Нейтронная звезда что это кратко и понятно
Нейтронная звезда
Или их еще называют пульсарами, магнетарами, радиопульсарами, рентгеновскими пульсарами
Нейтронная звезда — очень быстро вращающееся тело, оставшееся после взрыва сверхновой звезды. При диаметре 20 километров это тело имеет массу сравнимую с солнечной, один грамм нейтронной звезды весил бы в земных условиях более 500 миллионов тонн! Такая огромная плотность возникает от вдавливания электронов в ядра, от чего они объединяются с протонами и образуют нейтроны. По сути, нейтронные звезды по свойствам, включая плотность и состав, очень похожи на атомные ядра. Но есть существенная разница: в ядрах нуклоны притягивает сильное взаимодействие, а в звездах – сила гравитации.
Что из себя представляет
Состав нейтронных звёзд
Состав этих объектов (по понятным причинам) изучен пока только в теории и математических расчетах. Однако, известно уже многое. Как и следует из названия, состоят они преимущественно из плотно упакованных нейтронов.
Атмосфера нейтронной звезды имеет толщину всего несколько сантиметров, но в ней сосредоточено все её тепловое излучение. За атмосферой находится кора, состоящая из плотно упакованных ионов и электронов. В середине находится ядро, состоящее из нейтронов. Ближе к центру достигается максимальная плотность вещества, которая в 15 раз больше ядерной. Нейтронные звезды — самые плотные объекты во вселенной. Если попытаться и далее увеличивать плотность вещества произойдет коллапс в черную дыру, или образуется кварковая звезда.
Магнитное поле
Типы нейтронных звезд
Пульсары
Это обобщающее название для всех нейтронных звезд. Пульсары имеют четко определенный период вращения, который не меняется очень долгое время. Благодаря этому свойству их прозвали «маяками вселенной»
Частицы узким потоком на очень высоких скоростях вылетают через полюса, становясь источником радиоизлучения. Из-за несовпадения осей вращения, направление потока постоянно меняется, создавая эффект маяка. И, как у каждого маяка, у пульсаров своя частота сигнала, по которой его можно идентифицировать.
Практически все обнаруженные нейтронные звёзды существуют в двойных рентгеновских системах или в качестве одиночных пульсаров.
Магнетары
При рождении очень быстро крутящейся нейтронной звезды, общие вращение и конвекция создают громадное магнитное поле. Это происходит за счёт процесса «активного динамо». Это поле превышает величины полей обычных пульсаров в десятки тысяч раз. Действие динамо заканчивается через 10 – 20 секунд, и происходит охлаждение атмосферы звезды, но магнитное поле успевает возникнуть заново за этот срок. Оно неустойчиво, и быстрая смена его структуры порождает выброс гигантского количества энергии. Получается, что магнитное поле звезды разрывает её саму. Кандидатов на роль магнетаров в нашей галактике насчитывается около десятка. Появление его возможно из звезды, превосходящей минимум в 8 раз массу нашего Солнца. Размеры же их порядка 15 км в диаметре, при массе около одной солнечной. Но достаточного подтверждения существования магнетаров пока не получено.
Рентгеновские пульсары.
Они считаются другой фазой жизни магнетара и излучают исключительно в рентгеновском диапазоне. Излучение возникает в результате взрывов, имеющих определённый период.
Некоторые нейтронные звёзды появляются в двойных системах или же приобретают компаньона, захватив его в свое гравитационное поле. Такой компаньон будет отдавать своё вещество агрессивной соседке. Если компаньон нейтронной звезды по массе не меньше Солнца, то возможны интересные явления – барстеры. Это рентгеновские вспышки, продолжительностью в секунды или минуты. Но они способны усилить светимость звезды до 100 тыс. солнечных. Перенесённые с компаньона водород и гелий наслаиваются на поверхности барстера. Когда слой становится очень плотным и горячим, запускается термоядерная реакция. Мощность такого взрыва невероятна: на каждом квадратном сантиметре звезды выделяется мощь, эквивалентная взрыву всего земного ядерного потенциала.
При наличии компаньона-гиганта, вещество теряется им в виде звёздного ветра, а нейтронная звезда втягивает его своей гравитацией. Частицы летят по силовым линиям по направлению к магнитным полюсам. При несовпадении магнитной оси и оси вращения, яркость звезды будет переменной. Получается рентгеновский пульсар.
Миллисекундные пульсары.
Они тоже связаны с двойными системами и обладают самыми короткими периодами (меньше 30 миллисекунд). Вопреки ожиданиям, они оказываются не самыми молодыми, а достаточно старыми. Старая и медленная нейтронная звезда поглощает материю компаньона-гиганта. Падая на поверхность захватчика, материя придаёт ей вращательную энергию, и вращение звезды усиливается. Постепенно компаньон превратится в белого карлика, потеряв в массе.
Экзопланеты у нейтронных звезд
Первую экзопланету открыли при исследовании радиопульсара. Так как нейтронные звезды очень стабильны, возможно очень точно отслеживать находящиеся рядом планеты с массами, намного меньшими массы Юпитера.
Очень легко отыскалась планетная система у пульсара PSR 1257+12, удалённого от Солнца на 1000 световых лет. Рядом со звездой три планеты, имеющие массы 0,2, 4,3 и 3,6 масс Земли с периодами обращений в 25, 67 и 98 суток. Позже нашлась ещё одна планета с массой Сатурна и периодом обращения 170 лет. Также известен пульсар с планетой немного массивнее Юпитера.
На самом деле парадоксально, что возле пульсара существуют планеты. Нейтронная звезда рождается в результате взрыва сверхновой, и та теряет основную часть своей массы. Оставшаяся часть уже не обладает достаточной гравитацией для удержания спутников. Вероятно, найденные планеты образовались уже после катаклизма.
Исследования
Число известных нейтронных звёзд около 1200. Из них 1000 считаются радиопульсарами, а остальные определены как рентгеновские источники. Изучать эти объекты невозможно, послав к ним какой-либо аппарат. В кораблях «Пионер» были отправлены послания разумным существам. И местоположение нашей Солнечной системы указано именно с ориентацией на ближайшие к Земле пульсары. От Солнца линиями показаны направления на эти пульсары и расстояния до них. А прерывистость линии обозначает период их обращения.
Ближайший к нам нейтронный сосед расположен в 450 световых годах. Это двойная система – нейтронная звезда и белый карлик, период её пульсации 5,75 миллисекунды.
Вряд ли возможно оказаться рядом с нейтронной звездой и остаться в живых. Можно только фантазировать на эту тему. Да и как представить выходящие за границы разума величины температуры, магнитного поля и давления? Но пульсары ещё помогут нам в освоении межзвёздного пространства. Любое, даже самое дальнее галактическое путешествие, окажется не гибельным, если будут работать стабильные маяки, видимые во всех уголках Вселенной.
Нейтронные звезды
Нейтронные звезды являются остатками массивных звезд, которые достигли конца своего эволюционного пути во времени и пространстве.
Общие сведения
Эти интересные объекты, рождаются от некогда массивных гигантов, которые в четыре-восемь раз больше нашего Солнца. Происходит это во вспышке сверхновой.
Материалы по теме
Экзотический магнетар SGR 0418
Несмотря на свой малый диаметр — около 20 км, нейтронные звезды могут похвастаться в 1,5 раза большей массой нежели чем у нашего Солнца. Таким образом, они являются невероятно плотными.
Маленькая ложка вещества звезды на Земле будет весить около ста миллионов тонн. В ней протоны и электроны объединяются в нейтроны – этот процесс называется нейтронизацией.
Состав
Состав их неизвестен, предполагают, что они могут состоять из сверхтекучей нейтронной жидкости. Они обладают чрезвычайно сильным гравитационным притяжением, гораздо больше, чем у Земли и даже у Солнца. Это гравитационные силы особенно впечатляют, поскольку она имеет небольшой размер.
Все они вращаются вокруг оси. При сжатии, угловой момент вращения сохраняется, а из-за уменьшения размеров, скорость вращения возрастает.
Из-за огромной скорости вращения, внешняя поверхность, представляющая собой твердую «кору» периодически трескается и происходят «звездотрясения», которые замедляют скорость вращения и сбрасывают «излишки» энергии в космос.
Ошеломляющее давление, которое существуют в ядре, может быть похоже на то, которое существовало в момент большого взрыва, но к сожалению, его нельзя смоделировать на Земле. Поэтому эти объекты являются идеальными природными лабораториями, где мы можем наблюдать энергии недоступные на Земле.
Радиопульсары
Радиоульсары были открыты в конце 1967 г. аспирантом Jocelyn Bell Burnell как радиоисточники, которые пульсируют на постоянной частоте.
Радиация, испускаемая звездой, видна как пульсирующий источник излучения или пульсар.
Радиопульсары (или просто пульсар) — это вращающиеся нейтронные звезды, струи частиц которых, движутся почти со скоростью света, как вращающийся луч маяка.
После непрерывного вращения, в течение нескольких миллионов лет, пульсары теряют свою энергию и становятся нормальными нейтронными звездами. На сегодня известно только около 1000 пульсаров, хотя их могут быть сотни в галактике.
Некоторые нейтронные звезды испускают рентгеновское излучение. Знаменитая Крабовидная туманность — хороший пример такого объекта, образовавшейся во время взрыва сверхновой. Эта вспышка сверхновой наблюдалась в 1054 году нашей эры.
Магнетары
Нейтронные звезды имеют магнитное поле в миллионы раз сильнее, чем самое сильное магнитное поле, производимое на Земле. Они также известны как магнетары.
Планеты у нейтронных звезд
На сегодня известно, что у четырех есть планеты. Когда она находится в двойной системе, то возможно измерить ее массу. Из числа таких двоичных систем в радио или рентгеновском диапазоне, измеренные массы нейтронных звезд были примерно в 1.4 раза больше массы Солнца.
Двойные системы
Совсем иной тип пульсаров виден в некоторых рентгеновских двойных системах. В этих случаях, нейтронная звезда и обычная образуют двойную систему. Сильное гравитационное поле тянет материал из обычной звезды. Материал, падающий на нее в процессе аккреции, нагревается так сильно, что производит рентгеновские лучи. Импульсные рентгеновские лучи видны, когда горячие пятна на вращающемся пульсаре проходят через луч зрения с Земли.
Для бинарных систем, содержащих неизвестный объект, эта информация помогает отличить: является ли он нейтронной звездой, или например черной дырой, потому что черные дыры куда более массивные.
Похожие статьи
Понравилась запись? Расскажи о ней друзьям!
Нейтронные звезды как результат эволюции светил
Нейтроны — это тяжёлые элементарные частицы, не имеющие электрического заряда. Они, наряду с протонами, являются главными элементами ядра.
Как образуется нейтронная звезда
Считается, что образование нейтронной звезды это результат вспышки сверхновой. То есть то, что остаётся от тела после взрыва. Другими словами, это конечный продукт вспышки или звёздный остаток.
Между прочим, если такой остаток больше солнечного в три раза, то его эволюция продолжается. В результате коллапса формируется чёрная дыра.
По данным учёных, любой представитель главной последовательности, при условии массы больше Солнца в 8 раз, может эволюционировать в нейтронное светило.
«Проект-Технарь» является свободной площадкой, на которой можно найти или опубликовать чертежи, курсовые или дипломные работы на техническую тематику. Найти чертежи можно на studiplom.ru
Кроме того, часть вещества из разрушившихся слоёв попадает в центр. Благодаря чему внутренняя часть имеет высокую плотность и температуру. Надеюсь, теперь понятно, почему маленькая нейтронная звезда невероятно мала и тяжела.
Стоит отметить, что свою энергию после взрыва светило начинает переносить не равномерно, а потоками. Что, собственно, и вызывает его нестабильность.
Получается, что само ядро остается, но его свойства (масса, плотность, температура и т.д.) меняются.
Как устроены нейтронные звезды
В отличие от других тел они, главным образом, состоят из нейтронного центра (сердцевины). Отсюда, кстати, и появилось название типа.
А сверху их покрывает кора, образуемая тяжёлыми атомными ядрами, нейтронами и электронами.
Помимо этого в структуре рассматриваемых светил выделяют несколько частей.
Внутреннее строение
Какое строение имеют нейтронные звезды
Атмосфера — тоненький (не более 100 см) слой ионизированного газа, то есть плазмы. Здесь сосредоточено тепловое излучение тела.
Внешняя кора содержит ядра и электроны, по толщине может быть несколько сотен метров. Притом в ней газ представлен в разных составах. Например, самые верхние покровы состоят из невырожденного газа, а в середине он уже вырожденный. Чем глубже, тем его состояние меняется на релятивистское и ультрарелятивистское вырождение.
Внутренняя кора включает в себя электроны, свободные нейтроны и ядра атомов с множеством нейтронов. Причем количество нейтронных частиц увеличивается с глубиной. Данный слой имеет протяжённость до нескольких километров.
Внешнее ядро выделяют у объектов малой массы. Поскольку может занимать всё пространство до звёздного центра. Вдобавок оно состоит преимущественно из нейтронов. Хотя некоторая доля протонов и электронов все же есть.
Внутреннее ядро наблюдается только у массивных светил. Оно отличается высокой плотностью. А радиус, по меньшей мере, составляет несколько километров. К сожалению, точный состав внутреннего вещества ещё не известен. Но определённо в нём присутствую нейтроны, барионы и кварки. Конечно, дальнейшее изучение и исследования продолжаются. И мы когда-нибудь узнаем все тайны нейтронных звезд.
Особенности нейтронных звезд
Как оказалось, нейтронная звезда невероятно мала и тяжела. Правда, она имеет плотность намного больше атомного ядра. Но из-за давления вещества, находящегося внутри ядра, дальнейшее гравитационное сжатие не продолжается.
Собственно говоря, вес и масса нейтронной звезды приблизительно равна солнечной. При этом её размер, точнее радиус, не более 20 км.
К тому же, к отличительным характеристикам нейтронных звезд относится их вращение вокруг своей оси. Стоит отметить, высокую скорость такого движения. Если говорить точнее, она составляет несколько сотен оборотов в секунду.
Также важной чертой является сильное магнитное поле. Его мощь, в значительной мере, определяет остальные свойства и происходящие процессы.
Сила гравитации звёздных тел после вспышки сильно увеличивается. Поэтому им свойственны огромная скорость падения вещества и сжатие сердцевины. Другими словами, это объясняет резкий характер происходящих процессов.
А вот столкновение внешних и внутренних слоёв нейтронных звезд может привести к разрушению атомов падающего вещества. При этом эти атомы превращаются в нейтроны.
Классификация
Разумеется, нейтронные звезды, как и любые другие объекты, делятся на виды. Хотя учёные установили, что они могут за свою жизнь изменяться.
В основном на их развитие влияют скорость вращения вокруг своей оси и магнитное поле. Так как собственное вращение со временем тормозится, а магнитное поле слабеет, то другие свойства и процессы также меняются.
Нейтронные звезды, их типы и примеры
Радиопульсары или, по-другому, эжекторы обладают высокой вращательной скоростью и сильными магнитными полями. Они, так сказать, выталкивают заряженные релятивистские частицы, излучаемые в радиодиапазоне. Кстати, первым из данного вида звёздных тел открыли радиопульсар PSR B1919+21.
Пропеллеры, напротив, не выделяют заряженные частицы. Однако из-за высокой скорости вращения и силы магнитной области вещество поддерживается над поверхностью. Правда, данный тип светил сложно обнаружить и он мало изучен.
Рентгеновский пульсар или аккретор отличается тем, что в нём вещество попадает на поверхность. Потому как небольшой темп оборотов позволяет ему спускаться, но уже в состоянии плазмы. В свою очередь, она нагревается благодаря магнитному полю. Как следствие, это вещество ярко светится в рентгеновском диапазоне.
А вот пульсация возникает в результате вращения, при котором происходит затмение горячей материи. К примеру, первый аккретор — Центавр X-3 не только имел пульсацию своей яркости, но и постоянно менял период колебаний.
Рентгеновский пульсар
Георотатор имеет малую вращательную скорость, что вызывает приращение массы тела с помощью силы гравитации вещества (газа) из окружающего пространства. Такой процесс, между прочим, называется аккрецией.
Несмотря на это, границы области вокруг небесного тела позволяют магнитному полю удерживать плазму до того, как она окажется на поверхности.
Эргозвезда, на самом деле, представляет собой теоретически возможный тип. По мнению учёных, такой объект может сформироваться при слиянии или столкновении нейтронных звёзд.
Предполагают, что в ней имеется эргосфера, то есть область пространства-времени, расположенная рядом с чёрной дырой. Она, по идее, лежит где-то между горизонтом событий и пределом статичности. Проще говоря, подобные объекты имеют место быть, но это не точно.
Тайны нейтронных звезд
Можно сказать, что до реального открытия этот звёздный класс был сначала спрогнозирован в теории. То есть астрономы предполагали возможность появления подобных космических объектов.
Впервые же, их открыли лишь в 1967 году. Причем это был радиопульсар B1919+21 из созвездия Лисички.
Сейчас же число найденных нейтронных звёзд свыше 2500. Как выяснилось, из них лишь немногие входят в кратные системы. В действительности же, большая часть это отдельные светила.
К удивлению, некоторые считают, что в скором времени появится в Солнечной системе нейтронная звезда, которая принесёт апокалипсис и конец света.
По некоторым данным, периодически в нашей системе появляется небесное тело с сильным магнитным полем. Его часто называют планетой Нибиру.
Более того, легенды и мифы рассказывают о том, что этот таинственный объект уже посещал нас. Такое нашествие всегда несёт за собой разрушение. Опять-таки, согласно древним легендам подобное происходило несколько раз. И, если это правда, наша планета всё выдержала.
На самом деле, астрономы замечали странный объект, который пока не идентифицировали. Хотя нет никаких доказательств о том, что он приближается к Земле и вообще, что это нейтронная звезда. Иногда, люди любят приукрашивать действительность.
Планета Нибиру (изображение)
Итак, мы разобрались что такое нейтронная звезда. Надеюсь, вам было интересно узнать как появляются и на какие типы делится этот вид светил.
10 увлекательных фактов о нейтронных звездах
Как и почти все во Вселенной, звезды рождаются, живут своей жизнью, а затем умирают на протяжении миллионов, а иногда и миллиардов лет. Потребовались десятилетия, чтобы исследователи определили и каталогизировали различные типы звезд, как они формируются, и их эволюционную последовательность.
То, как звезда заканчивает свою жизнь, в конечном счете зависит от ее одной характеристики: массы. Если это будет звезда с низкой массой, то она закончится как белый карлик, черная дыра, если это массивная звезда, но все, что находится между ними, коллапсирует в нейтронную звезду.
Нейтронные звезды возникают в результате взрыва сверхновой (происходящего на последних этапах жизни звезды), которому способствует гравитационный коллапс, который сжимает звездное ядро так сильно, что оно достигает плотности атомных ядер. Со временем они могут развиваться дальше различными способами.
Здесь мы собрали 15 интересных фактов о нейтронных звездах.
10. Есть три типа нейтронных звезд
По своим уникальным характеристикам нейтронные звезды можно разделить на три подтипа; Рентгеновские пульсары, магнетары и радиопульсары. Радиопульсары или просто пульсары являются наиболее распространенным типом нейтронных звезд, излучающих мощные электромагнитные импульсы. Однако их чрезвычайно сложно обнаружить.
Поскольку пульсары излучают электромагнитное излучение от своих магнитных полюсов, их можно наблюдать только тогда, когда луч излучения направлен на Землю. С Земли этот луч будет выглядеть так, как будто он идет из фиксированной точки в пространстве. Это явление также известно как эффект маяка.
Эти пульсары, если их найти в «особом состоянии», могут дать нам бесценные знания о Вселенной.
Художественное представление магнетара
Рентгеновские пульсары также известны как пульсары с аккреционным питанием, которые обычно существуют в двойной системе звезд, где нейтронная звезда находится на орбите с другим звездным спутником. Они излучают энергию в рентгеновском спектре.
Подтипы рентгеновских пульсаров включают миллисекундные пульсары (рециркулированные пульсары), низкомассовые рентгеновские бинарные системы, среднемассовые рентгеновские бинарные системы и высокомассовые рентгеновские бинарные системы.
9. Они очень горячие и очень плотные
Температура поверхности почти каждой наблюдаемой нейтронной звезды составляет около 600 000 К, и она еще выше в новообразованных звездах. Для сравнения, Солнце имеет температуру поверхности приблизительно 5 775 K, в то время как Сириус, белый карлик, имеет температуру поверхности 9 940 K.
Нейтронная звезда компактна и настолько плотна, что ложка, полная образца материала звезды, весила бы намного больше миллиарда тонн. Ее плотность сильно варьируется, которая увеличивается с глубиной. Вблизи ядра нейтронная звезда становится плотнее атомного ядра.
Кроме того, их магнитное поле примерно в один квадриллион раз, а гравитационное поле примерно в 200 миллиардов раз сильнее, чем у Земли. Однако, причина их мощного магнитного поля остается загадкой.
8. Ближайшая нейтронная звезда
Художественная концепция «изолированной нейтронной звезды»
Еще в 2007 году группа исследователей обнаружила своеобразный рентгеновский источник в созвездии Малой Медведицы на расстоянии 250-1000 световых лет от Земли, который они позже определили как нейтронную звезду. Возможно, это может быть ближайшая к Земле нейтронная звезда.
Официально обозначенная как 1RXS J141256.0 + 792204, нейтронная звезда получила прозвище Кальвера после антагониста популярного фильма 1960-х годов «Великолепная семерка». В отличие от большинства наблюдаемых звезд, Кальвера принадлежит к редкой группе изолированных нейтронных звезд, у которых нет остатка сверхновой звезды и звезды-компаньона.
7. В Млечном Пути есть около двух тысяч известных пульсаров
Согласно оценкам, основанным на количестве взрывов сверхновых, в нашей галактике Млечный Путь должно присутствовать по меньшей мере 100 миллионов нейтронных звезд. Однако на сегодняшний день астрономы обнаружили лишь менее двух тысяч пульсаров (наиболее распространенный тип нейтронной звезды).
Этот огромный контраст в численности мог быть вызван их возрастом. Нейтронным звездам, как правило, миллиарды лет, что дает им достаточное время для охлаждения. Без необходимой энергии для излучения на разных длинах волн многие пульсары становятся почти невидимыми для наших спутников. Даже молодые пульсары могут остаться незамеченными из-за их узкого поля излучения.
6. Самая быстрая нейтронная звезда вращается со скоростью 716 раз в секунду
Новорожденные нейтронные звезды могут достигать чрезвычайно высокой скорости вращения благодаря сохранению момента импульса. Самая быстрая вращающаяся нейтронная звезда, зарегистрированная на сегодняшний день, это PSR J1748-2446ad, расположенная в созвездии Стрельца, на расстоянии около 18 000 световых лет от Земли.
Далекий пульсар вращается с бешеной скоростью 716 раз в секунду или 43 000 оборотов в минуту. Исследования подтвердили, что звезда имеет массу чуть меньше двух солнечных масс и радиус менее 16 км.
5. Скорость их вращения может увеличиться
В некоторых случаях нейтронная звезда в двойной системе может начать поглощать аккрецированную материю или плазму от своей звезды-компаньона. Этот процесс может значительно увеличить скорость вращения нейтронной звезды, а также может изменить ее форму на сжатый сфероид. Эти изменения вызваны взаимодействием магнитосферы звезды и плазмы.
Хотя этот феномен впервые наблюдался в нескольких рентгеновских пульсарах, таких как Centaurus X-3 и Hercules X-1, в настоящее время он наблюдается и в других подобных пульсарах. С другой стороны, также регистрируется долгосрочное уменьшение периода импульса Centaurus X-3.
4. Нейтронные звезды могут иногда подвергаться «сбоям»
Художественная концепция «звездного землетрясения»
Ряд недавних исследований показали, что уровень энергии, выделяющейся во время звездного землетрясения, будет недостаточным для возникновения сбоя. Вместо этого была выдвинута новая теория, в которой эти сбои могут быть объяснены с помощью возмущений в гипотетическом сверхтекучем ядре пульсара.
3. Может существовать в сложной двойной системе
Но в 2003 году международная группа радиоастрономов из обсерватории Паркса (Австралия) обнаружила двойную систему с двумя пульсарами, то есть двумя пульсирующими нейтронными звездами в гравитационно связанной системе. Это единственная известная нам двойная система пульсаров. Два пульсара обозначены как PSR J0737-3039A и PSR J0737-3039B.
2. Нейтронные звезды также могут принимать планеты
Художественная концепция системы PSR B1257 + 12
Как и другие, нейтронные звезды могут также принимать планеты и даже иметь четко определенную планетную систему. Теоретически, эти экзопланеты могут быть местными, захваченными или существующими в околоземной форме (планета в двойной системе звезд).
Кроме того, пульсирующая нейтронная звезда в двойной системе может полностью удалить атмосферу своей звезды-компаньона, оставив только голую небесную массу. Эти массы можно интерпретировать либо как планету, либо как звездный объект.
Только две такие планетные системы были подтверждены на сегодняшний день. Первая состоит из трех планет, а именно Полтергейста, Фобетора и Драугра, вращающихся вокруг PSR B1257 + 12. Вторая система содержит только один внесолнечный мир, и она вращается вокруг PSR B1620-26.
1. Столкновение двух нейтронных звезд
17 августа 2017 года около 70 различных обсерваторий по всему миру, включая Virgo и LIGO, обнаружили сигнал гравитационной волны, теперь известный как GW170817. Эта гравитационная волна возникла в течение последних нескольких минут слияния двух нейтронных звезд. Хотя это было не первое обнаруженное открытие, оно считается прорывным открытием в астрономии.
Причина этого заключается в том, что все ранее записанные гравитационные волновые сигналы были вызваны слиянием черных дыр, которые не испускают никакого значительного электромагнитного сигнала. Вскоре после столкновения космический гамма-телескоп Ферми наблюдал короткий гамма-всплеск, обозначенный как GRB 170817A.
Несколько коротких фактов
Hulse-Taylor binary или PSR B1913+16-это пульсар, который вместе с нейтронной звездой образует бинарную звездную систему. После своего открытия в 1972 году он стал первым в истории бинарным пульсаром, который был обнаружен и оказался решающим в изучении гравитационных волн. Это открытие и дальнейший анализ принесли Расселу Алану Халсу и Джозефу Хутону Тейлору-младшему Нобелевскую премию по физике в 1993 году.
Сопоставимый с пределом Чандрасекара (максимальная масса, при которой белый карлик может оставаться стабильным), предел Толмана–Оппенгеймера–Волкофа является верхним потолком массы нейтронной звезды, после чего мертвая звезда далее коллапсирует в черную дыру. Его значение колеблется от 1,5 до 3,0 солнечной массы.
Существование нейтронных звезд было предсказано астрономами Вальтером Бааде и Фрицем Цвицким в 1934 году, более чем за три десятилетия до того, как они были впервые подтверждены.
Остальные шесть звезд в группе: RX J0806.4-4132, RX J0720.4-3125, RBS1556, RBS1223, RX J0420.0-5022 и 1RXS J214303.7 + 065419. Каждый из семи источников рентгеновского излучения обнаружен спутником ROSAT.