности – геометрическая теория тяготения, развивающая специальную теорию относительности
Как понять Общую теорию относительности?
Общую теорию относительности Эйнштейна можно выразить всего в 12 словах:«пространство-время говорит материи, как двигаться; материя говорит пространству-времени, как изгибаться». Но это краткое описание, сделанное физиком Джоном Уилером, скрывает более сложную и глубокую истину. Помимо квантовой теории, общая теория относительности является одним из двух столпов современной физики – нашей рабочей теории гравитации и очень большой теории планет, галактик и Вселенной в целом. Она является продолжением специальной теории относительности Эйнштейна – но настолько массивной, что ему потребовалось 10 лет, с 1905 по 1915 год, чтобы перейти от одной к другой.
Как пишет New Scientist, согласно специальной теории относительности (СТО) движение искривляет пространство и время. ОТО Эйнштейна объединила ее с принципом, отмеченным Галилеем более трех столетий назад: падающие объекты ускоряются с одинаковой скоростью независимо от их массы.
Перо и молоток, упавшие с падающей Пизанской башни, ударятся о землю одновременно, если вы не учитываете сопротивление воздуха.
Вслед за Галилеем Исаак Ньютон показал, что это может быть верно только в том случае, если присутствует странное совпадение: инерционная масса, которая количественно определяет сопротивление тела ускорению, всегда должна быть равна гравитационной массе, которая количественно определяет реакцию тела на гравитацию. Нет никакой очевидной причины, почему это должно быть так, но ни один эксперимент никогда не разделял эти две величины.
Точно так же, как он использовал постоянную скорость света для построения специальной теории относительности, Эйнштейн объявил это принципом природы: принципом эквивалентности. Вооружившись этим и новой концепцией пространства и времени как переплетенного «пространства-времени», вы можете построить картину, в которой гравитация является лишь формой ускорения.
Массивные объекты искривляют пространство-время вокруг себя, заставляя предметы ускоряться по направлению к ним.
Хотя гравитация доминирует в больших космических масштабах и вблизи очень больших масс, таких как планеты или звезды, она на самом деле является самой слабой из четырех известных сил природы – и единственной, не объясненной квантовой теорией. Квантовая теория и общая теория относительности применяются в разных масштабах. Это мешает понять, что происходило в самые ранние моменты Большого взрыва, например, когда Вселенная была очень маленькой, а сила гравитации огромна. В другой ситуации, когда эти силы сталкиваются у горизонта событий черной дыры, возникают неразрешимые парадоксы.
Например, квантовая механика имеет способы принимать во внимание такие понятия, как бесконечность, но если мы попытаемся сделать то же самое с общей теорией относительности, математика порождает предсказания, которые не имеют смысла.
Некоторые физики возлагают надежду на то, что однажды некая «теория всего» сможет объединить квантовую теорию и общую теорию относительности, хотя такие попытки, как теория струн и теория петлевой квантовой гравитации, до сих пор не принесли никаких результатов. Между тем ОТО Эйнштейна предсказала, что очень плотные скопления массы могут исказить пространство-время настолько, что даже свет не сможет вырваться из него. Теперь мы называем эти объекты «черными дырами», можем фотографировать «горизонт событий», который окружает этих космических монстров, и практически убеждены, что в центре каждой массивной галактики вращается сверхмассивная черная дыра.
Математические уравнения общей теории относительности Эйнштейна, проверенные снова и снова, в настоящее время являются наиболее точным способом предсказания гравитационных взаимодействий, заменив разработанные Исааком Ньютоном за несколько столетий до этого.
Еще больше интересных статей о том, как устроена Вселенная вокруг нас, читайте на нашем канале в Яндекс.Дзен. Подписка позволяет читать статьи, которых нет на сайте.
Но, возможно, самый большой триумф общей теории относительности наступил в 2015 году, когда были открыты гравитационные волны – рябь в пространстве-времени, вызванная движением очень массивных объектов. Сигнал о том, что две черные дыры соединились и слились воедино, стал триумфом кропотливой, терпеливой работы, проделанной международной командой исследователей лабораторий LIGO VIRGO. Подробнее о том, как эксперты ищут гравитационные волны сегодня, читайте в увлекательном материале Ильи Хеля. Так или иначе, разработка квантово-физической «версии» общей теории относительности остается постоянной целью современной физики.
Теория относительности Эйнштейна: коротко и просто о сложном
Альберт Эйнштейн — великий физик-теоретик, имя которого на слуху у каждого из нас еще со школьной скамьи. Обладатель Нобелевской премии, автор почти 500 книг, посвященных физике, философии и истории. Именно он перевернул научное представление о природе пространства и времени, движении и законах механики теорией относительности, которую открыл в 1905 году.
Согласно его теории, мир состоит из четырех измерений:
Еще одно измерение – время. Эти четыре величины формируют пространственно–временную физическую модель.
Самое интересное в том, что восприятие времени и пространства напрямую зависит от скорости нашего движения.
Взаимосвязь трех составляющих объясняет специальная теория относительности: чем больше скорость движения объекта, тем больше искажение пространства и времени.
На основе данного учения позже Альберт Эйнштейн создал общую теорию относительности, но она понятна немногим, потому в школе мы изучали специальную теорию относительности. Именно о ней мы поговорим подробнее в статье.
Основные принципы учения
Как определить движется объект или стоит на месте? Просто оцените его состояние относительно других тел. Важно понимать, что наличие или отсутствие движения, а также скорость перемещения зависят от двух факторов: кто наблюдает за предметом и откуда наблюдает. Проще говоря, движение – это относительный параметр.
Давайте рассмотрим на простом примере. Представьте, что вы едете в метро после непростого рабочего дня и, сидя на одном из пассажирских мест, увлеченно изучаете нашу онлайн-программу «Психическая саморегуляция» через свой телефон (кстати, отличный выбор, если ваша цель — справиться со стрессом, трудными отношениями в коллективе и другими «тормозящими» эмоциями). Для вас все объекты в вагоне, такие как кресла, пассажиры (речь о тех, кто стоит или сидит) и, конечно, ваш телефон находятся в неподвижном состоянии, т.е. их скорость передвижения равно нулю.
Ваш друг решил встретить вас на платформе одной из станций и уже ожидает на месте. Для него поезд и все объекты, находящиеся в нем, движутся с одинаковой скоростью, например, 50 км/ч. А если кто-то из пассажиров вагона решит перейти на ходу поезда по направлению движения состава в другой вагон, то его скорость будет еще выше, т.к. она суммируется со скоростью поезда.
Но есть одно исключение из правила — свет фар поезда. Скорость света остается неизменна и будет равна скорости движения самого поезда.
Отсюда следуют два главных принципа специальной теории относительности:
На первый взгляд, скорость света кажется молниеносной, но это не так. Рассмотрим на примере распространения света в космосе. Между Солнцем и Землей 150 миллионов километров, солнечный свет доходит до земного шара за 8 минут. Соответственно, если Солнце вдруг перестанет светить, ночь нас накроет не сразу, а через 8 минут.
Два главных принципа теории рождают другие важные факты о пространственно-временной среде. Расскажем о них в следующих разделах.
Следствия учения
Важно понять, как выше изложенные принципы относятся к пространству и времени. Благодаря им Альберт Эйнштейн пришел к трем выводам:
Чтобы понимать, о чем речь, давайте рассмотрим подробнее каждое из заключений.
Время замедляется
Время — это не абсолютная величина, она зависит от системы отсчета, в которой находится на данный момент.
Интересный опыт был проведен с применением двух атомных часов: одно устройство было отправлено самолетом вокруг планеты, а другое осталось на Земле. После посадки самолета сравнили показатели часов: те, что облетели земной шар, отставали от других часов на тысячные секунды.
Отсюда можно сделать вывод, время идет медленнее относительно объектов, находящихся в движении. При этом оно становится еще медленнее, если скорость объекта приближается к скорости света. Если космический корабль достигнет скорости света, то астронавт попадет в будущее. В этом случае время также будет относительно: недели в космосе будут равны годам на Земле. На этой теории построены сюжеты многих фантастических фильмов о космосе и его исследователях.
Пространство уменьшается
Давайте представим, что наш космический путешественник отправляется в полет на своем корабле. Скорость летательного аппарата приближается к скорости света и если наблюдать за его полетом со стороны, то можно заметить, что по направлению движения он становится короче, а перпендикулярно пути сохраняет исходные размеры, т.е. его ширина не меняется. При этом с самим астронавтом все в порядке: он на прежнем месте и прежних параметров.
Данный пример наглядно показывает, что для наблюдателя движущийся объект с увеличением своей скорости становится короче по направлению движения, а перпендикулярно ему его размеры остаются неизменными.
Масса увеличивается
E = mc² — знакомая формула из школьной программы? Своим уравнением Альберт Эйнштейн наглядно показал, что масса пропорциональна энергии тела, т.е., если увеличить скорость движения объекта, увеличивается и его масса. Отсюда следует вывод, что одна часть энергии затрачивается на изменение массы, а другая – на увеличение скорости. Это объясняет тот факт, что на деле путешествие во времени, о котором говорилось в предыдущем разделе, невозможно. Судите сами: чем больше скорость корабля, тем труднее его подтолкнуть. В итоге, приближаясь к скорости света, он достигает таких показателей, что никакая энергия вселенной не сможет его передвинуть.
Подведем итог
Почему теория относительности носит такое название?
Если скорость объекта приближается к скорости света, то его время замедляется, а пространство сжимается. Но эти показатели относительны наблюдателя, т.е. так он видит картину со своей стороны. Но для астронавта, который летит в космическом корабле, меняется только масса тела, остальные показатели остаются неизменными. При этом обе точки зрения верны, отсюда и название теории.
Надеемся, что наша статья помогла вам в общих чертах понять основные положения теории относительности. Кстати, интересный факт: Альберт Эйнштейн посвятил изучению и описанию своей теории 10 лет. Для более точного понимания учения советуем прочитать книгу «Теория относительности» Шеддад Каид-Сала Феррона. Поверьте, она будет интересна каждому школьнику и взрослому благодаря простому и веселому изложению мысли, ярким картинкам и графикам.
Теория относительности для чайников
В 1905 году Альберт Эйнштейн опубликовал специальную теорию относительности (СТО), которая объясняла, как интерпретировать движения между различными инерциальными системами отсчета – попросту говоря, объектами, которые движутся с постоянной скоростью по отношению друг к другу.
Эйнштейн объяснил, что когда два объекта двигаются с постоянной скоростью, следует рассматривать их движение друг относительно друга, вместо того чтобы принять один из них в качестве абсолютной системы отсчета.
Так что, если два космонавта, вы и, допустим, Герман, летите на двух космических кораблях и хотите сравнить ваши наблюдения, единственное, что вам нужно знать – это ваша скорость относительно друг друга.
Специальная теория относительности рассматривает лишь один специальный случай (отсюда и название), когда движение прямолинейно и равномерно.
Если материальное тело ускоряется или сворачивает в сторону, законы СТО уже не действуют. Тогда в силу вступает общая теория относительности (ОТО), которая объясняет движения материальных тел в общем случае.
Теория Эйнштейна базируется на двух основных принципах:
1. Принцип относительности: физические законы сохраняются даже для тел, являющихся инерциальными системами отсчета, т. е. двигающимися на постоянной скорости относительно друг друга.
2. Принцип скорости света: скорость света остается неизменной для всех наблюдателей, независимо от их скорости по отношению к источнику света. (Физики обозначают скорость света буквой с).
Одна из причин успеха Альберта Эйнштейна состоит в том, что он ставил экспериментальные данные выше теоретических. Когда в ряде экспериментов обнаружились результаты, противоречащие общепринятой теории, многие физики решили, что эти эксперименты ошибочны.
В конце 19 века физики находились в поиске таинственного эфира – среды, в которой по общепринятым предположениям должны были распространяться световые волны, подобно акустическим, для распространения которых необходим воздух, или же другая среда – твердая, жидкая или газообразная.
Вера в существование эфира привела к убеждению, что скорость света должна меняться в зависимости от скорости наблюдателя по отношению к эфиру.
Альберт Эйнштейн отказался от понятия эфира и предположил, что все физические законы, включая скорость света, остаются неизменными независимо от скорости наблюдателя – как это и показывали эксперименты.
Однородность пространства и времени
В СТО Эйнштейна постулируется фундаментальная связь между пространством и временем. Материальная Вселенная, как известно, имеет три пространственных измерения: вверх-вниз, направо-налево и вперед-назад. К нему добавляется еще одно измерение – временное. Вместе эти четыре измерения составляют пространственно-временной континуум.
Если вы двигаетесь с большой скоростью, ваши наблюдения относительно пространства и времени будут отличаться от наблюдений других людей, движущихся с меньшей скоростью.
На картинке представлен мысленный эксперимент, который поможет понять эту идею.
Представьте себе, что вы находитесь на космическом корабле, в руках у вас лазер, с помощью которого вы посылаете лучи света в потолок, на котором закреплено зеркало. Свет, отражаясь, падает на детектор, который их регистрирует.
Сверху – вы послали луч света в потолок, он отразился и вертикально упал на детектор.
Снизу – для Германа ваш луч света двигается по диагонали к потолку, а затем – по диагонали к детектору
Допустим, ваш корабль двигается с постоянной скоростью, равной половине скорости света (0.5c). Согласно СТО Эйнштейна, для вас это не имеет значения, вы даже не замечаете своего движения.
Однако Герман, наблюдающий за вами с покоящегося звездолета, увидит совершенно другую картину. С его точки зрения, луч света пройдет по диагонали к зеркалу на потолке, отразится от него и по диагонали упадет на детектор.
Другими словами, траектория луча света для вас и для Германа будет выглядеть по-разному и длина его будет различной. А стало быть и длительность времени, которое требуется лазерному лучу для прохождения расстояния к зеркалу и к детектору, будет вам казаться различным.
Это явление называется замедлением времени: время на звездолете, движущимся с большой скоростью, с точки зрения наблюдателя на Земле течет значительно медленнее.
Этот пример, равно как и множество других, наглядно демонстрирует неразрывную связь между пространством и временем. Эта связь явно проявляется для наблюдателя, только когда речь идет о больших скоростях, близких к скорости света.
Эксперименты, проведенные со времени публикации Эйнштейном своей великой теории, подтвердили, что пространство и время действительно воспринимаются по-разному в зависимости от скорости движения объектов.
Объединение массы и энергии
В своей знаменитой статье, опубликованной в 1905 году, Эйнштейн объединил массу и энергию в простой формуле, которая с тех пор известна каждому школьнику: E=mc^2.
Согласно теории великого физика, когда скорость материального тела увеличивается, приближаясь к скорости света, увеличивается и его масса. Т.е. чем быстрее движется объект, тем тяжелее он становится. В случае достижения скорости света, масса тела, равно как и его энергия, становятся бесконечными.
Чем тяжелее тело, тем сложнее увеличить его скорость; для ускорения тела с бесконечной массой требуется бесконечное количество энергии, поэтому для материальных объектов достичь скорости света невозможно.
До Эйнштейна концепции массы и энергии в физике рассматривались по отдельности. Гениальный ученый доказал, что закон сохранения массы, как и закон сохранения энергии, являются частями более общего закона массы-энергии.
Благодаря фундаментальной связи между этими двумя понятиями, материю можно превратить в энергию, и наоборот – энергию в материю.
Общая теория относительности: Простое объяснение
Когда Эйнштейн упомянул о своем желании решить проблему гравитации, ему было сказано две вещи: первое, — что это просто невозможно сделать, а второе заключается в том, что никто не поверит ему, даже если бы он это сделал. В ответ он создал свое величайшее творение — Общую теорию относительности.
Общая теория относительности сделала для гравитации то, что даже Ньютон не смог сделать, — дала ей объяснение, показала закономерность, благодаря которой вещи падают, вращаются на орбите и искажают время. Фактически, создание общей теории относительности связано с противостоянием с Ньютоном и его представлениями о гравитации, которая им описывалась как таинственна сила, сближающая объекты. Хотя по правде говоря, даже сам Ньютон не понимал, как это работает, поскольку сила притяжения действует через пустое пространство, и горько критиковал свою собственную теорию гравитации.
Тем не менее, несмотря на вопросы, которые остались без ответа, формулы Ньютона для гравитации всё еще использовались в течение десятилетий, как основа для универсальных законов физики, чтобы точно предсказывать движения планет и даже отправить людей на Луну. Чтобы понять общую теорию относительности, нам нужно кратко взглянуть на ньютоновскую теорию тяготения и на то, где она не дотягивает.
Ньютоновская гравитация была сформулирована главным образом для объяснения двух вещей. Первым был вопрос о том, почему объекты разного веса падают на землю одновременно. Обратите внимание на слово «падают», а не «брошены». Бросание объектов добавляет дополнительную энергию, которую объект не имел бы, если бы он был просто уронен. Например, если бы не сопротивление воздуха, перо и свинцовый шар при падении приземлились бы одновременно. Два камня разных размеров и веса также будут приземляться на землю одновременно.
Другой вопрос, который Ньютон попытался решить, — это орбиты небесных тел, почему Луна вращается вокруг Земли, а Земля — вокруг Солнца. В конечном счете, ответ Ньютона на это заключался в том, что гравитация — это сила, пропорциональная массе объекта. Чем больше масса объекта, тем сильнее его гравитационное притяжение.
Но, как мы уже упоминали ранее, проблема ньютоновской гравитации заключается в её действии на расстоянии. Силы зависят от массы объектов и от расстояния между ними. Проблема с этим в том, что сила не имеет носителя, она действует в пустом пространстве. Также проблема в том, что она нарушает «ограничение скорости» Вселенной: ничто не может двигаться быстрее скорости света. Если объект изменил свое положение во Вселенной, силы притяжения, с которой он действует на другие объекты, мгновенно изменились бы, нарушив это ограничение скорости.
В попытке решить проблему гравитации Эйнштейн впервые придумал Специальную теорию относительности, которая учитывала только объекты, движущиеся по прямой и с постоянной скоростью. Однако она не включала ускорения, и Эйнштейн стремился создать теорию, которая могла бы применяться более широко. Так родился термин Общая теория относительности.
В начале 1900-х Эйнштейн провел мысленный эксперимент. Он смотрел в окно и представлял себе человека, падающего с крыши. Когда человек падал, он чувствовал себя невесомым. Но что если бы этот человек был в падающем лифте? Лифт будет двигаться с той же скоростью, что и человек, который также почувствует себя невесомым.
Именно тогда Эйнштейн понял, что происходит. Вопреки теории Ньютона, не было никакой гравитационной силы, тянущей объекты вниз. Вместо этого пространство вокруг них было изогнуто, подталкивая оба объекта к земле. Оно толкало, а не притягивало, как это считалось в теории притяжения Ньютона. Последствия этого открытия были удивительными. Это означало, что пространство является гибким, его можно складывать и изгибать. Эйнштейн объединил пространство и время в так называемый пространственно-временной континуум.
В то время как естественное движение вещей состоит в том, чтобы следовать простейшему пути через пространство-время, масса изгибает окружающее её пространство так, что мы движемся к центрам большей массы. Это и есть сила, которую мы называем гравитацией.
Как это описывает орбиты планет и их лун? Ньютоновская гравитация говорит, что Солнце притягивает нас к себе, но мы не падаем на него, потому что Земля также одновременно движется в сторону по эллиптической орбите. Но согласно общей теории относительности, огромная масса Солнца искажает пространство вокруг себя, и это изогнутое пространство толкает Землю к Солнцу.
Ни одно из этих изображений не является точным относительно того, как на самом деле выглядит кривизна пространства-времени — три измерения пространства, обернутые вокруг четвертого измерения (времени), — но наши умы не способны представить, как это будет выглядеть на самом деле. Поскольку мы живем в трех измерениях, мы можем представить себе только трехмерные ситуации.
Откуда мы знаем, что Общая теория относительности работоспособна? Доказательства этого есть во всей Вселенной. Теория не только объясняет нейтронные звезды и аномалии орбиты Меркурия, но и правильно предсказывает черные дыры и способность гравитации сгибать свет. Звездный свет, например, искривляется, когда проходит вблизи Солнца. Еще один интересный момент со светом заключается в том, что когда он отклоняется вокруг более компактных объектов, это приводит к нескольким изображениям этого объекта. Это обычно наблюдаемое явление называется гравитационным линзированием и помогает подтвердить общую относительность.
Знаете ли вы, что время также может быть искажено? Время замедляется ближе к объектам очень большой массы. Например, для тех, кто живет в высоком небоскребе, время течет быстрее, чем для находящихся на земле. Но, эта разница очень мала, разумеется.
Теория относительности также предсказывает, что в момент зарождения нашей Вселенной она была очень горячей и плотной, что в конечном итоге привело к Большому взрыву. С тех пор мы обнаружили, что наша Вселенная расширяется гораздо быстрее, чем предсказывал Эйнштейн.
Как выразился физик-теоретик Джон Уилер ( John Wheeler), «пространство-время говорит материи, как двигаться, а материя говорит пространству-времени, как изгибаться».
Что касается опыта с двумя падающими объектами разной массы, теория относительности говорит, что они упали на пол одновременно, потому что на них не действует сила.
Применений общей теории относительности гораздо больше. Это был один из величайших даров Эйнштейна миру, и он продолжает проходить тестирование. Но это действительно рисует довольно странную картину Вселенной — ту, где червоточины могут существовать, и параллельные линии могут в конечном итоге расходиться. Мы до сих пор всё еще обсуждаем эту теорию. Мы продолжаем использовать слово «гравитация», и мы продолжаем думать с точки зрения ньютоновской гравитации, потому что это более понятно для нашего ума, чем изогнутое пространство-время.