Нуклеиновые кислоты для чего нужны организму

Синтетические нуклеиновые кислоты в лечении психоневрологических заболеваний

Нуклеиновые кислоты для чего нужны организму. Смотреть фото Нуклеиновые кислоты для чего нужны организму. Смотреть картинку Нуклеиновые кислоты для чего нужны организму. Картинка про Нуклеиновые кислоты для чего нужны организму. Фото Нуклеиновые кислоты для чего нужны организму

Концепция использования нуклеиновых кислот в качестве лекарств сложилась в 70-х годах прошлого века ондовременно с разработкой методов синтеза ДНК и РНК-олигонуклеотидов. Синтетические нуклеиновые кислоты обладают способностью специфически связываться с последовательностью РНК-мессенджера (мРНК) и контролировать экспрессию любого гена. Поскольку эти олигонуклеотиды были комплементарны мРНК смысловой цепи, они стали известны как ASO.

Синтетические олигонуклеотиды химически модифицируют в целях улучшения биораспределения, фармакокинетики и эффективности своего эффекта внутри клеток. Как правило, ASO имеют фосфоротиоатные связи между нуклеотидами. Эти связи повышают устойчивость к расщеплению нуклеазой и увеличивают биодоступность за счет улучшения связывания с сывороточными белками. Чтобы увеличить сродство связывания с РНК-мишенями, большинство ASO модифицированы в 2 ‘положении рибозы. Блокированная нуклеиновая кислота и аналогичные нуклеотиды нуклеиновой кислоты с мостиковыми связями содержат связи между положениями 2 ‘и 4’ рибозы, которые служат для «блокировки» кольца в конформации, которая идеально подходит для связывания. Лучшая аффинность связывания может быть преобразована в более эффективное распознавание последовательностей-мишеней внутри клеток.

В некоторых случаях разрушение РНК и ингибирование экспрессии генов являются желаемыми результатами. В этих случаях используются «гамперы» ASO. Гапмеры представляют собой синтетические ASO, которые содержат фланкирующие области, содержащие 2′-нуклеотидные модификации и центральную часть ДНК. Фланкирующие области усиливают сродство к комплементарным последовательностям. При связывании разрыв ДНК образует гибрид ДНК-РНК, который может рекрутировать РНКазу Н и вызывать расщепление целевой мРНК.

Успешное развитие ASO выиграет от анализа потенциала конкурирующих технологий. Например, ASO могут не быть предпочтительными, если есть ожидание, что конкурирующая малая молекула или антитело могут быть успешно разработаны. Эти более устоявшиеся технологии, вероятно, будут иметь преимущества, по крайней мере, в ближайшей и среднесрочной перспективе. Были проведены исследования, что ASO могут быть перорально биодоступными, но эффективность здесь оказалось низкой. Отсюда следует, что пероральная биодоступность, вероятно, не совсем подходит для текущего состояния технологии ASO. По крайней мере, в ближайшей перспективе ASO незнакомы пациентам, врачам и регулирующим органам. В качестве альтернативы, показания, при которых возможно местное применение, могут потребовать меньшего количества ASO, снижения его стоимости и отделения ASO от воздействия на органы всего организма, то есть снижения вероятности появления системных токсических эффектов и непредвиденных отрицательных результатов. Для неврологии было показано, что интратекальное введение обеспечивает широкое распространение по всей центральной нервной системе. Исследования эффективности ASO, при которых изменения в белковой мишени или биомаркере может быть определено посредством биопсии или взятия крови, обеспечат раннее доказательство того, что ASO взаимодействует с мишенью и вызывает желаемые молекулярные изменения.

Атаксия Фридрейха

Атаксия Фридрейха вызвана расширенным тринуклеотидным повторением AAG в гене фратаксина ( FXN ). Примечательно, что этот расширенный повтор AAG находится в интроне и вызывает снижение экспрессии белка FXN, даже если он не находится в кодирующей области. Нормальный белок FXN производится, но уровень не является достаточным. Следовательно, методы лечения, которые восстанавливают уровни FXN, предлагают подход к лечению, который нейтрализует основную причину заболевания.

Напрашивается вывод, что олигонуклеотиды, которые блокируют расширенный повтор, могут предотвратить образование R-петли и освободить разрыв при транскрипции. Исследователями предлагаются дуплексные РНК или ASO, дополняющие повтор AAG. Оба подхода привели к увеличению экспрессии РНК и белка. Уровни белка FXN были аналогичны уровням, наблюдаемым в клетках дикого типа. Исследование показало, что синтетические нуклеиновые кислоты могут быть использованы для восстановления уровней FXN, обеспечивая отправную точку для терапевтического эффекта. Эти данные предполагают, что механизм действия ASO или дуплексных РНК включает в себя связывание с расширенным повтором и физическое предотвращение его ассоциирования хромосомной ДНК с образованием критической структуры R-петли.

«Антисмысловые олигонуклеотиды» ( ASO) эффективно ингибируют экспрессию генов в печени и центральной нервной системе. Использование их для лечения широкого спектра тканей, необходимых для полного лечения атаксии Фридрейха, потребует более сильнодействующих соединений и более эффективных стратегий доставки олигонуклеотидов во все пораженные ткани.

Спинальная мышечная атрофия

Источник

Возможность использования нуклеиновых кислот как лекарственного средства

Интерес к нуклеиновой кислоте, как лекарственному средству, по протяженности укладывается в столетний период. Публикации об особой способности нуклеиновой кислоты повышать общую сопротивляемость организма стали появляться в 1892 году. Горбачевский в 1883 г., и Морек в 1894 г., использовали нуклеиновую кислоту для лечения волчанки. А. Косеель сообщил, что нуклеиновая кислота обладает выраженным бактерицидным действием, поэтому играет основную роль в борьбе с заразным началом.

Г. Воген в 1894 г., Е. Вард в 1910 г., Б и Ф.Г.Буткевич в 1912 г., успешно лечили легочный и костный туберкулез, впрыскивая под кожу нуклеиново-кислый натрий. Исаев в 1894 г., Милке в 1904., Лейн в 1909 г., Писарев в 1910 г., Абелуа и Бадье в 1910 г., расценивали нуклеиновую кислоту как специфически действующее вещество в процессе сопротивляемости организма против таких вредных бактерий, как холерный вибрион, кишечная и бугорчатая палочки, стафилококк, стрептококк, диплококк, сибирская язва, а также против дифтерии и столбнячного токсинов. С. Штерн заменил ртутное лечение сифилиса лечением нуклеиновой кислотой и достиг у больных полного исчезновения всех проявлений сифилиса.

В последующем, открытие роли ДНК, как главного носителя генетической информации, надолго отвлекло исследователей от дальнейшего исследования нуклеиновых кислот как лекарственных средств. Кроме того, недооценка интенсивности обмена нуклеиновых кислот привела к тому, что длительное время нуклеиновые кислоты и нуклеотиды вообще не рассматривались как незаменимые питательные вещества, или нутриенты. Считалось, что организм способен самостоятельно синтезировать необходимое количество нуклеотидов для физиологических потребностей.
Новые научные данные свидетельствуют о том, что это не совсем корректно. В ряде случаев, при интенсивном росте, стрессе, ограниченном питании потребности организма могут значительно превосходить возможности синтеза нуклеотидов.

Каковы же главные источники нуклеотидов? Их три:
1. Нуклеотиды в составе пищи.
2. Утилизация нуклеотидов, высвобождаемых в процессах внутриклеточного метаболизма.
3. Синтез необходимых нуклеотидов из аминокислот и углеводов.

После долгого перерыва вновь началось исследование возможности использования экзогенной ДНК для лечения различных патологий. Так, еще в 1959 году Каназир с сотрудниками опубликовали работу по увеличению выживаемости облученных крыс при введении им изологичной натриевой соли ДНК, полученной из селезенки и печени. При этом выживаемость облученных животных возрастала от 2,6% в контроле до 30-40% в опытной группе.

Таким образом, стимуляция ради стимуляции исключитель- нд вредна. Какой выход из этого тупика? Можно ли поддержать иммунную систему на протяжении всей жизни? Ведь не секрет, что большинство заболеваний имеет инфекционную природу. Даже синдром хронической усталости является вирусным заболеванием.

Нуклеиновые кислоты настолько ценный материал, что все клетки моментально стараются захватить части ДНК или РНК, появляющиеся после распада отживших клеток. Захватывают, и вставляют в свою структуру даже без разбора на составные части. Этот механизм хорошо исследован на бактериях, которые обмениваются генетической информацией с помощью выделенных фрагментов ДНК и РНК.

Высокая, но все еще недостаточная эффективность существующих схем лечения влечет за собой необходимость поиска альтернативных технологий, способных восстанавливать функцию миокарда, таких, например, как использование стволовых клеток. Перспективным представляется также разработка препаратов блокирующих процессы программируемой гибели клеток сердечной мышцы.
Высокий метаболизм клеток сердца делает их чрезвычайно уязвимыми при ишемии, в условиях дефицита энергетических и пластических субстратов. В моделях на животных было показано, что ишемия приводит к уменьшению содержания в сердечной мышце нуклеиновых кислот. Аналогичный дисбаланс нуклеотидов при ишемии отмечается в субэндокардиальных слоях человеческого сердца. Подтверждением тому является исследование Ludith L. соавт., которые изучили содержание нуклеотидов в биопсийных материалах, полученных во время операций на открытом сердце у пациентов, страдающих ишемической болезнью сердца. Исследователи обнаружили, что содержание нуклеиновых кислот в глубоких слоях миокарда было снижено на 20%. Они предположили, что восстановление баланса нуклеотидов с использованием препаратов ДНК и нуклеиновых кислот может оказать защитное влияние на клетки сердца и препятствовать развитию апоптоза.
Эта гипотеза была подтверждена японскими исследователями Satoh К. и соавт. в 1993 году в эксперименте на собаках.

В опытах было показано значительное улучшение сократительной способности сердечной мышцы животных в условиях после внутривенного введения «коктейля» из нуклеиновых кислот. В экспериментах на животных препараты на основе натриевой соли ДНК показали эффективность при аритмиях, возникающих при восстановлении кровотока после ишемии.

Проведенные клинические испытания с препаратами на основе натриевой соли ДНК показали, что препараты способны улучшать клиническое состояние, уменьшать частоту, продолжительность и интенсивность приступов стенокардии, улучшать сократительную способность сердца, увеличивать переносимость физических нагрузок у пациентов, страдающих ишемической болезнью сердца. Несмотря на то, что в эти исследования было включено относительно небольшое количество пациентов, а многие из выявленных различий не имеют статической значимости, полученные данные позволяют предполагать, что исследование препаратов ДНК является перспективным направлением в кардиологии и требует проведения более масштабных клинических исследований.

Старение вызывается вырождением клеток. Наш организм построен из миллионов клеток, каждая из которых живет около двух лет или меньше. Но, прежде чем погибнуть, клетка воспроизводит себя. Почему мы не выглядим так же, как десять лет назад? Причина в том, что при каждом успешном воспроизводстве клетка претерпевает определенное изменение, в сущности, вырождение. Так что, по мере того, как наши клетки меняются или вырождаются, мы стареем.

Доктор Фрэнк рекомендует диету, согласно которой морепродукты едятся семь раз в неделю, с двумя стаканами снятого молока, стаканом фруктового или овощного сока и четырьмя стаканами воды ежедневно. Уже после 2 месяцев дополнительного приема ДНК-РНК и диеты доктор Фрэнк обнаружил, что у пациентов появилось больше энергии, как свидетельство, значительно сократилось количество сладок и морщин, и кожа выглядела более здоровой, розовой и помолодевшей.

Однако важно заметить, что СОД быстро теряет активность при отсутствии таких важных минеральных веществ как цинк, медь и марганец. Дегидроэпиандростерон (ДГЭА), натуральный гормон, вырабатываемый надпочечниками, сегодня тоже стал применяться против старения, так как одним из его свойств является способность «снижать возбуждение» в процессах в организме и, таким образом, замедлять образование способствующих старению жиров, гормонов и кислот.

Область применения нуклеотидов в гастроэнтерологии охватывает широкий спектр заболеваний, которые объединены общими патогенетическими звеньями: воспаление, когда имеется дефицит потребления клеток иммунной системы; дефекты эпителия, когда требуется репарация поврежденных тканей; гормональный дисбаланс и интоксикационный синдром вследствие различных поражений печени, когда требуется пластический материал для восстановления клеток печени и их синтетической функции.

Адекватное питание у тяжелых больных призвано решать следующие задачи:
• Поддержание структуры и функции клеток кишечника (энтероцитов)
• Восстановление барьерной и иммунной функции кишки
• Снижение возможности проникновения патогенных бактерий и токсинов в кровь.

Использование питания, обогащенного нуклеотидами, показано при следующих состояниях:
• Ожоги, травмы, большие операции
• Трансплантация костного мозга
• Инфекции/сепсис
• Воспалительные заболевания кишки
• Некротизирующий энтероколит
• Синдром короткой кишки
• Повреждение слизистой оболочки при критическом состоянии, а также при лучевой и химиотерапии
• Дисфункция иммунной системы, связанная с критическим состоянием, трансплантацией костного мозга.
Так, при использовании иммунопитания у больных с указанными заболеваниями наблюдалось:
• Значительное (в 2 раза) снижение частоты инфекционных осложнений
• Снижение продолжительности госпитализации, в среднем, на 3,86 дня
• Снижение летальности на 30%.

Таким образом, к настоящему времени накоплено большое количество данных, свидетельствующих об эффективности использования фрагментированной ДНК в качестве диетического компонента при самой разнообразной патологии. Имеются доказательства пользы от использования фрагментированной ДНК в качестве стимулятора гемопоэза и иммуномодулятора у пациентов с лучевой болезнью, а также у ослабленных больных. Использование фрагментированной ДНК способствует восстановлению барьерной и иммунной функции кишечника у пациентов, находящихся в критическом состоянии, что позволяет значительно снизить смертность у крайне тяжелых пациентов. Перспективным направлением является использование фрагментированной ДНК в гастроэнтерологии и кардиологии, что диктует необходимость проведения более крупных исследований в этих областях. Мечта о сохранении молодости не оставляла человечество с давних времен. Возможно, что нуклеиновые кислоты окажутся одним из таких «чудо-средств», способных замедлить процессы старения человеческого организма.

Источник

Биологическая роль ДНК и РНК

Нуклеиновые кислоты для чего нужны организму. Смотреть фото Нуклеиновые кислоты для чего нужны организму. Смотреть картинку Нуклеиновые кислоты для чего нужны организму. Картинка про Нуклеиновые кислоты для чего нужны организму. Фото Нуклеиновые кислоты для чего нужны организму

ДНК – самая важная молекула для всех живых существ, даже растений. Она определяет наследование, кодирования белков и содержит инструкции для развития и размножения всего организма и каждой его клетки в отдельности. Достижения генетики позволили раскрыть информацию, содержащуюся в ДНК, и использовать ее с пользой для людей. Теперь каждый может сделать конфиденциальный ДНК-тест, чтобы получить ответы на самые сложные вопросы. Давайте узнаем больше, как работает и какова биологическая роль ДНК.

Какие функции выполняет ДНК в организме

Нуклеиновые кислоты для чего нужны организму. Смотреть фото Нуклеиновые кислоты для чего нужны организму. Смотреть картинку Нуклеиновые кислоты для чего нужны организму. Картинка про Нуклеиновые кислоты для чего нужны организму. Фото Нуклеиновые кислоты для чего нужны организму

ДНК несет ответственность за рост и поддержание жизни, что выражается в выполнении этой молекулой трех функций.

Таким образом, на что влияет ДНК в организме? Размеры ее влияния огромны – эта молекула содержит инструкции, необходимые организму для развития, жизни и размножения. Эти инструкции находятся внутри каждой клетки и передаются от обоих родителей их детям.

ДНК помогает синтезу РНК

Матричная РНК, или мРНК, – это одноцепочечная промежуточная молекула, которая переносит генетическую информацию от ДНК в ядре к цитоплазме, где она служит шаблоном в образовании полипептидов. мРНК синтезируется в ядре с использованием нуклеотидной последовательности ДНК в качестве матрицы.

Процесс создания мРНК из ДНК называется транскрипцией и происходит в ядре. мРНК направляет синтез белков, который происходит в цитоплазме. мРНК, образованная в ядре, транспортируется из ядра в цитоплазму, где она присоединяется к рибосомам. Белки собираются на рибосомах с использованием нуклеотидной последовательности мРНК в качестве инструкции. Таким образом, мРНК несет «сообщение» от ядра к цитоплазме. Сообщение закодировано в нуклеотидной последовательности мРНК, которая комплементарна нуклеотидной последовательности ДНК, служившей матрицей для синтеза мРНК. Создание белков из мРНК называется трансляцией. В этом заключается биологическая роль РНК.

Молекулярные болезни и связь молекул ДНК

Молекулярное, или генетическое, заболевание – это любое заболевание, вызванное сбоем на молекулярном уровне, то есть в молекуле ДНК. Генетическая аномалия может варьироваться от незначительной до крупной – от одной мутации в единственном основании в ДНК до грубой хромосомной аномалии, включающей изменение количества или набора хромосом. Мутации могут происходить либо случайно, либо из-за воздействия окружающей среды.

Существует ряд различных типов генетических нарушений обмена, в том числе:

Однако далеко не все мутации в генах – это приговор. Гены могут включаться и выключаться при определенных условиях среды. Поэтому даже имея предрасположенность к тому или иному заболеванию, для предупреждения их развития человек может соблюдать назначенный врачом план питания и тренировок, отказываясь от вредных привычек.

Строение и действие гена РНК

Нуклеиновые кислоты для чего нужны организму. Смотреть фото Нуклеиновые кислоты для чего нужны организму. Смотреть картинку Нуклеиновые кислоты для чего нужны организму. Картинка про Нуклеиновые кислоты для чего нужны организму. Фото Нуклеиновые кислоты для чего нужны организму

ДНК – дезоксирибонуклеиновая кислота, а РНК – рибонуклеиновая кислота. Хотя и ДНК, и РНК несут генетическую информацию и имеют связь между собой, между ними довольно много различий. Что общего между ДНК и РНК и в чем отличия?

Функции ДНК и РНК в организме разные. ДНК отвечает за хранение и передачу генетической информации, в то время как РНК непосредственно кодирует аминокислоты и выступает в качестве посредника между ДНК и рибосомами для производства белков.

Преимущества проведения анализов в лаборатории Медикал Геномикс Украина

Лаборатория Медикал Геномикс Украина – крупнейшая в стране английская лаборатория генетических исследований. Здесь вы можете пройти любой генетический тест, в том числе для установления родственных отношений, а также медицинские, генеалогические исследования.

Мы работаем быстро и качественно, гарантируя конфиденциальность и высокую точность результата, поскольку используем передовое оборудование, а каждый тест проверяется двумя независимыми группами ученых.

Позвоните нам, если у вас есть вопросы – наши консультанты ответят на них и помогут оформить заказ. Сдать биоматериалы можно в одном из наших 78 пунктов приема образцов по всей Украине или заказав набор для домашнего забора материала.

Источник

Нуклеиновые кислоты

Что такое жизнь? – вопрос, который неоднократно задает себе каждый человек. На это можно ответить по-разному и один из ответов может звучать так: жизнь — это способ существования белковых тел. А главные составляющие последних – нуклеиновые кислоты. Нуклеиновые кислоты – важнейшие биополимеры, которые содержатся во всех без исключения живых организмах и являются не только хранителем и источником генетической информации, но и выполняют ряд других жизненно важных функций — активно поддерживают и стимулируют процессы синтеза белковых веществ в организме, что необходимо для обновления клеточных структур, составляющих основу всех тканей и органов. Актуальность данного процесса нельзя переоценить при терапии для людей, страдающих хроническими заболеваниями, а также при реабилитации больных после хирургических операций, особенно на мягких тканях. Используют нуклеиновые кислоты и для снижения скорости старения клеток и тканей, что улучшает общеоздоравливающее воздействие при комплексной терапии, особенно в возрасте после 45-50 лет.

Существует два типа нуклеиновых кислот – дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК представляет собой генетический материал большинства организмов. Основная масса ДНК расположена в клеточном ядре, где она связана с белками в хромосомах.

Что же касается РНК, то по выполняемым ими функциям различают информационные РНК, в которых записана информация о первичной структуре белка; рибосомные РНК — входят в состав рибосом; транспортные РНК — обеспечивают доставку аминокислот к месту синтеза белка.

Минимальные информационные фрагменты нуклеиновых кислот — нуклеотиды, состоящие из остатков азотистого основания, пентозы и фосфорной кислоты. Нуклеиновые кислоты играют важную структурную роль в клетке, являются компонентами рибосом, митохондрий и других внутриклеточных структур.

Интерес к нуклеиновым кислотам, как средству, используемому при различных патологических состояниях, появился более ста лет назад. И.Горбачевский (1883) и М. Морек (1894) использовали нуклеиновые кислоты с лечебной целью при волчанке. Позднее А. Косеель сообщил, что нуклеиновые кислоты обладают выраженным бактерицидным действием. Начиная с конца 19 века некоторые российские и зарубежные исследователи, еще задолго до открытия антибиотиков, используют нуклеиновые кислоты для борьбы с такими возбудителями инфекционных заболеваний, как холерный вибрион, кишечная и бугорчатая палочки, стафилококк, стрептококк, диплококк и др.

Полученные данные в 70-х годах прошлого столетия показывают эффективность введения нуклеиновых кислот в организм человека: их доставка к клетке происходила без разрушения. Активно размножающиеся ткани (костный мозг, эпителий тонкого кишечника, селезенка) интенсивно поглощали ДНК, а при стрессовом воздействии клетки и ткани органов активно захватывали ДНК.

Достаточно долгое время считалось, что организм способен самостоятельно синтезировать необходимое количество нуклеиновые кислоты. Новые научные данные свидетельствуют о том, что это не совсем корректно. В ряде случаев, при интенсивном росте, стрессе, ограниченном питании потребности организма могут значительно превосходить возможности синтеза нуклеиновых кислот. В этом случае иммунитет человека снижается. Расстройства нуклеинового обмена являются одной из причин индукции патологических процессов вообще и иммунопатологических в частности.

Борьба за иммунитет стала первым, но не единственным направлением по использованию нуклеиновых кислот в клинической практике. Было установлено, что они являются важным компонентом интегрального иммунологического гомеостаза организма. Расстройства нуклеинового обмена являются одной из причин индукции патологических процессов вообще и иммунопатологических в частности. То есть, можно сказать, что нуклеиновые кислоты обладают «многозадачностью».

Наиболее чувствительны к дефициту нуклеиновых кислот быстро делящиеся клетки — эпителий, клетки кишечника, печени и лимфоидная ткань, отвечающая за иммунитет и детоксикацию. Процессы деления клетки со временем сопровождаются постепенным укорачиванием ее ДНК, что приводит к разрушению клетки и возникновению патологических процессов во всем организме. Именно укорачивание ДНК лежит в основе теории старения. А поступающие в организм фрагменты нуклеиновых кислот (ДНК) способствуют замедлению уменьшения структуры ДНК. Это позволяет предотвратить либо замедлить патологические процессы. Происходит обновление старых и восстановление поврежденных клеток, качественно повышаются регенеративные способности тканей. Результат сказывается на состоянии внутренних органов и систем, их функционирование.

Существует несколько типов препаратов на основе нуклеиновых кислот: препараты микробного происхождения, препараты животного происхождения, синтетические препараты.

Натуральный комплекс « Артемия Голд » — это источник нуклеиновых кислот (ДНК, РНК) и дополнительный источник йода из икры (яиц) рачка артемия (Artemia sp.).

Бесспорно, что организм является саморегулирующей системой. Однако в каждой системе может произойти сбой. Именно в этот момент важно, чтобы организм получил именно те вещества, которые смогут компенсировать потери и наладить работу системы. По мнению исследователей из НИИ эпидемиологии и микробиологии СО РАМН э тими веществами могут быть препараты нуклеиновых кислот различного происхождения, которые являются перспективными терапевтическими и иммуномодулирующими агентами.

— Агаджанян Н. А., Баевский Р. М., Берсенева А. П. Проблемы адаптации и учение о здоровье. — М.: Изд-во РУДН, 2006. — 284 с.

— Аппель Б., Бенеке Б.И. Бененсон Я. Нуклеиновые кислоты. От А до Я. – Москва: Изд-во: Бином. Лаборатория знаний, 2013

— Бенджамин С. Фрэнк. Лечения старения и дегенеративных заболеваний нуклеиновой кислотой. — Нью-Йорк, Психологическая библиотека, 1974 г.

— Коровина Н.А., Захарова И.Н., Малова Н.Е., Лыкина Е.В. Роль нуклеотидов в питании ребенка первого года жизни. Педиатрия. 2004, — Т.83. — № 5, С.65-68.

— Мамонова Л.Г. Значение нуклеотидов в питании детей раннего возраста. Вопросы современной педиатрии. 2007, 6 (6), С.113-116.

— Тутельян В.А., Суханов Б.Н., Австриевских А.Н., Позняковский В.М. Биологически активные добавки в питании человека (оценка качества и безопасности, эффективность, характеристика, применение в профилактической и клинической медицине). – Томск: Изд-во НТЛ, 1999. – 296 с.

— Федянина Л.Н., Беседнова Н.Н., Эпштейн Л.М., Каленик Т.К., Блинов Ю.Г. Лекарственные препараты и биологически активные добавки к пище на основе нуклеиновых кислот различного происхождения. – Владивосток: Тихоокеанский медицинский журнал, 2007, №4. – С. 9-12.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *