О чем свидетельствует клеточное строение всех живых организмов

О чем свидетельствует клеточное строение всех живых организмов

Раздел ОГЭ: 2.1. Клеточное строение организмов как доказательство их родства, единства живой природы. …
Раздел ЕГЭ: 2.1. … Клеточное строение организмов как доказательство их родства, единства живой природы.

Клеточная теория утверждает, что все живые организмы состоят из клеток. Клетка — это та минимальная структура живого, которая обладает всеми жизненными свойствами — способностью к обмену веществ, росту, развитию, передаче генетической информации, саморегуляции и самообновлению.

Клетки всех организмов обладают сходными чертами строения. Однако клетки отличаются друг от друга по своим размерам, форме и функциям. Яйцо страуса и икринка лягушки состоят из одной клетки. Мышечные клетки обладают сократимостью, а нервные клетки проводят нервные импульсы. Различия в строении клеток во многом зависят от функций, которые они выполняют в организмах. Чем сложнее устроен организм, тем более разнообразны по своему строению и функциям его клетки. Каждый вид клеток имеет определенные размеры и форму. Сходство в строении клеток различных организмов, общность их основных свойств подтверждают общность их происхождения и позволяют сделать вывод о единстве органического мира, является доказательством родства живой природы.

Клеточный состав и строение клеток разных живых организмов

Живые и неживые тела построены из атомов, образующих молекулы определённых веществ. В состав тел неживой природы входит более 100 элементов периодической системы Д. И. Менделеева. Практически все они встречаются и в живых организмах, но в различных количествах и соотношениях. Тем не менее биологическая роль многих элементов пока ещё не установлена.

Наследственная информация хранится и реализуется благодаря нуклеиновым кислотам. Например, белки, липиды и углеводы являются строительными материалами клеточных структур, играют роль запасных веществ. Большинство химических реакций в клетках осуществляется прежде всего под контролем и с участием белков-ферментов. Этот класс веществ выполняет также и защитные функции.

О чем свидетельствует клеточное строение всех живых организмов. Смотреть фото О чем свидетельствует клеточное строение всех живых организмов. Смотреть картинку О чем свидетельствует клеточное строение всех живых организмов. Картинка про О чем свидетельствует клеточное строение всех живых организмов. Фото О чем свидетельствует клеточное строение всех живых организмов

В составе различных организмов обнаруживаются одни и те же органические вещества. Практически во всех клетках можно обнаружить глюкозу, основа оболочек любых клеток построена из фосфолипидов, белки всех живых существ построены только из 20 типов аминокислот, а нуклеиновые кислоты — из 4 типов нуклеотидов и т. п. АТФ — нуклеотид, который благодаря сложному строению и наличию специфических связей выполняет в клетках всех живых организмов роль накопителя энергии. Такая общность состава является доказательством общности происхождения всех живых организмов.

Это конспект по биологии в 6-9 классах по теме «Клеточное строение организмов». Выберите дальнейшие действия:

Источник

Тест ЕГЭ Биология 11 класс Бесплатно Клеточная теория. Макро и микроэлементы клетки

Современная клеточная теория

Всем живым организмам: растениям, животным, бактериям- присуще клеточное строение.

Клетка— элементарная живая система, основная структурная и функциональная единица растительных и животных организмов, способная к самообновлению, саморегуляции и самовоспроизведению.

Растительная клетка была открыта английским ученым Робертом Гуком в 1665 году, им же был предложен этот термин.

Антоний Левенгук впервые рассмотрел под микроскопом и зарисовал сперматозоиды (1677), бактерии (1683), клетки крови- эритроциты, а также простейших, таких как инфузория-туфелька.

Луи Пастер— один из основоположников микробиологии и иммунологии; создал вакцину против сибирской язвы и прививки против бешенства, поставил точку в споре о самозарождении некоторых живых существ в 1862 году и доказал невозможность этого.

Цитология- наука изучающая строение клетки, ее жизнедеятельность и взаимодействие с окружающей средой

Клеточная теория— одно из величайших научных обобщений 19 века.

Создали эту теорию в 1838–1839 годах немецкий ученый Т. Шванн, который опирался на работы М. Шлейдена и Л.Окена, а 1858г. она была дополнена Р. Вирховым.

Р. Вирхов доказал, что все клетки возникают из других клеток, а не из межклеточного вещества, как считали раньше.

Клеточная теория является обобщенным представлением о строении и функциях клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.

Основные положения клеточной теории:

1. Клетка- единица строения, жизнедеятельности, роста и развития живых организмов; вне клетки жизни нет.

2. Клетка- единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование.

3. Клетки всех организмов сходны по своему химическому составу, строению и функциям, что свидетельствует о единстве живой природы.

4. Новые клетки образуются только в результате деления материнских клеток («клетка от клетки»).

5. Клетки многоклеточных организмов образуют ткани, из тканей состоят органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток.

6. Клетки многоклеточных организмов имеют полный набор генов, но отличаются друг от друга тем, что у них работают различные группы генов, следствием чего является морфологическое и функциональное разнообразие клеток- дифференцировка.

Пройти тест и получить оценку можно после входа или регистрации

Развитие знаний о клетке

Клеточная теория способствовала пониманию того, что клетка является самой мельчайшей единицей жизни, которой присущи все признаки живого (размножение, обмен веществ, дыхание и др.).

До изобретения микроскопа люди не знали о существовании клеток.

Прибор для изучения микромира,микроскоп. был изобретен приблизительно в 1590 году голландскими механиками Гансом и Захарием Янсенами.

На основе это этого микроскопа был создан сложный микроскоп Корнелиусом Дреббелем (1572–1634).

В 1665 году английский ученый-физик Роберт Гук (1635–1703) усовершенствовал микроскоп и технологию изготовления линз. Желая убедиться в улучшении качества изображения, он рассматривал под ним срезы пробкового дерева, древесного угля и срезы живых растений.

На срезах растений он обнаружил мельчайшие поры, которые были похожи на пчелиные соты, и назвал их клетками.

Во второй половине XVII века появились работы виднейших микроскопистов Марчелло Мальпиги (1628–1694) и Неемии Грю (1641–1712), также обнаруживших ячеистое (клеточное) строение многих растений.

Антони ван Левенгук самостоятельно разработал конструкцию микроскопа, принципиально отличавшуюся от уже существующей, и усовершенствовал технологию изготовления линз, которые достигали большего увеличения, что позволило открыть одноклеточных животных (инфузорий), а также бактерии и дрожжи.

В клетках растений обнаружил ядра, хлоропласты, утолщения клеточных стенок.

Описал и зарисовал почкование гидр.

Гуго фон Моль различил в клетках растений живое вещество и водянистую жидкость (клеточный сок), обнаружил поры.

Английский ботаник Роберт Броун (1773–1858) в 1831 году открыл ядро в клетках орхидей, затем оно было обнаружено во всех растительных клетках.

Матиас Шлейден (1804–1881) изучал развитие и дифференциацию разнообразных клеточных структур высших растений, рассмотрел в ядрах клеток чешуи лука округлые тельца-ядрышки (1842).

В 1827 году русский ученый-эмбриолог Карл Бэр обнаружил яйцеклетки человека и других млекопитающих и доказал формирование многоклеточного животного организма из единственной клетки- оплодотворенной яйцеклетки, а также сходство стадий зародышевого развития многоклеточных животных, которое наводило на мысль о единстве их происхождения.

Все научные открытия, которые были накоплены к середине XIX века, требовали обобщения, в результате и появилась клеточная теория.

В 1880 г. Уолтер Флемминг описал хромосомы и процессы, происходящие при митозе.

С 1903 г. стала развиваться генетика.

Начиная с 1930 г. стала бурно развиваться электронная микроскопия, что позволило ученым изучать тончайшее строение клеточных структур.

XX век стал веком расцвета биологии и таких наук, как цитология, генетика, эмбриология, биохимия, биофизика.

Без создания клеточной теории это развитие было бы невозможным.

Пройти тест и получить оценку можно после входа или регистрации

Источник

Клеточное строение организмов

Теория для подготовки к блоку №2 ОГЭ по биологии: признаки живых организмов

Химический состав живых организмов

Химический состав живых организмов можно выразить в двух видах: атомный и молекулярный. Атомный (элементный) состав показывает соотношение атомов элементов, входящих в живые организмы. Молекулярный (вещественный) состав отражает соотношение молекул веществ.

Химические элементы входят в состав клеток в виде ионов и молекул неорганических и органических веществ. Важнейшие неорганические вещества в клетке — вода и минеральные соли, важнейшие органические вещества — углеводы,

Вода — преобладающий компонент всех живых организмов. Среднее содержание воды в клетках большинства живых организмов составляет около 70 %.

Углеводы — органические соединения, состоящие из одной или многих молекул простых сахаров. Содержание углеводов в животных клетках составляет 1—5 %, а в некоторых клетках растений достигает 70 %.

Строение клетки

Становление клеточной теории

Основные положения клеточной теории

Типы клеточной организации

Среди живых организмов только вирусы не имеют клеточного строения. Все остальные организмы представлены клеточными формами жизни. Различают два типа клеточной организации: прокариотический и эукариотический. К

Прокариотические клетки устроены сравнительно просто. Они не имеют

Эукариотические клетки имеют

Растительные клетки отличаются наличием толстой целлюлозной клеточной стенки,

Клетки грибов имеют клеточную оболочку, содержащую

Животные клетки имеют, как правило, тонкую

Строение эукариотической клетки

Типичная эукариотическая клетка состоит из трех компонентов: оболочки, цитоплазмы и ядра.

О чем свидетельствует клеточное строение всех живых организмов. Смотреть фото О чем свидетельствует клеточное строение всех живых организмов. Смотреть картинку О чем свидетельствует клеточное строение всех живых организмов. Картинка про О чем свидетельствует клеточное строение всех живых организмов. Фото О чем свидетельствует клеточное строение всех живых организмов

Клеточная оболочка

Снаружи клетка окружена оболочкой, основу которой составляет

Клеточная оболочка выполняет важные и весьма разнообразные функции: определяет и поддерживает форму клетки; защищает клетку от механических воздействий проникновения повреждающих биологических агентов; осуществляет рецепцию многих молекулярных сигналов (например, гормонов); ограничивает внутреннее содержимое клетки; регулирует

Метаболизм — обмен веществ и энергии.

Углеродный компонент в мембране животных клеток называется гликокаликсом.

Метаболизм — обмен веществ и энергии.

В зависимости от вида и направления различают эндоцитоз и

Поглощение и выделение твердых и крупных частиц получило соответственно названия

Цитоплазма

Гиалоплазма (матрикс) – это водный раствор неорганических и органических веществ, способный изменять свою вязкость и находящиеся в постоянном движении. Способность к движению или, течению цитоплазмы, называют циклозом.

Матрикс – это активная среда, в которой протекают многие физические и химические процессы и которая объединяет все элементы клетки в единую систему.

Цитоплазматические структуры клетки представлены включениями и органоидами. Включения – относительно непостоянные, встречающиеся в клетках некоторых типов в определенные моменты жизнедеятельности, например, в качестве запаса питательных веществ (зерна крахмала, белков, капли гликогена) или продуктов подлежащих выделению из клетки. Органоиды – постоянные и обязательные компоненты большинства клеток, имеющим специфическую структуру и выполняющим жизненно важную функцию.

Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа — гранулярная и гладкая. На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец —

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети — участие в

На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются н каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. Эндоплазматическая сеть связывает между собой основные органоиды клетки.

Аппарат Гольджи

Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого

Митохондрии

В цитоплазме большинства клеток животных и растений содержатся мелкие тельца (0,2-7 мкм) — митохондрии (греч. «митос» — нить, «хондрион» — зерно, гранула).

Митохондрии хорошо видны в световой

Митохондрии называют «силовыми станциями» клеток» так как их основная функция — синтез аденозинтрифосфорной кислоты (

Новые митохондрии образуются делением уже существующих в клетке митохондрий.

Лизосомы

Представляют собой небольшие округлые тельца. От Цитоплазмы каждая

К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами

Обладая способностью к активному перевариванию пищевых веществ, лизосомы участвуют в удалении отмирающих в процессе жизнедеятельности частей клеток, целых клеток и органов. Образование новых лизосом происходит в клетке постоянно. Ферменты, содержащиеся в лизосомах, как и всякие другие белки синтезируются на рибосомах цитоплазмы. Затем эти ферменты поступают по каналам эндоплазматической сети к

Пластиды

В цитоплазме клеток всех растений находятся пластиды. В клетках животных пластиды отсутствуют. Различают три основных типа пластид: зеленые — хлоропласты; красные, оранжевые и желтые —

Обязательными для большинства клеток являются также органоиды, не имеющие мембранного строения. К ним относятся рибосомы, микрофиламенты, микротрубочки,

Рибосомы. Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая

В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом — это

Микротрубочки и микрофиламенты

Нитевидные структуры, состоящие из различных сократительных белков и обуславливающие двигательные функции клетки. Микротрубочки имеют вид полых цилиндров, стенки которых состоят из белков – тубулинов. Микрофиламенты представляют собой очень тонкие, длинные, нитевидные структуры, состоящие из актина и миозина.

Микротрубочки и микрофиламенты пронизывают всю цитоплазму клетки, формируя её

В процессе эволюций разные клетки приспосабливались к обитанию в различных условиях и выполнению специфических функции. Это требовало наличия в них особых органоидах, которые называют специализированными в отличие от рассмотренных выше органоидов общего назначения. К их числу относят сократительные вакуоли простейших,

Хроматин — нуклеопротеид, составляющий основу хромосомы.

Ядерная оболочка образована двумя мембранами (наружной и внутренней) и содержит многочисленные поры, через которые между ядром и цитоплазмой происходит обмен различными веществами.

Хроматин — нуклеопротеид, составляющий основу хромосомы.

Хромосомы – плотные, интенсивно окрашивающиеся структуры, которые являются единицами морфологической организации генетического материала и обеспечивают его точное распределение при делении клетки.

Число хромосом в клетках каждого

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Диплоидный набор хромосом клеток конкретного вида живых организмов, характеризующийся числом, величиной и формой хромосом, называют кариотипом. В хромосомном наборе соматических клеток парные хромосомы называют гомологичными, хромосомы из разных пар — негомологичными. Гомологичные хромосомы одинаковы по размерам, форме, составу (одна унаследована от материнского, другая – от отцовского организма). Хромосомы в составе кариотипа делят также на

Ядро осуществляет хранение и реализацию

Источник

Современная клеточная теория, ее основные положения

Содержание:

Авторами первой клеточной теории являются зарубежные ученые Шванн Т. и Шлейден М. (1838 г.–1839 г.). В 1855 г. данная теория была дополнена работами Р. Вирхова.

5 положений современной клеточной теории

Основные положения современной клеточной теории:

Создание клеточной теории привело к определению клетки, как элементарной структуре живых систем с сопутствующими признакам и свойствами. С возникновением клеточной теории стали появляться гипотезы о происхождении живых тел.

Развитие знаний о клетке

С появление микроскопа ученые получили возможность для пристального изучения живых клеток. Так, в 1665 г. Р. Гуком на срезе пробки было обнаружены маленькие ячейки, названные им клетками. Позднее такие образования внутри растений обнаружили Н. Грю и М. Мальпиги.

Позднее не имевшим специального образования голландским торговцем А. Левенгуком был создан самодельный микроскоп с увеличением в 270 раз. Ему удалось разглядеть:

Увиденное в микроскоп А. Левенгук всегда описывал и аккуратно зарисовывал, без приведения соответствующих объяснений. Так, ему удалось разглядеть бактериальные клетки и одноклеточные организмы.

Львиная доля открытий компонентов клетки выпала на первую половину XIX в.:

Исследования русского ученого-эмбриолога Карла Бэра (1827 г.) приводят к обнаружению яйцеклеток у млекопитающих животных и человека. Данное открытие «сломало» господствующее тогда утверждение о развитии организмов только из гамет мужского типа. Работы Карла Бэра доказали процесс формирования многоклеточных тел из оплодотворенных яйцеклеток. Сравнение им зародышей разных организмов на ранних этапах развития доказало сходство их организации и дало толчок к мысли о единстве появления всего живого на Земле.

К 1850-у году в биологической науке было сформировано большое количество открытий, связанных с клеткой. Привести их в систему помогли работы немецкого зоолога Шванна Т. и М. Шлейдена. Они создали первую клеточную теорию, объясняющую многие процессы внутри живых тел.

Исследования патологоанатома и врача из Германии – Рудольфа Вирхова дополнили созданную ранее Шванном Т. и М. Шлейденом клеточную теорию. Вирхов Р. указал на возникновения новых клеток путем деления исходных (материнских) структур. Таким образом, он доказал возникновение «клетки от клетки» и «живого от живого».

После создания основных положений теории о структурно-функциональной единице живого (клетке) были сделаны и другие открытия, касающиеся происходящих в ней процессов. Так, усовершенствование к концу XIX в. микроскопа дало толчок для уточнения состава клетки с проведением описания имеющихся органоидов. Органоидами стали именовать клеточные компоненты постоянного строения, которые выполняют разные функции.

Позднее был изучен процесс деления, происходящий в процессе митоза либо мейоза. Данные процессы стали основой способов воспроизведения клеточных структур и получили статус «передатчиков» наследственной информации. С использованием современных физико-химических методик детальнее были изучены процессы передачи и хранения наследственных признаков. Также тщательнее были обследованы тончайшие детали всех клеточных компонентов постоянного и переменного состава. Таким образом, было выделено особое биологическое направление — «цитология», занимающееся изучением структуры и жизнедеятельности клеток живых организмов.

К. Бэр открыл яйцеклетки птиц и животных.

1831-1839 гг.Р. Броун описал ядро в клетке.1838-1839 гг.М. Шлейдер и Т. Шванн обобщили знания о клетке и сформулировали клеточную теорию: «Клетка — единица структуры и функции в живых организмах».1855 г.

Р. Вихров дополнил теорию: «Клетка — единица структуры и функции живых организмов».

1877-1900 гг.Усовершенствование микроскопа и методов фиксации и окрашивания. Цитология приобретает эксперементальных характер.1931 г.Э. Руске и М. Кноль сконструировали электронный микроскоп.1946 г.Начало широкого использования электронного микроскопа в цитологии.

Клеточное строение организмов

Клеточное строение организмов — основа единства органического мира, доказательство родства живой природы

Как уже было отмечено ранее, бактериям, грибам, растениям и животным свойственно наличие клеток разной формы и специализации. Вирусные частицы также не могут жить без живых клеток, так как там происходят процессы их размножения, хотя сами они являются неклеточными формами жизни.

В полноценной живой клетке постоянно происходят следующие процессы:

Наличие совокупности данных признаков отличает живые организмы от неживых тел. Кроме этого, внутри живых клеточных структур хранятся, а при размножении передаются наследственные признаки, заключенные в генах. При половом размножении наследственные признаки комбинируются, что приводит к формированию новых генетических наборов и появляются новые признаки у организмов. Таким образом происходит жизнедеятельность живых организмов.

В природе существует великое множество живых клеток, которые различаются строением, формами и специализацией, но для всех их характерно наличие:

Возникновению современных клеточных структур сопутствовал длительный эволюционный процесс, происходящий в биосфере. Он делился на:

Образование многоклеточных форм жизни не является банальным суммированием клеток, а выступает результатом сложных эволюционных преобразований, происходящих с сохранением присущих живому признаков. Таким образом организмы приобретали новые свойства и функции. В результате менялось их строение и образ жизни. Происходящие эволюционные преобразования привели к появлению новых видов и указали на общность происхождения всего живого — единого предка.

Полноценное существование живых организмов возможно лишь тогда, когда входящие в его состав клетки будут выполнять присущие им функции. Простое сложение клеток друг с другом не приведет к созданию целостного организма, так как полноценно функционировать он не сможет. Так, было открыто единство целостного и дискретного составляющего.

Увеличение скорости метаболизма достигается ростом количества маленьких клеток у многоклеточных тел. При нарушении функций одной клетки (ее гибель) происходит восстановление ее деятельности вследствие воспроизведения клеточных структур. Без клеток гены существовать не могут, а значит. невозможно хранить и передавать наследственную информацию. Аналогично и с энергией, которая также не сможет аккумулироваться от Солнца, если не будет растительных клеток с хлоропластами.

Благодаря разделению клеточных функций в многоклеточных телах (организмах) живые системы смогли приспосабливаться к разным условиям существования и средам обитания. В результате возникали новые систематические категории – виды, роды, классы. Таким образом, шло длительное усложнение их организационного строения.

После установления единого плана строения клеточных структур у всего живого возникли предпосылки единого происхождения живых организмов на Земле. Данные предпосылки были доказаны многочисленными открытиями в области палеонтологии, эмбриологии и других областях биологии. Так, возникло представление не только о едином плане строения живых организмов, но и доказательство единства происхождения органического мира.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *