Нм что это за единица измерения физика
Нанометры в метр
1 нанометр = 0.000000001 метра
Нанометр (от лат. nanos — карлик и др.-греч. μέτρον —мера, измеритель; русское обозначение: нм; международное: nm) — дольная единица измерения длины в Международной системе единиц (СИ), равная одной миллиардной части метра (то есть 10 −9 метра). Устаревшее название — миллимикрон (10 −3 микрона; обозначения: ммк, mµ или (реже) µµ). Нанометр часто ассоциируется с областью нанотехнологий и с длиной волны видимого света. Это одна из наиболее часто используемых единиц измерения малых длин. Нанометр также наиболее часто используется в описании технологий полупроводникового производства.
Нанометр равен 10 ангстремам (ангстрем — устаревшая единица измерения, не входящая в систему СИ). Один нанометр приблизительно равен условной конструкции из десяти молекул водорода выстроенных в линию, если за молекулу водорода принять два боровских радиуса.
Длины волн видимого света, воспринимаемого человеком, лежат в диапазоне 380—760 нм (соответственно цвет такого излучения изменяется в диапазоне от фиолетового до красного).
Расстояние между атомами углерода в алмазе равно 0,154 нм.
Данные на компакт-дисках записываются в виде углублений (по-английски такое углубление называется pit), имеющих размеры: 100 нм глубины и 500 нм ширины.
Современные передовые технологии производства микросхем оперируют с элементами размером 14—22 нм, переходят на элементы 10 нм и планируют уменьшить их в будущем до 5 нм.
Нанометр
Наноме́тр (нм, nm) — единица измерения длины в метрической системе, равная одной миллиардной части метра (т. е. 10 −9 метра). Устаревшее название — миллимикрон (10 −3 микрона; обозначения: ммк, mμ)
Это одна из наиболее часто используемых единиц измерения малых длин, равная 10 ангстремам — общепризнанной единице измерения, не входящей в систему СИ. Она часто ассоциируется с областью нанотехнологий и с длиной волны видимого света.
Один нанометр приблизительно равен условной конструкции из десяти атомов водорода выстроенных в линию, если за диаметр атома водорода принять два боровских радиуса.
Для человека длина волны видимого света составляет 380—760 нм (соответственно изменение спектра от фиолетового до красного цвета).
Расстояние между атомами углерода в алмазе равно 0,154 нм.
Данные на компакт-дисках записываются в виде углублений (по-английски такое углубление называются pit), имеющих размеры: 100 нм глубины и 500 нм ширины.
См. также
Примечания
Полезное
Смотреть что такое «Нанометр» в других словарях:
нанометр — нанометр … Орфографический словарь-справочник
нанометр — • нанометр (нм) единица длины, равная 10–9 м, 10–3 мкм, или 10 ангстремам (А). (Источник: «Микробиология: словарь терминов», Фирсов Н.Н., М: Дрофа, 2006 г.) Нанометр (нм) ед. измерения длины, равная 10″9м. (Источник: «Словарь терминов… … Словарь микробиологии
НАНОМЕТР — (обозначение нм), единица длины, равная 10 9 м. Применяется для измерения межмолекулярных расстояний и длин волн. Заменил АНГСТРЕМ единицу, ранее употреблявшуюся для подобных измерений … Научно-технический энциклопедический словарь
нанометр — сущ., кол во синонимов: 2 • единица (830) • миллимикрон (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
нанометр — а, м. nanomètre m. Одна миллиардная метра. В Гарвардском университете (США) созданы самые тонкие проволоки их диаметр менее десяти нанометров (тысячных долей микрона). Такая проволока состоит из всего 20 рядов атомов. НИЖ 1999 9 17. Километры,… … Исторический словарь галлицизмов русского языка
нанометр — миллимикрон (10 9 метра) [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии Синонимы миллимикрон EN nanometer … Справочник технического переводчика
Нанометр нм — Нанометр, нм * нанаметр, нм * nanometer or nm единица длины, равная 10 Е, или 10 9 м … Генетика. Энциклопедический словарь
нанометр — nanometras statusas T sritis Standartizacija ir metrologija apibrėžtis Dalinis ilgio matavimo vienetas, 10⁹ karto mažesnis už metrą: 1 nm = 10⁻⁹ m. atitikmenys: angl. nanometer; nanometre vok. Nanometer, n rus. нанометр, m pranc. nanomètre, m … Penkiakalbis aiškinamasis metrologijos terminų žodynas
Понятие о нанометре

В системе СИ слово «нано-» является приставкой, которая может употребляться перед абсолютно любой физической единицей измерения. Например, нанокилограмм, нанокандела и так далее. Эта приставка означает, что нужно величину, к которой она применяется, уменьшить на 9 порядков.
Еще одной маленькой единицей измерения расстояний, которая наиболее близка к нанометру, является ангстрем. Нанометр больше него в 10 раз.
Под нанотехнологией понимают междисциплинарную современную науку, занимающуюся исследованием и изготовлением материалов, структурные единицы которых имеют масштабы от 1 до 100 нм. Термин «нанотехнология» впервые был предложен японским ученым Норио Танигучи в 1974 году.
Нанотехнология представляет собой большое количество современных узких направлений в науке: это исследование полупроводников, металлических наноструктур, свойств поверхностей, молекулярная биология, медицина и другие.
Сравнения, связанные с нанометром
Интересные данные «нанометрового» характера
Длина в нанометрах часто используется для измерения волны электромагнитного излучения в диапазоне от ультрафиолетового и до инфракрасного. Так, видимый для человека свет имеет длину волны в пределах от 400 до 700 нм.
Наши легкие способны очищаться самостоятельно от любых твердых частиц, размер которых превышает 200 нм. Если инородные тела будут меньше этой величины, то они могут попасть в кровь через легкие, распространиться по всему организму и привести к возникновению опасных заболеваний.
Толщина человеческого волоса лежит далеко за пределами нанометра. Его типичные размеры составляют 70 мкм (70 тысяч нанометров).
Как считают нанометры, как их на самом деле надо считать, и почему не все с этим согласны
Субъективное восприятие знания в голове можно разделить на несколько групп: мало что знаю и признаю́ это; что-то знаю и смогу объяснить простые вещи; много знаю и растолкую почти всё. Опасней всего оказаться во второй категории, когда кажется, что накопленной информации достаточно, чтобы комментировать новости и давать советы. Тема этой статьи — как раз из такого ряда знаний: вроде очевидно, а копнешь — всё сложно.
Есть в микроэлектронике такое понятие, как технорма (technology node; иногда пишут «critical dimension» — критический размер, но сейчас это разные понятия), ныне измеряемая теми самыми любимыми маркетологами нанометрами. Задача дать определение этому важнейшему термину не столь проста, как кажется. Когда-то под технормой понимался самый малый по длине или ширине элемент, формируемый данным технологическим процессом на фабрике (фабе, как говорят сами чиподелы). То есть для массового изготовления микросхем производственное и измерительное (метрологическое) оборудование настраивается на такой набор установок, который позволяет формировать на кристалле структуры с желаемыми параметрами и размерами — причем первое сильно зависит от второго.
Помимо технормы также важны: число слоев межсоединений (тонкие металлические и поликремниевые дорожки-проводки, соединяющие выводы транзисторов), диаметр кремниевой пластины (на ней формируется рисунок для сотен или тысяч будущих кристаллов, которые после ее распила вставят в отдельные корпуса), различные оптимизации под скорость и/или энергоэффективность и пр. С точки зрения верящего в прогресс оптимиста, главное во всем этом то, что на передовых фабах переход на новый техпроцесс происходит примерно каждые два года и является причиной выполнения «закона Мура» (хотя по факту это никакой не закон, а эмпирическая закономерность, самосбывающаяся лишь потому, что производители все еще готовы вкладывать в это деньги). Правда, рядом тут же появляется пессимист и язвительно замечает, что у слов «новый техпроцесс» может оказаться крайне неприятное для оптимиста толкование…
Самые главные (и дорогие) станки для производства микросхем — фотолитографы: именно они формируют рисунок из засветов на светочувствительном слое фоторезиста, который при травлении «чертит» очередной слой чипа. Когда технорма стала меньше длины волны света, используемого в их лазерах (а это произошло в конце 1990-х годов — вскоре после внедрения техпроцесса 250 нм), появилось два отдельных определения: для так называемых регулярных чипов (память, программируемые матрицы, фотодатчики — в том числе со встроенными логическими блоками) и для нерегулярных (сложная логика, часто содержащая кэши, буферы и все похожее на них). Тут речь идет о повторяющихся структурах на кристалле: например, ячеек любого вида памяти на современной большой микросхеме — миллиарды, но разных их видов — всего несколько. Так вот: для регулярных чипов того времени технорма — минимальный полушаг линейно-регулярной структуры (то есть одномерного ряда чего-то), а для нерегулярных — минимальная ширина дорожки нижнего уровня металла с контактами (что примерно вдвое длиннее затвора транзистора).
До субмикронных технорм (когда их и измеряли микронами, а не нанометрами) действовало простое лямбда-правило (этой греческой буквой обозначается длина волны света): если не считать разные оптические тонкости, влияющие на так называемую числовую апертуру, то при уменьшении длины волны вдвое можно формировать вдвое меньшего размера и сами структуры, главная из которых — длина затвора транзистора. Это дает вдвое бо́льшие достижимые частоты, вдвое меньшее напряжение питания и ввосьмеро (!) меньшее потребление на одно переключение транзистора между открытым и закрытым состояниями. Ясно, что такие идеалы вообще ни в какой микросхеме ни разу не соблюдались, но лучшие образцы вполне приближались к ним. (Тут автор позволит себе освободить читателя от созерцания лишних формул и таблиц.)
В 1990-е годы, после перехода на технормы менее микрона, стало применяться альфа-правило: теперь размеры отдельных элементов домножались на определенный коэффициент, который для очередного техпроцесса оказывался не обязательно линейно соответствующим разнице в технорме. Если точнее, каждый следующий шаг процесса выбирается примерно на 30% меньше предыдущего — вот откуда получается всем известный «нанометровый» ряд: 350, 250, 180, 130, 90, 65, 45, 32, 22… Можно наивно предположить, что основные параметры транзистора (частота, потребление и размеры) должны ровно так же уменьшаться на тот же коэффициент (в нужной степени). В реальности же длина затвора сначала падала быстрее уменьшения размера технормы, а затем медленнее. Прочие величины также уменьшаются слабее, а в 2010-х годах у отдельных фирм стали появляться чудеса и покруче, когда размеры отдельных частей вообще не меняются в новом процессе.























