ночное небо с балкона
Звездное небо
С чего начать астрономические наблюдения, если вы абсолютный новичок? Даже если у вас есть телескоп или астрономический бинокль, не торопитесь воспользоваться их помощью. Для начала просто взгляните на звездное небо!
Ясной безлунной ночью небосклон представляет собой поразительное зрелище. Он похож на гигантский шатер из черного бархата, со всех сторон обхватывающий горизонт, шатер, усеянный множеством светящихся точек. Это звезды.
Зимнее звездное небо. Примерно так видится созвездие Ориона и ярчайшая звезда ночного неба, Сириус, на загородном небе. Снимок пересекает туманная полоска Млечного Пути. Фото: Sadaki Hamada
Если небо действительно темное, то кажется, что звезд на небе бесчисленное множество. Особенно тусклых, похожих с виду на алмазную пыль. Если атмосфера неспокойна, то звезды поярче часто дрожат и быстро мигают — мерцают. Взгляд буквально теряется этого великолепия.
На самом деле невооруженным глазом в каждый момент времени на небе можно наблюдать всего около 3000 звезд. Только в исключительно прозрачные и сухие ночи высоко в горах количество звезд, доступных для наблюдения, примерно вдвое больше.
Созвездия
Хотя звезды расположены на небе хаотично, мы склонны соединять их мысленно в различные фигуры — треугольники, цепочки, квадраты. Для чего? Чтобы как-то сориентироваться на звездном небе, чтобы запомнить яркие звезды!
С этой целью еще тысячи лет назад люди начали делить звездное небо на созвездия. Взгляд находил среди разбросанных в беспорядке светилах знакомое — очертания предметов и людей, а также животных — настоящих и мифических. Так на небе появились Большой Ковш и охотник-Орион, созвездия Льва и Скорпиона, а также множество других звездных рисунков.
Участок осеннего звездного неба. Сегодня все небо без исключения поделено на созвездия. Их общее количество на небе северной и южной небесной полусферы — 88. Рисунок: Stellarium
Сегодня созвездия — это строго определенные участки неба. (Всего их насчитывается 88.) Созвездия могут состоять из одного (созвездие Большой Медведицы) или нескольких запоминающихся рисунков (созвездие Ориона), а могут и вовсе не иметь такого. Запоминающиеся звездные фигуры (или рисунки, или паттерны — называйте как хотите) сегодня называются а стеризмами.
В связи с созвездиями поражает воображение один простой факт: очертания даже самых древних созвездий совершенно не изменились на протяжении тысячелетий! Звездное небо представляет собой как-будто застывшую картину, раз и навсегда изображенную на черном шатре или, как мы сейчас говорим, на небесной сфере. Древние люди знали о том, что взаимное расположение звезд не меняется. Они так и называли их — «неподвижные звезды». Лишь 300 лет назад Эдмунд Галлей открыл, что звезды все же имеют собственные движения. Они не «приколочены» к небу, подобно гвоздям!
Вид звездного неба
Тем не менее, вид неба ночью не всегда одинаков. Звездное небо находится в постоянном движении: оно вращается с востока на запад. У небесной сферы есть ось вращения, которая указывает на небесные полюса — Северный и Южный. Вблизи Северного небесного полюса находится Полярная звезда. Она знаменита тем, что практически стоит на месте. В то же время все остальные звезды движутся вокруг нее, описывая на небе суточные окружности. Эти окружности тем больше, чем дальше находятся светила от Полярной звезды. (См. суточное движение звезд).
Вид звездного неба зависит от времени суток и времени года
Так как ось небесной сферы наклонена к горизонту, звездное небо вращается как бы немного на боку. В результате, многие созвездия подобно Солнцу и Луне восходят на востоке, поднимаются выше всего над горизонтом на юге и заходят на западе. Поэтому вечером мы наблюдаем одни созвездия, а утром — совершенно другие
На фотографиях звездного неба, сделанных с длительной экспозицией, можно заметить суточное движение звезд. Смещаясь на небе, звезды превращаются в дуги, длина которых тем больше, чем дальше они отстоят от небесного полюса. За сутки небесная сфера совершает один оборот. Длина кругов наибольшая у звезд, расположенных на небесном экваторе. Причина такой картины — вращение Земли вокруг своей оси. Фото: Femidio
Вид звездного неба зависит не только времени суток, но и от времени года. Так как Земля вращается вокруг Солнца, в разное время года она поворачивается ночной стороной к разным созвездиям. Поэтому многие созвездия видны только в определенный сезон. Так, созвездие Ориона наблюдается зимой, но совершенно не видно в первой половине лета (оказываясь на дневном небе!), а созвездие Стрельца, напротив, наблюдается летом, но совершенно не видно зимой.
На вид звездного неба влияет широта наблюдения
Наконец, на вид звездного неба влияет широта места наблюдения. На северном полюсе Земли Полярная звезда находится в зените, а наблюдению доступно только одно полушарие небесной сферы — Северное. Но что будет происходить, если мы начнем двигаться на юг? Полярная звезда начнет опускаться на небе, а нашему наблюдению станет доступны не только все звезды северной небесной полусферы, но и частично южной. Наконец, на экваторе Земли за год можно пронаблюдать все 88 созвездий!
Звездное небо и световое загрязнение
К сожалению, жители больших городов уже забыли, что такое по-настоящему темное звездное небо. Уличное освещение, фары автомобилей, рекламные огни — все это приводит к сильному световому загрязнению неба или, как его называют для простоты, засветке. Из-за засветки на небе крупных городов можно наблюдать только несколько десятков самых ярких звезд. Для начинающего любителя это, с одной стороны, хорошо, так как не дает путаться во множестве звезд и помогает учить яркие созвездия. С другой стороны, вред от засветки гораздо больше. Многие слабые объекты звездного неба — Млечный Путь, туманности и галактики, далекие звездные скопления — в городе попросту не видны. Ситуация ухудшается тем, что над крупными городами нередко плавает смог, который превосходно отражает свет фонарей. Ночное небо в такие моменты приобретает молочно-кофейный или рыжеватый оттенок — на нем можно отыскать только самые яркие звезды.
На небе больших городов можно наблюдать только самые яркие небесные светила — Луну, планеты и ярчайшие звезды. Фото: Martin Rosen
Засветка стала причиной того, что любители астрономии вынуждены проводить астрономические наблюдения далеко за городом. Они выбирают места, где световое загрязнение минимально. Где именно находятся такие места, можно узнать при помощи специальных карт засветки.
Впрочем, начинать изучение звездного неба можно и в городе. Для этого нужно найти место, защищенное от прямого света уличных фонарей и фар машин. Это может быть городская окраина, парк, берег моря или реки. Можно наблюдать звездное небо и с балкона, если вы живете достаточно высоко и вам не мешают соседние дома.
Что доступно наблюдениям в городе?
Луна, планеты, наиболее яркие звезды и созвездия можно наблюдать на городском небе невооруженным глазом, в бинокль или небольшой телескоп. Бинокль покажет наиболее яркие звездные скопления и переменные звезды. Наконец, в телескоп можно наблюдать двойные и кратные звезды, слабые переменные звезды, планеты, подробно изучить поверхность Луны.
Следует учитывать, что на городском небе в телескоп будут видны только самые яркие туманности и галактики. Чтобы по-настоящему насладиться объектами глубокого космоса, нужно выбираться как можно дальше от огней городов — в лес, в горы, в степь.
Как правильно снимать млечный путь и звездное небо ночью?
Эту статью честно скоммуниздил с Rozetked, а те в свою очередь сделали перевод на русский материала от Petapixel, где всё то же самое описано на английском. Но статья очень интересная для всех «начинающих», кто хоть чуть-чуть увлекается фотографией!
В этом материале мы познакомим вас и вашу камеру с космосом. Расскажем, что для этого нужно и из чего складывается идеальный кадр.
Стоит заметить, что это не полноценное руководство, а лишь вводная необходимая теория, как хороший конспект большой лекции. Ведь работа с космосом это отдельное направление, в котором есть масса тонкостей и нюансов.
Тем не менее, изложенного материала хватит, чтобы приступить к фотографированию звёзд и его тут чуть больше, чем «поставьте камеру на штатив и направьте на небо».
Стоит сразу отметить, что материал основан на данных по фотосъёмке с помощью профессиональных зеркальных и беззеркальных камер.
Каждый фотограф любит поболтать на тему имеющихся у него объективов или «тушек», но в итоге, изучая творчество кого-либо, вы будете складывать своё впечатление глядя именно на снимки. И тут стоит уточнить, что решающую роль играет всё-таки человек, но есть и минимальные требования к аппаратуре.
Это основа вашей работы. Учтите, что частенько приходится устанавливать камеру на неровной поверхности и она должна стоять неподвижно. Для этого понадобится крепкий штатив, с гибкой настройкой и надёжными узлами.
Если вдруг камера отклонится хоть на миллиметр, то ваш кадр уже не получится чётким, а забегая вперёд, камера должна стоять неподвижна достаточно долго. Поэтому присмотритесь к решениям с крепкой шаровой головкой.
Минимальным требованием для «тушки» становится возможность вручную регулировать диафрагму, выдержку и ISO. В идеале это должна быть полнокадровая камера, что означает полный размер матрицы, а не урезанный, как в вашем смартфоне.
Среди зеркальных моделей это, например, Canon EOS 6D Mark II или Nikon D750 Body. Если вы приверженец беззеркальных моделей, то подойдут Sony Alpha (любая версия) или Canon EOS RP.
Если говорить о минимальных требованиях, то потребуется минимальная диафрагма от 4 и меньше. Этот показатель отвечает за возможность захвата большего количества света, в идеале нужно иметь объектив с f/2,8 и меньше.
Ещё лучше, если вы работаете с широким углом, скажем, 14-24 мм. Тут чем больше, тем лучше. Получаем идеальное снаряжение 24 мм и f/1,4.
Первое, что вам может понадобиться, это интервалометр, подключаемый к камере и отвечающий за спуск затвора. Такое решение позволит сделать длину выдержки дольше 30 секунд и лишит вас проблемы дёрганья камеры при ручном спуске.
Не обязательной, но нужной вещью может стать звёздный трекер. Устройство крепится к штативу и держит на себе камеру, попутно двигая её. Это сделано для компенсации движения звёзд. За счёт этого можно выставить огромную выдержку и не бояться получить смазанный кадр.
Хороший кадр зависит от обстановки, объекта съёмки и рук фотографа. В нашем же случае о первых двух пунктах придётся позаботиться заранее.
Место съёмки лучше всего осмотреть днём. Вы должны понимать, какой план захотите получить на кадре, чтобы зря не бегать с фотоаппаратом и штативом в темноте.
Какое было последнее слово? Темнота! Город излучает большое количество светового шума. Видели наши города ночью из самолёта? Чем больше домов, тем больше света. Если вы выбрали в качестве локации местный парк, то вам придётся выбить все лампочки в округе, ведь на большой выдержке весь этот свет устремится к вам в объектив, а потом и в кадр.
Напомню, что нашей целью является Млечный Путь. Заранее стоит позаботиться о его расположении. Сдвинуть вы его не сможете, но в интернете можно узнать о его положении относительно предполагаемого места съёмки.
Не забудьте проверить погоду. Сквозь облака звёзды видно плохо, в том числе и фотоаппарату.
И помните, что Луна излучает слишком много света. Лучше всего выбираться на фотоохоту максимально близко к новолунию, где-то в пределах одной недели до и после.
Что за бред? Скажите вы, увидев заголовок этого раздела. Но вы в курсе, что звёзды достаточно далеко и в видоискатель многих будет не видно, как тогда фокусироваться на них?
Для этого в запасе у любого звёздного фотографа есть пара способов. Один подходит для выставления объектива днём (речь идёт о долгосрочной подготовке в светлое время суток), второй подход позволит выставить фокус прямо ночью.
Для этого нужно в светлое время суток выставить фокусное расстояние — чем больше, тем лучше. Допустим,вы установили максимально доступные 24 мм. Что дальше?
Теперь целимся на какой-нибудь далёкий объект. Речь идёт не о паре метров, а скорее о десятках. Можно использовать автофокус, главное сделать кадр и убедиться, что результат достаточно резкий, для этого придётся приблизить готовые изображения минимум в два раза.
Как только вы закончили, стоит зафиксировать параметры и использовать их в работе. Учтите, если вы измените фокусное расстояние, то операцию придётся делать повторно.
Если вы пришли на дело ночью, то ничего не остаётся, как поставить камеру на штатив. Теперь стоит найти самый яркий объект вблизи вас. Если это какая-нибудь лампа, то место вы выбрали неправильно, перечитайте раздел «Подготовка».
Так вот, ищем на небе Луну или какую-нибудь очень яркую звезду. Находим её видоискателем и теперь регулируем фокусировочное кольцо, пока точка света не станет максимально маленькой.
Как только вы нашли положение фокуса, в котором ваш светящийся объект минимален, можно зафиксировать настройки и приступать к основным съёмкам.
Если вы решительно настроены получить изображение Млечного Пути, то придётся забыть про авто-режим и начать настраивать камеру вручную. Чтобы получить изображение звёзд, нам нужно захватить свет от них, при этом нужно оставить приемлемое качество самому изображению. Просто завысить светочувствительность (ISO) не получится, кадр будет очень шумным. Но давайте по порядку.
Сами снимки лучше всего сохранять в формате RAW. Тогда вы получите полную цветовую картину, что может сыграть на руку при обработке. Да и без неё ваши снимки будут выглядеть куда детальнее.
Хотя чаще всего применяется техника, когда несколько кадров обрабатываются и склеиваются в один, чтобы на итоговом изображении были видны все детали, от окружающей обстановки до самих звёзд, которые чаще всего имеют разную яркость.
Начать стоит с теории. Показатели диафрагмы начинаются после буковки f, и как мы выяснили ранее, нам требуется показатель f/4,0 и меньше, в идеале f/1,4. Тут стоит запомнить — чем меньше диафрагма, тем больше апертура, то есть способность собирать свет. Грубо говоря, чем меньше этот показатель, тем больше у вас открыт «глаз», которым вы захватываете кадр.
Диафрагма f/8,0 является стандартной и мало нам подходит. Наша работа начинается с f/4,0. Причём, если используется широкоугольный объектив, скажем 24 мм, а показатель диафрагмы f/1,4, то можно сделать ещё пару перестановок на f/1,6, затем f/1,8 и потом f/2,0.
Такой приём позволит захватить изображение как очень ярких, так и тусклых объектов. А при сведении вы получите одинаково резкое изображение.
Правда, если диафрагма на вашем объективе в минимуме останавливается на f/2,8 или f/4,0, то вас скорее будет волновать возможность вообще захватить хоть что-нибудь.
В идеальном мире можно было бы оставить камеру на полночи с мелким ISO и получить классный кадр. Но наша планета крутится, и получается, что звёзды двигаются, а на снимках остаются следы.
Чтобы этого не было, есть простой способ рассчитать максимально возможное время открытия затвора. Для этого достаточно применить не хитрое правило пятиста.
Для расчета понадобится знать выставленное фокусное расстояние. Допустим, вы выставили его на 16 мм, теперь просто берём и делим 500 на 16, получаем 31,25 секунды. Получается, что для 16 мм объектив нельзя открывать дольше, чем на 31,25 секунды, иначе кадр будет испорчен.
Попробуем провести расчёты для 24 мм. 500/24 = 20,8 секунды. Просто и гениально! И тут стоит уточнить, что это практическое наблюдение, а не точное правило. А если хочется держать объектив открытым дольше, то можно воспользоваться звёздным трекером.
Отдельным случаем выделяется обрезанная матрица. Да, в начале материала говорилось, что желательно использовать полнокадровую камеру, но не бросать же людей в беде? Ничего сложно тут не будет, не пугайтесь.
Стандартная матрица имеет площадку 35 мм, вам нужно узнать в характеристиках размер вашего сенсора, например 24 мм. Теперь делим 35 на 24=1,46. То есть мы узнали, что наша матрица в 1,46 раза меньше полного кадра.
Далее вспоминаем правило пятиста, только делим мы так 500/(длина фокуса×коэффициент уменьшения). Для 16 мм фокуса получаем: 500/(16×1,46)=21,4 секунды. Вот такая несложная математика.
Для того, чтобы понять какая светочувствительность вам нужна, придётся сделать несколько тестовых снимков. Учтите, чем выше ISO, тем больше шумов вы рискуете получить на фотографии
Для f/2,8 оптимальным значением становится ISO 6400. Конечно, лучше начать с ISO 1600 и постепенно поднимать планку, ведь многое зависит от настроек выдержки.
А лишние шумы легко поправить в современных фоторедакторах. Но это уже отдельная тема для разговора.
Помните, мы вам выдали рекомендацию снимать в RAW? Так вот, в таком случае для вас данный параметр не имеет никакого значения. Так как в любой момент вы сможете самостоятельно отредактировать снимок в том же Lightroom.
Но если вы предпочитаете не трогать фотографии, то смело выставляйте 4000-5000К. Это оптимальное значение для весьма холодных звёзд.
Вот и настало время отправлять вас на охоту. Данный курс не содержит массу подробностей, но приобретенных знаний вполне хватит, чтобы попробовать себя в фотографировании Млечного Пути.
И каким бы не было ваше оборудование, всё решает практика. Пробуйте и экспериментируйте. А точного рецепта вам никто и не даст. Наверное, в этом и заключается одна из главных черт фотографии, да и искусства в целом.
Делаем звёздное небо на потолке при помощи оптоволокна и Arduino
Хотите увидеть кусочек галактики у себя на потолке? Как это сделать – рассказано ниже.
Несколько лет я мечтал о том, чтобы выполнить этот проект, и вот он, наконец, готов. На его реализацию ушло приличное время, но итоговый результат получился настолько замечательным, что оно того стоило.
Немного о самом проекте. Я старался делать всё своими руками по-максимуму, что дало мне полную творческую свободу. В итоге у меня есть созвездия северного полушария, контроль над звёздными скоплениями при помощи пульта д/у (яркость и цвет), реакция на музыку, контроль подсветки, и, что самое важное – возможность изменить всё, что угодно.
В качестве платформы для всего этого я выбрал Arduino, поскольку знаком с его программированием. За реагирование на музыку отвечал чип MSGEQ7– в интернете полно его описаний. Для связи я использовал завалявшийся у меня NRF24L01. Для управления большим количеством светодиодов хорошо подошёл контроллер сервоприводов PCA9685. Если вам хочется сделать что-то попроще и подешевле, вы можете поискать на Amazon готовые наборы, но если вам интересно делать всё самому, как мне – тогда вам потребуются следующие навыки:
Шаг 1: планирование
Для начала нужно решить, покупать электронную часть или делать самому. Для изготовления схем требуется разбираться в Arduino и основах электроники, и кроме того, есть шанс где-то накосячить. На Amazon и в других магазинах можно найти множество наборов по фразе «Fiber Optic Star Ceiling Kit», так что вариантов тут масса. Но если вам нужна полная творческая свобода и контроль, тогда лучше всё делать самому.
Определившись с электроникой, стоит подумать о структуре потолка, размере звёздной карты и количестве звёзд. Я выбрал вариант с обычным потолком из гипсокартона. У меня низкий потолок, и было достаточно сложно устанавливать оптоволокно, поэтому я остановился на относительно небольшом количестве звёзд, 1200 шт, однако результат всё равно получился потрясающим.
Теперь по выбору звёздного рисунка. Я живу в северном полушарии, поэтому выбрал ту часть неба, что здесь видна. Множество приложений демонстрирует рисунки созвездий – я использовал Celestia (как в этой инструкции по изготовлению собственного звёздного неба). Естественно, никто не заставляет делать рисунок звёздного неба реалистичным и в верном масштабе – тут у вас полная творческая свобода, а в интернете можно найти кучу идей.
Шаг 2: материалы
Теперь, когда всё распланировано, можно заказывать материалы.
Материалы для самого потолка я перечислять не буду, тут всё зависит от используемой системы и других факторов. Я использовал потолок от Knauf. То же касается и инструментов – большая их часть понадобится вам только для установки потолка. Для установки самих звёзд и электроники требуется не так уж много – см. список. Много чего я купил в местных магазинах, а остальное заказал на AliExpress – так дешевле, а качество обычно приемлемое.
Для звёзд и электроники потребуются:
Шаг 3: установка потолка
Детально установку расписывать не буду – в сети есть куча материалов по установке навесного потолка, а я не эксперт в этом вопросе. Такой подход сложнее обычного решения со звёздной панелью, которое выбирает большинство людей. Но зато у меня получился качественный подвесной потолок, который днём смотрится абсолютно нормально.
Специально для обслуживания электроники я сделал лючок в самой малозаметной части потолка.
На этом шаге делается шпатлёвка и грунтовка, а покраска – уже после установки оптоволокна.
Шаг 4: установка оптоволокна
На это у меня ушло больше времени, чем я предполагал… После множества различных импровизаций мы сошлись на том, что в нашем случае лучше всего размещать оптоволокно при помощи удочки и петли из лески – см. мои мастерски исполненные каракули с пояснениями. Сейчас эта идея кажется мне смехотворной – но кому не нравится иногда повозиться.
Мы красили прямо по оптоволокну, поэтому когда оно не светится, его не видно. Всё выглядит как обычный потолок. После двух слоёв краски яркость оптоволокна осталась почти такой же.
Шаг 6: пробная схема
Сама схема не очень сложная, и у меня всё заработало сразу же. Однако всегда лучше сначала проверить, а потом устанавливать – тем более, что в данном случае пайки предстоит очень много. Кроме того, удобно иметь тестовую версию для обновлений в будущем – думаю, никому не захочется закоротить проект, на установку которого в потолок было потрачено несколько дней.
Моя тестовая версия – это одна-две платы PCA9685, NRF24L01 и блоки питания, соединённые с Arduino. Всё можно делать на макетных платах. То же касается и схемы пульта д/у – натыкали всё на макетку, и проверили, что всё работает. Я бы также посоветовал припаять несколько 3 Вт светодиодов для проверки.
Шаг 7: код для Arduino
Библиотеки и другие полезные ссылки я собрал в разделе «полезная информация». Объяснения по работе кода содержатся в комментариях к нему.
Я писал этот код, используя различные ресурсы, некоторые из которых я перечислил в разделе «полезная информация». Однако поскольку я закончил проект уже больше года назад, к тому времени, когда я решил написать эту статью, я уже не смог найти некоторые из них, а некоторые сохранённые ссылки уже не работали.
В коде содержится довольно сложная функция для мигания светодиодами. Для улучшения внешнего вида я использовал обучающий материал, где описано, как сделать «дышащее» мигание: sean.voisen.org/blog/2011/10/breathing-led-with-arduino
Человеческий глаз не воспринимает яркость света линейно, поэтому простое линейное увеличение яркости выглядит ненатурально.
Шаг 8: подключение проводов и светодиодных полосок
Время финального подключения! Если всё проверено и всё работает, подключение должно пройти без особых проблем – просто пайка кучи одинаковых комплектующих. Для удобства обслуживания всей схемы я сделал коробку из фанеры по размеру технического лючка – поэтому при необходимости я могу просто вынуть всю схему из потолка. Оптоволокно я провёл по пластиковым сантехническим трубам, размер которых примерно совпадает с 3 Вт светодиодами, а потом просверлил отверстия того же диаметра в фанере и вставил их туда. Таким образом я легко могу отсоединять оптоволокно от светодиодов по необходимости.
Светодиодные полоски предлагаю крепить на алюминиевых пластинах для охлаждения, поскольку они сильно греются.
Шаг 9: отладка и тонкая подстройка
Допустим, вы проверили схему, но после того, как установили её, она не работает… или что-то ещё не работает, как надо. Тогда проблема, скорее всего, в пайке – если в тестовой сборке всё работало, то и в финальной тоже должно. Надеюсь, что это не ваш случай, однако в качестве примера я приведу одну из проблем, с которыми столкнулся сам.
Когда я понижал яркость светодиодов до минимума, полоски могли перестать работать или начать мигать. Потратив огромное количество времени на исследования и отладку, я обнаружил, что проблема была в медленном переключении IRL540, а решение – в простом понижении частоты ШИМ до 50 Гц. Проблема почти решилась, и мигание осталось только на самых низких величинах – однако это не имеет значения, поскольку я их не использую. Проблема вернулась, когда я решил снять ролик об этом потолке, поскольку такую небольшую частоту хорошо видно на камерах – это всё равно, что снимать телевизор. Для решения этой проблемы я собрал на макетной плате небольшую схему, использовав транзисторы 2N2222 вместо IRL540, просто для съёмки видео.
Теперь, когда всё на месте и работает, можно заняться тонкой подстройкой яркости звёзд, реагированием на музыку, режимами затухания и всем остальным.