О чем свидетельствует явление радиоактивности открытое беккерелем

Физика. 11 класс

Радиоактивность

О чём свидетельствует явление радиоактивности, открытое Беккерелем? Выберите один вариант ответа.

Все вещества состоят из неделимых частиц-атомов

В состав атома входят электроны

Атом имеет сложную структуру

Это явление характерно только для урана

Физика атома и атомного ядра

Заполните пропуски в тексте.

реакциями называют изменения атомных при взаимодействии их с частицами или друг с другом.

Состав атомного ядра

Установите соответствие между химическим элементом и составом ядра.

Ядерные реакции

Заполните пропуск в тексте. Для этого наберите пропущенные слова на клавиатуре компьютера.

Великие учёные

Выделите мышкой 3 слова, которые относятся к теме урока.

1. Создатель советской атомной бомбы.

2. Создатель первого ядерного реактора.

3. Учёный, открывший явление естественной радиоактивности.

Физика атома и атомного ядра
Ядерные реакции
Ядерные реакции

Ответьте на вопросы, чтобы решить кроссворд.

Физика атома и атомного ядра

Выделите мышкой 5 слов, которые относятся к теме урока.

1. Силы, удерживающие нуклоны в ядре атома.

2. Электрически нейтральная элементарная частица.

4. Ядра, с одним и тем же зарядовым числом, но с различными массовыми числами.

Закон радиоактивного распада

Соедините попарно фигуры так, чтобы каждая пара была ответом на вопросы задачи.

1. Период полураспада ядер радиоактивного изотопа висмута – 19 мин. Через какое время (мин) распадется 75 % ядер висмута в исследуемом образце?

2. Какая доля (%) от большого количества радиоактивных атомов остается нераспавшейся через интервал времени, равный двум периодам полураспада.

Деление ядер

Заполните пропуски в тексте. Для этого наберите пропущенные слова на клавиатуре компьютера.

Источник

В чем заключается явление радиоактивности и кто его открыл

Радиоактивность — что это за явление

Радиоактивность — это явление, при котором ядра одного химического элемента самопроизвольно превращаются в ядра другого элемента или изотопы того же элемента. Процесс сопровождается испусканием частиц и электромагнитного излучения. При этом происходит изменение состава ядра атома: его заряда и массового числа.

Понятие «радиоактивность» было введено Марией Склодовской-Кюри. Оно тождественно понятию радиоактивный распад.

В определении присутствует термин изотоп. Прежде чем рассмотреть его, вспомним определение нуклида.

Нуклид — это отдельный вид атома химического элемента с определенными значениями массового и протонного чисел.

Для обозначения определенного нуклида используют запись вида

где X — символ химического элемента, A — массовое (нуклонное) число, Z — зарядовое (протонное) число.

Количество нейтронов в ядре N = A − Z

Изотоп — это разновидность атома определенного элемента с таким же атомным номером, но другим массовым числом.

Это значит, что в изотопах одинаковое число протонов, но разное число нейтронов.

Всего известно более двух тысяч радиоактивных изотопов. Для сравнения, стабильных открыто около 280.

Ученые разделяют нуклиды на стабильные и нестабильные. Нестабильные, также известные как радионуклиды, со временем распадаются. Стабильные же способны существовать в неизменном виде неопределенно долгий промежуток времени.

Суть явления радиоактивности заключается в том, что при распаде ядра нестабильного атома из него с большой скоростью вылетает целое число частиц с высокой энергией. Вещества, которые содержат радиоактивные ядра, называют радиоактивными.

Радиация (радиоактивное излучение) — это поток частиц высокой энергии, вылетающих из нестабильного ядра.

В современной химии выделяют естественную и искусственную радиоактивность.

Естественная радиоактивность — это явление самопроизвольного распада атомных ядер в природе.

Примером естественной радиоактивности служит солнечная радиация. В ядре солнца постоянно происходят термоядерные реакции, в ходе которых водород превращается в гелий.

Искусственная радиоактивность — это явление самопроизвольного распада атомных ядер, полученных искусственным путем через соответствующие ядерные реакции.

Техногенная радиоактивность применяется людьми. Например, на атомных электростанциях электрическую энергию получают за счет искусственно созданных ядерных реакций.

В результате экспериментов было установлено, что в периодической системе Менделеева радиоактивны все элементы, начиная с висмута. Их порядковый номер больше 82.

Единицы измерения

В химии существует несколько единиц измерения радиоактивности:

В Международной системе единиц ( С И ) единицей измерения активности радионуклида является беккерель. На русском языке он обозначается как Бк, в международном формате — Bq.

Эту единицу назвали в честь Антуана Беккереля, одного из первооткрывателей радиоактивности. Один Беккерель равен одному распаду в секунду.

В Международной СИ секунде в минус первой степени равен не только беккерель, но и герц. Важно не путать их: беккерель используют для измерения случайных процессов распада, а герц — для периодических процессов. Их природа различна.

Один Беккерель — это маленькая единица измерения, так что на практике принято использовать кратные единицы.

Внесистемная, но широко распространенная единица — кюри. Ее используют для измерения активности радионуклидов. На русском обозначается как Ки, в международных исследованиях — Ci. Названа она в честь Пьера Кюри и Марии Склодовской-Кюри.

Точно установлена связь между значениями Ки и Бк:

Перевести значения из Бк в Ки сложнее, т.к. соотношение приблизительно:

Еще одна единица измерения, которой в современности пользуются редко — резерфорд. Его обозначают как Рд или Rd в русском и международном стандартах соответственно. Единица тоже названа в честь ученого — Эрнеста Резерфорда, также изучавшего природу радиоактивности.

Один резерфорд равен 10^6 распадам в 1 секунду. Точно равенство:

1 Р д = 1 ⋅ 10 6 Б к = 1 М Б к

Дозиметрия — это определение дозы радиоактивного излучения, поглощаемого объектом.

В дозиметрии используют свои единицы облучения:

Поглощенную дозу в Международной СИ измеряют в единицах грэй (Гр). Один грэй равен энергии излучения в 1 Дж, поглощенной 1 кг вещества.

Эквивалентную дозу, т.е. произведение поглощенной дозы на коэффициент качества излучения, в Си измеряют в зивертах. Один зиверт эквивалентен излучению, создающему такой же биологический эффект, как и поглощенная доза в 1 Гр гамма-излучения или рентгеновского излучения.

Внесистемная единица измерения эквивалентной дозы — бэр. Бэр расшифровывается как «биологический эквивалент рентгена».

За один бэр принято считать такое количество энергии излучения, поглощенного 1 кг вещества, при котором биологическое воздействие соответствует поглощенной дозе в 1 рад гамма-излучения или рентгеновского излучения. То есть:

Для измерения воздействия радиации используют также понятие мощность дозы. Это доза, полученная объектом за выбранную единицу времени.

Кто открыл, как это произошло

Предпосылкой открытия радиоактивности послужило открытие Вильгельма Конрада Рентгена. В конце XIX века ученый обнаружил новый вид лучей, который назвал X-лучами. В России они более известны как «рентгеновские лучи».

Лучи Рентгена представляют собой электромагнитное излучение длиной волн от

Хотя рентгеновское излучение менее вредно, чем радиоактивное, оно все равно является ионизирующим и в больших объемах способно навредить живым организмам.

Вскоре после Рентгена новый вид лучей открыл французский физик Антуан Анри Беккерель. В 1896 году Беккерель посетил заседание Академии наук, на котором узнал о предполагаемой связи рентгеновского излучения и флуоресценции. Чтобы проверить эту гипотезу, Беккерель провел эксперимент с фотопластинкой и солями урана. Он обнаружил, что лучи проходят через препятствия, оставляя изображение на фотопластинке.

Сперва Беккерель предположил, что открыл новый, более простой способ делать рентгеновские снимки. Но после многочисленных экспериментов он не мог дать объяснения, откуда уран получает свою энергию. К тому же, вопреки его данным, уран фосфоресцировал даже без солнечного света, что никак не согласовывалось с его гипотезой.

Так Беккерель понял, что открыл новый вид лучей. Но из-за неспособности разрешить найденное противоречие ученый временно отказался от изучения, как известно теперь, радиоактивности.

В 1898 году Мария и Пьер Кюри обнаружили, что новые лучи свойственны не только урану, но и торию. Позднее пара ученых открыла радиоактивность полония и радия. От названия последнего и было дано название явлению — радиоактивность.

К тому же, Беккерель и Кюри совместно обнаружили биологическое действие радиоактивности. На одной из лекций Беккерель держал в пробирке в жилетном кармане радиоактивное вещество. На следующий день на теле под карманом он обнаружил покраснение в форме пробирки. Пьер Кюри после этого 10 часов носил на себе пробирку с радием, и спустя несколько дней у него тоже появилось покраснение. Это покраснение впоследствии перешло в тяжелую язву, с которой Пьер боролся еще два месяца.

Пагубное влияние радиоактивных веществ не остановило ученых. В 1934 году Мария Склодовская-Кюри умерла от осложнений, вызванных долгой работой с радием.

В дальнейшем значительную роль в исследовании радиоактивности сыграл Эрнест Резерфорд. Ученый установил природу радиоактивных превращений и излучения, обнаружил сложный состав излучения.

Разновидности излучения, свойства и характеристики

Ученые выделили 3 вида излучения:

На основе излучения выделяют 3 основных типа радиоактивного распада:

Известны также распады с испусканием протонов (одного или двух), нейтрона и кластерная радиоактивность.

Процесс радиоактивного распада может быть продолжительным. Если дочернее ядро, полученное в результат радиоактивного распада, также является радиоактивным, то со временем и оно распадается. Так продолжается, пока не образуется стабильное нерадиоактивное ядро.

При этом некоторые изотопы могут одновременно испытывать более одного вида распада.

Альфа-распад

Альфа-распад — вид самопроизвольного распада атомного ядра на дочернее ядро, при котором происходит испускание альфа-частицы — ядра атома атома гелия. При этом массовое число дочернего ядра меньше на 4, а атомный номер — на 2.

Альфа-распад, т.е. поток положительно заряженных частиц, характерен для изотопов всех тяжелых элементов, начиная с висмута.

Альфа-частицы покидают ядро со скоростью от 9400 до 23700 км/с. При этом в воздухе при нормальных условиях альфа-излучение способно преодолеть лишь расстояние от 2,5 до 7,5 см.

Эффективно задержать радиоактивное излучение альфа-частиц можно несколькими десятками микрометров плотного вещества. К примеру, листом бумаги или даже ороговевшим слоем кожи — человеческим эпидермисом. Это делает его относительно безопасным для человека.

Однако если источник альфа-излучения все же попадет в организм (например, в виде пыли), это может привести к серьезным последствиям. Альфа-частицы наносят примерно в 20 раз больше повреждений, чем бета- и гамма-частицы той же энергии.

Правило смещения Содди, также закон радиоактивных смещений — это правило, описывающее превращение элементов в процессе радиоактивного распада.

Пример
Как уже было описано ранее, процесс радиоактивного распада продолжается до тех пор, пока не образуется стабильное ядро. Рассмотрим такую цепочку на основе альфа-распада урана-238:

Бета-распад

Бета-распад — вид самопроизвольного распада атомного ядра на дочернее ядро, при котором происходит испускание потока электронов и антинейтрино. Массовое число при этом остается тем же, поскольку число нуклонов в ядре остается неизменным.

Бета-излучение как отрицательное излучение малой массы обладает большей проникающей способностью, нежели альфа-частицы. Задержать его можно алюминиевой фольгой.

Среди всех видов радиоактивного распада бета-распад является наиболее распространенным. Он особенно характерен для искусственных радионуклидов.

Выделяют несколько подвидов бета-распада:

Бета-минус распад представляет собой испускание из ядра электрона, образовавшегося в результате самопроизвольного превращения одного из нейтронов в протон и электрон. Такой электрон называют бета-минус частицей.

Рассмотрим бета-минус распад трития в гелий-3:

Бета-плюс распад, или позитронный распад сопровождается испусканием из ядра позитрона (античастицы электрона), образовавшегося в результате самопроизвольного превращения одного из протонов в нейтрон и позитрон. Получившуюся частицу называют бета-плюс частицей.

Рассмотрим бета-плюс распад углерода:

C 6 11 → B 5 11 + e + + ν e

Позитронный распад всегда сопровождается электронным захватом. Ядро захватывает электрон из атомной оболочки и испускает нейтрино. Заряд ядра также уменьшается на единицу.

Правило смещения Содди для электронного захвата:

Рассмотрим электронный захват на примере захвата бериллия в литий:

Гамма-распад

Гамма-распад чаще называют изомерным переходом. Такое название обосновано существованием изомерных состояний ядер. Большинство ядер способны существовать в возбужденном состоянии очень малое количество времени — менее наносекунды. Некоторые ядра способны существовать дольше — микросекунды, сутки или даже года. Такие долгоживущие состояния и называют изомерными.

При гамма-распаде изомерные состояния ядер переходят в основное состояние с излучением одного или нескольких гамма-квантов.

Гамма-излучение обладает намного большей проникающей способностью, чем альфа- и бета-излучение. Оно не имеет электрического заряда, обладает огромной энергией и может быть остановлено только толстым слоем железобетона, стали, свинца или другого серьезного препятствия.

Период полураспада, модели атомов и ядра, кратко

Рассмотрим общепринятую модель строения атома. В центре находится заряженное ядро, внутри которого — нейтральные нейтроны и положительно заряженные протоны. Почти вся масса атома приходится на тяжелое ядро. Вокруг положительно заряженного ядра движутся легкие отрицательно заряженные электроны. В невозбужденном состоянии и вне реакции количество протонов и электронов, как правило, равно, так что атом электронейтрален.

Наглядная схема представлена ниже.

Одной из главных характеристик радиоактивных атомов является его время жизни. Число ежесекундно происходящих распадов пропорционально количеству имеющихся атомов.

На основе периода полураспада некоторых радиоизотопов основан исторический метод радиоизотопного датирования. Для определения возраста некоторых объектов определяют, какая доля радиоактивного изотопа в составе успела распасться. Используют:

Любой радиоактивный распад происходит по закону радиоактивного распада. Математически данный закон выражается в следующем виде:

где N — число нераспавшихся атомов в любой момент времени, N_0 — число радиоактивных атомов в начальный момент времени, T — период полураспада, t — период времени.

Источник

Презентация была опубликована 6 лет назад пользователемАльбина Тартаковская

Похожие презентации

Презентация на тему: » РАДИОАКТИВНОСТЬ В 1896 г. французский физик А. Беккерель, изучая явление люминесценции солей урана, установил, что уран испускает лучи неизвестного типа.» — Транскрипт:

1 РАДИОАКТИВНОСТЬ В 1896 г. французский физик А. Беккерель, изучая явление люминесценции солей урана, установил, что уран испускает лучи неизвестного типа. Таким образом, А.Беккерель обнаружил явление радиоактивности, т.е. способность некоторых химических элементов самопроизвольно испускать радиоактивные лучи. В 1896 г. французский физик А. Беккерель, изучая явление люминесценции солей урана, установил, что уран испускает лучи неизвестного типа. Таким образом, А.Беккерель обнаружил явление радиоактивности, т.е. способность некоторых химических элементов самопроизвольно испускать радиоактивные лучи. радиоактивность – (лат) radio – излучаю, aсtivus – действенный. радиоактивность – (лат) radio – излучаю, aсtivus – действенный г.физик Мария Склодовская-Кюри обнаружила аналогичное излучение у тория и, исследуя урановые руды, открыла новые радиоактивные химические элементы: полоний, радий. Позднее было установлено, что все химические элементы, начиная с порядкового номера 83, являются радиоактивными г.физик Мария Склодовская-Кюри обнаружила аналогичное излучение у тория и, исследуя урановые руды, открыла новые радиоактивные химические элементы: полоний, радий. Позднее было установлено, что все химические элементы, начиная с порядкового номера 83, являются радиоактивными. Мария Склодовская-Кюри Мария Склодовская-Кюри

2 В 1899 году под руководством английского ученого Э. Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения. Информационная справка Эрнест Резерфорд английский физик, родился 30 августа 1871 г. в Новой Зеландии. Его исследования посвящены радиоактивности, атомной и ядерной физике. Своими фундаментальными открытиями в этих областях Резерфорд заложил основы современного учения о радиоактивности и теории строения атома. Умер 19 октября 1937 г. [3 c.24] В результате опыта, проведенного под руководством английского физика Эрнеста Резерфорда, было обнаружено, что радиоактивное излучение радия неоднородно, т.е. оно имеет сложный состав. Рассмотрим, как проводился этот опыт. Информационная справка Эрнест Резерфорд английский физик, родился 30 августа 1871 г. в Новой Зеландии. Его исследования посвящены радиоактивности, атомной и ядерной физике. Своими фундаментальными открытиями в этих областях Резерфорд заложил основы современного учения о радиоактивности и теории строения атома. Умер 19 октября 1937 г. [3 c.24] В результате опыта, проведенного под руководством английского физика Эрнеста Резерфорда, было обнаружено, что радиоактивное излучение радия неоднородно, т.е. оно имеет сложный состав. Рассмотрим, как проводился этот опыт.

3 На рисунке изображен толстостенный свинцовый сосуд с крупицей радия на дне. Пучок радиоактивного излучения радия выходит сквозь узкое отверстие и попадает на фотопластинку (излучение радия направлено во все стороны, но сквозь толстый слой свинца оно пройти не может). После проявления фотопластинки на ней обнаруживалось одно темное пятно – как раз в том месте, куда попадал пучок.

4 Потом опыт изменяли (рис.2), создали сильное магнитное поле, действовавшее на пучок. В этом случае на проявленной пластинке возникало три пятна: одно, центральное, было на том же месте, что и раньше, а два других – по разные стороны от центрального. Если два потока отклонились в магнитном поле от прежнего направления, значит, они представляют собой потоки заряженных частиц. Отклонение в разные стороны свидетельствовало о разных знаках электрических зарядов частиц. В одном потоке присутствовали только положительно заряженные частицы, в другом – отрицательно заряженные. А центральный поток представлял собой излучение, не имеющее электрического заряда. Потом опыт изменяли (рис.2), создали сильное магнитное поле, действовавшее на пучок. В этом случае на проявленной пластинке возникало три пятна: одно, центральное, было на том же месте, что и раньше, а два других – по разные стороны от центрального. Если два потока отклонились в магнитном поле от прежнего направления, значит, они представляют собой потоки заряженных частиц. Отклонение в разные стороны свидетельствовало о разных знаках электрических зарядов частиц. В одном потоке присутствовали только положительно заряженные частицы, в другом – отрицательно заряженные. А центральный поток представлял собой излучение, не имеющее электрического заряда.

5 Частицы, входящие в состав радиоактивного излучения. Положительно заряженные частицы назвали альфа-частицами, отрицательно заряженные – бета-частицами, а нейтральные – гамма квантами. Положительно заряженные частицы назвали альфа-частицами, отрицательно заряженные – бета-частицами, а нейтральные – гамма квантами. Некоторое время спустя в результате исследования некоторых физических характеристик и свойств этих частиц (электрического заряда, массы, проникающей способности) удалось установить, что гамма – кванты или лучи – это коротковолновое электромагнитное излучение, скорость распространения электромагнитного излучения такая же, как и у всех электромагнитных волн – км/с. Гамма – лучи проникают в воздух на сотни метров. Некоторое время спустя в результате исследования некоторых физических характеристик и свойств этих частиц (электрического заряда, массы, проникающей способности) удалось установить, что гамма – кванты или лучи – это коротковолновое электромагнитное излучение, скорость распространения электромагнитного излучения такая же, как и у всех электромагнитных волн – км/с. Гамма – лучи проникают в воздух на сотни метров. Бета – частицы представляют собой поток быстрых электронов, летящих со скоростями близкими к скорости света. Они проникают в воздух до 20 м. Бета – частицы представляют собой поток быстрых электронов, летящих со скоростями близкими к скорости света. Они проникают в воздух до 20 м. Альфа частицы – это потоки ядер атомов гелия. Скорость этих частиц Альфа частицы – это потоки ядер атомов гелия. Скорость этих частиц км/с, что превышает скорость современного самолета (1000 км/ч) в раз. Альфа – лучи проникают в воздух до 10 см км/с, что превышает скорость современного самолета (1000 км/ч) в раз. Альфа – лучи проникают в воздух до 10 см.

7 Радиоактивные лучи обладали различной способностью проникать через разные материалы Радиоактивные лучи обладали различной способностью проникать через разные материалы

8 В 1898 г М. Склодовская-Кюри и др. ученые обнаружили излучение тория. В дальнейшем главные усилия в поисках новых элементов были предприняты М. Склодовской-Кюри и ее мужем П. Кюри. В 1898 г М. Склодовская-Кюри и др. ученые обнаружили излучение тория. В дальнейшем главные усилия в поисках новых элементов были предприняты М. Склодовской-Кюри и ее мужем П. Кюри. Систематическое исследование руд, содержащих уран и торий, позволило им выделить новый неизвестный ранее химический элемент – полоний 84, названный так в честь родины М. Склодовской- Кюри – Польши. Был открыт еще один элемент, дающий интенсивное излучение – радий 88, т.е. лучистый. Само же явление произвольного излучения было названо супругами Кюри радиоактивностью. Систематическое исследование руд, содержащих уран и торий, позволило им выделить новый неизвестный ранее химический элемент – полоний 84, названный так в честь родины М. Склодовской- Кюри – Польши. Был открыт еще один элемент, дающий интенсивное излучение – радий 88, т.е. лучистый. Само же явление произвольного излучения было названо супругами Кюри радиоактивностью.

9 Закрепление В чем заключается открытие, сделанное Беккерелем в 1896 г? В чем заключается открытие, сделанное Беккерелем в 1896 г? (Беккерель обнаружил, что химический элемент уран самопроизвольно, без внешних воздействий излучает неизвестные невидимые лучи) (Беккерель обнаружил, что химический элемент уран самопроизвольно, без внешних воздействий излучает неизвестные невидимые лучи) Кто из ученых занимался исследованием данных лучей? Кто из ученых занимался исследованием данных лучей? (А. Беккерель, М. и П. Кюри, Э.Резерфорд) (А. Беккерель, М. и П. Кюри, Э.Резерфорд) Как и кем было названо явление самопроизвольного излучения некоторыми атомами? Как и кем было названо явление самопроизвольного излучения некоторыми атомами? (М. и П. Кюри, радиоактивность) (М. и П. Кюри, радиоактивность) В ходе исследования явления радиоактивности, какие неизвестные ранее химические элементы были открыты? В ходе исследования явления радиоактивности, какие неизвестные ранее химические элементы были открыты? (полоний и радий) (полоний и радий) Как были названы частицы, входящие в состав радиоактивного излучения? Как были названы частицы, входящие в состав радиоактивного излучения? Что представляют собой эти частицы? Что представляют собой эти частицы? (Гамма-кванты или лучи – это коротковолновое электромагнитное излучение. Бета – частицы представляют собой поток быстрых электронов, летящих со скоростями близкими к скорости света. Альфа частицы – это потоки ядер атомов гелия. Скорость этих частиц км/с) (Гамма-кванты или лучи – это коротковолновое электромагнитное излучение. Бета – частицы представляют собой поток быстрых электронов, летящих со скоростями близкими к скорости света. Альфа частицы – это потоки ядер атомов гелия. Скорость этих частиц км/с) О чем свидетельствует явление радиоактивности? О чем свидетельствует явление радиоактивности? (Явление радиоактивности, т.е. самопроизвольного излучения веществом – частиц, наряду с другими экспериментальными фактами, послужило основанием для предположения о том, что атомы вещества имеют сложный состав). (Явление радиоактивности, т.е. самопроизвольного излучения веществом – частиц, наряду с другими экспериментальными фактами, послужило основанием для предположения о том, что атомы вещества имеют сложный состав).

10 1903 г. Джозеф Томсон предложил одну из первых модель строения атома. Атом – шар, по всему объёму которого равномерно распределён положительный заряд. Атом – шар, по всему объёму которого равномерно распределён положительный заряд. Внутри шара находятся электроны. Внутри шара находятся электроны. Каждый электрон может совершать колебательные движения около своего положения равновесия. Каждый электрон может совершать колебательные движения около своего положения равновесия. Положительный заряд шара равен по модулю суммарному заряду электронов, поэтому заряд атома в целом равен нулю. Положительный заряд шара равен по модулю суммарному заряду электронов, поэтому заряд атома в целом равен нулю.

12 Модель Томсона нуждалась в экспериментальной проверке. Важно было проверить, действительно ли положительный заряд распределён по всему объёму атома с постоянной плотностью. В 1911 г. Эрнест Резерфорд совместно со своими сотрудниками провёл ряд опытов по исследованию состава и строения атомов.

13 Идея опыта Резерфорда : Зондировать атом альфа–частицами. Зондировать атом альфа–частицами. Альфа-частицы возникают при распаде радия. Альфа-частицы возникают при распаде радия. Масса альфа-частицы в 8000 раз больше массы электрона. Масса альфа-частицы в 8000 раз больше массы электрона. Электрический заряд альфа-частицы в 2 раза больше заряда электрона. Электрический заряд альфа-частицы в 2 раза больше заряда электрона. Скорость альфа-частицы около км/с. Скорость альфа-частицы около км/с. Альфа-частицы является ядром атома гелия. Альфа-частицы является ядром атома гелия.

14 Схема экспериментальной установки Резерфорда. Схема экспериментальной установки Резерфорда. (вся установка помещается в вакуум) В ходе эксперимента обнаружили: 1. В отсутствии фольги – на экране появлялся светлый кружок напротив канала с радиоактивным веществом. 2. Когда на пути пучка альфа-частиц поместили фольгу, площадь пятна на экране увеличилась. 3. Помещая экран сверху и снизу установки, Резерфорд обнаружил, что небольшое число альфа-частиц отклонилось на углы около Единичные частицы были отброшены назад.

16 В ходе эксперимента обнаружили: 1. В отсутствии фольги – на экране появлялся светлый кружок напротив канала с радиоактивным веществом. 1. В отсутствии фольги – на экране появлялся светлый кружок напротив канала с радиоактивным веществом. 2. Когда на пути пучка альфа-частиц поместили фольгу, площадь пятна на экране увеличилась. 2. Когда на пути пучка альфа-частиц поместили фольгу, площадь пятна на экране увеличилась. 3. Помещая экран сверху и снизу установки, Резерфорд обнаружил, что небольшое число альфа-частиц отклонилось на углы около Помещая экран сверху и снизу установки, Резерфорд обнаружил, что небольшое число альфа-частиц отклонилось на углы около Единичные частицы были отброшены назад. 4. Единичные частицы были отброшены назад.

17 Противоречие модели Томсона с экспериментом: 1. Так как масса электронов мала, они не могут заметно изменить траекторию движения альфа-частиц. 1. Так как масса электронов мала, они не могут заметно изменить траекторию движения альфа-частиц. 2. Заметное рассеивание альфа-частиц может вызвать только положительная часть атома и лишь в том случае, если она сконцентрирована в очень малом объёме. 2. Заметное рассеивание альфа-частиц может вызвать только положительная часть атома и лишь в том случае, если она сконцентрирована в очень малом объёме.

19 Резерфорд установил, что: Резерфорд установил, что: Атом имеет в центре ядро, размеры которого во много раз меньше размеров самого атома. Атом имеет в центре ядро, размеры которого во много раз меньше размеров самого атома. Вокруг ядра по орбитам движутся электроны. Почти вся масса атома сконцентрирована в его ядре. Вокруг ядра по орбитам движутся электроны. Почти вся масса атома сконцентрирована в его ядре. Суммарный отрицательный заряд всех электронов равен суммарному положительноиу заряду ядра атома и компенсирует его. Суммарный отрицательный заряд всех электронов равен суммарному положительноиу заряду ядра атома и компенсирует его.

21 Процесс прохождения альфа-частиц сквозь атомы фольги в опыте Резерфорда с точки зрения ядерной модели. На этом рисунке показано, как меняется траектория полёта альфа-частиц в зависимости от расстояния от ядра атома. На этом рисунке показано, как меняется траектория полёта альфа-частиц в зависимости от расстояния от ядра атома.

23 Недостаток планетарной модели атома: Нельзя объяснить факт существования атома; Нельзя объяснить факт существования атома; Нельзя объяснить устойчивость атома. Нельзя объяснить устойчивость атома.

24 Ключевые фигуры в создании модели атома: Демокрит – высказал идею, что все тела состоят из неделимых частиц – атомов, Демокрит – высказал идею, что все тела состоят из неделимых частиц – атомов, Томсон – открыл электрон и предложил первую модель атома, Томсон – открыл электрон и предложил первую модель атома, Резерфорд – планетарная модель атома, Резерфорд – планетарная модель атома, Чедвик – открыл нейтрон, создав окончательный вариант планетарной модели атома Чедвик – открыл нейтрон, создав окончательный вариант планетарной модели атома

25 Вопросы на закрепление: 1. В чём заключается сущность модели Томсона? 1. В чём заключается сущность модели Томсона? 2. В чём заключалась идея опыта Резерфорда? 2. В чём заключалась идея опыта Резерфорда? 3. Объясните по схеме опыт Резерфорда по рассеиванию альфа-частиц. (Схема экспериментальной установки Резерфорда.) 3. Объясните по схеме опыт Резерфорда по рассеиванию альфа-частиц. (Схема экспериментальной установки Резерфорда.)(Схема экспериментальной установки Резерфорда.)(Схема экспериментальной установки Резерфорда.) 4. Объясните причину рассеивания альфа-частиц атомами вещества. 4. Объясните причину рассеивания альфа-частиц атомами вещества. 5. В чём сущность планетарной модели атома? 5. В чём сущность планетарной модели атома?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *