Неверно что при статической биометрии идентификационным признаком является
Основы биометрии
Эта статья в какой-то мере является продолжением прошлой, а в какой-то её приквэлом. Здесь я расскажу про основы построения любой биометрической системы и про то, что осталось за кадром прошлой статьи, но обсуждалось в комментариях. Акцент сделан не на сами биометрические системы, а на их принципах и области действия.
Тем, кто не читал статью, или уже забыл — советую просмотреть что такое FAR и FRR, так как эти понятия будут использоваться и здесь.
Обратите внимание, статья 2011 года. С тех пор произошло пару революций в ComputerVision. Тут, конечно, более общие вещи находятся, но, наверное, если вы не археолог, вы ищете не это.
Если вам нужна биометрия сейчас — обратите внимание на лица (ссылка на статью 2018 года в 2021 тоже немного не актуальна, на все же). А так, я часто пишу на своем канале (vk, telegram) про более новые методы/подходы.
Общие понятия
Любая аутентификация человека строиться на трёх традиционных принципах:
1) По собственности. К собственности может относиться пропуск, пластиковая карта, ключ или общегражданские документы.
2) По знаниям. К знаниям относятся пароли, коды или информация (например девичья фамилия матери).
3) По биометрическим характеристикам. Подробнее о том, какие бывают биометрические характеристики я говорил в предыдущей статье.
Эти три принципа как могут использоваться по отдельности, так и использоваться в группах. Эта методология и порождает два основных направления биометрии.
Верификация
Верификацией называется подтверждение личности человека через биометрический признак, где первичная аутентификация прошла по одному из первых двух методов, указанных выше. Простейшим верификатором можно назвать пограничника, производящего верификацию вашего лица с вашим паспортом. Верификации подразумевает значительно большую надёжность системы. Вероятность того, что система пропустит нарушителя, не применяющего средства преодоления равна FAR используемого биометрического метода. Даже для самых слабых биометрических систем эта вероятность ничтожно мала. Основными минусами верификации являются два пункта. Первый — человеку требуется носить с собой документ или помнить пароль системы. Всегда существует проблема потери или забывания информации. Так же верификация принципиально невозможна для скрытной аутентификации.
Работу системы доступа, основанной на биометрической верификации можно представить следующим способом:
Идентификация
Скрытная идентификация
В отличие от верификации идентификация может быть скрытной для человека. Как она возможна и стоит ли её бояться? Попробую вкратце рассказать те мысли, которые бытуют среди людей занимающихся биометрией. В прошлой статье эта мысль осталась незаконченной.
Рассмотрим технологии, которые могут позволить хотя бы в некоторых случаях скрытно от человека определить его личность. Во-первых, сразу стоит отбросить все контактные методы. Размещать сканеры отпечатков пальцев в ручках дверей не лучшая затея. Их заметно, многие не касаются ручек, контактные сканеры пачкаются, и.т.д. Во-вторых, можно сразу отбрасывать методы, где максимальная дальность ограниченна 10-15 сантиметрами (например вены рук). В-третьих, можно отбросить всю динамическую биометрию, так как там слишком низкие показатели FAR и FRR.
Остаётся всего две технологии. Это технологии, где в качестве сканеров данных выступают камеры: распознавание по лицам (2D, 3D) и распознавание по радужной оболочке.
Первую из них, распознавание по 2D лицам, уже неоднократно пытались внедрить(из-за её простоты), но всё время безуспешно. Это обусловлено низкими статистическими параметрами системы. Если в базе разыскиваемых личностей находится всего 100 человек, то каждый 10 прохожий будет объявляться разыскиваем. Даже у милиционера в метро КПД значительно выше.
Две следующих технологии очень похожи. Для обеих возможно использование на отдалении от человека, но обе должны иметь достаточное количество оборудования. Как 3D сканер лица, так и сканер радужной оболочки можно ставить в местах, где есть узкие проходы. Это эскалаторы, двери, лестницы. Примером такой системы может служить система, созданная SRI International (сейчас у них мёртвый сайт, но есть практически аналог от AOptix). Я не на 100% уверен, что система от SRI International рабочая, слишком много ошибок в видео, но принципиальная возможность создания существует. Вторая система работает, хотя там и слишком мала скорость для скрытной системы. Сканеры 3D лица работают примерно по тому же принципу: детектирование в узком проходе. В случае 3D лица и распознавании по глазам надёжность работы достаточно высокая. Если база 100 преступников, то проверять придётся лишь каждого 10000 из мирных граждан, что уже достаточно эффективно.
Ключевой особенностью любой скрытой биометрии является то, что человек не должен о ней знать. Вставить в глаза линзы, или изменить форму лица несколькими накладками можно незаметно для окружающих, но заметно для биометрической системы. Почему-то у меня есть подозрение, что в скором будущем спрос на линзы, изменяющие радужку значительно возрастёт. Возрос же в Британии спрос на банданы. А события там только первые ласточки биометрии.
Модель биометрической системы доступа и её частей
В случае, если биометрическая система используется только на одной проходной, то особо без разницы, разделена ли система на части или нет. На месте можно добавлять человека в базу и проверять его. Если же существует несколько проходных, то нерационально хранить на каждой проходной отдельную базу данных. Более того, такая система не динамична: добавление или удаление пользователей требует обхода всех сканеров.
Биометрический сканер
Биометрический сканер это часть любой биометрической системы, без которой она не может существовать. В некоторых системах биометрический сканер это просто видеокамера, а в некоторых (например сканеры сетчатки), это сложный оптический комплекс. Двумя основными характеристиками биометрического сканера являются его принцип деятельности (контактный, бесконтактный) и его скорость (количество человек в минуту, которое он может обслужить). Для тех биометрических характеристик, чьё использование уже вошло в норму, сканер можно купить отдельно от логической системы. В случае, если сканер физически разделён с алгоритмом сравнения и с базой, то сканер может выполнять первичную обработку полученной биометрической характеристики (например для глаза это выделение радужки). Это действие выполняется для того, чтобы не перегружать канал общения сканера и основной базы. Так же, в сканере, отделённом от базы, обычно встроена система шифрования данных, чтобы обезопасить передачу биометрических данных.
Алгоритм сравнения + база данных
Эти две части биометрической системы обычно живут по соседству и часто дополняют друг друга. Для некоторых биометрических признаков алгоритм сравнения может при выполнять оптимизированных поиск по базе (сравнение по пальцам, сравнение по лицу). А в некоторых (глаза), для полного сравнения ему в любом случае нужно обойти всю базу.
Алгоритм сравнения имеет много характеристик. Его две основных характеристики, FAR и FRR во многом определяют биометрическую систему. Так же стоит отметить:
1) Скорость работы. Для некоторых сравнений (глаза), скорость работы может достигать сотен тысяч сравнений в секунду на обычном компьютере. Этой скорости хватает для того, чтобы обеспечить любые нужды пользователей, не замечая временной задержки. А для некоторых систем (3D лицо) это уже достаточно значащая характеристика системы, требующая большой вычислительной мощности для сохранения скорости работы при увеличении базы.
2) Удобство работы. По сути, удобство любой системы во многом устанавливается отношением FAR, FRR. В системе мы можем немножко изменять их значение, так, чтобы сделать акцент в сторону скорости или сторону надёжности. Грубо говоря, получается примерно такой график:
В случае если мы хотим высокого уровня надёжности, мы выбираем положение в левой его части. А если пользователей мало, то неплохие показатели будут и в правой части графика, где будет высокие характеристики удобства, а значит и высокая скорость работы.
«Сделать что-нибудь»
После сравнения биометрическая система должна выдать результаты сравнения на управляющие органы. Дальше это может быть как команда «открыть дверь», так и информация «такой-то такой-то пришёл на работу». А вот что дальше делать с этой информацией должны решать установщики системы. Но и тут не всё так просто, надо учитывать возможности атаки:
Атака на биометрическую систему
Несмотря на то, что многие биометрические системы снабжены алгоритмами, способными определить атаку на них, этого не достаточно чтобы относиться к безопасности беспечно. Самой простой атакой на идентификационную систему является многократное сканирование. Предположим ситуацию: в фирме служит порядка сотни человек. Злоумышленник подходит к биометрической системе пропуска и многократно сканируется на ней. Даже для надёжных систем через пару тысяч сканирований возможно ложное определение и пропуск злоумышленника на объект. Чтобы избежать этого многие системы отслеживают неудачные сканирования и после 10-15 попыток блокируют вход. Но в случаях, когда система этого не может делать — эта задача ложится на пользователя. К сожалению, об этом часто забывают.
Второй способ атаки на биометрическую систему — подделка объекта сканирования. В случае, если система имеет алгоритмы защиты от подделки, важно правильно на них среагировать. Обычно эти алгоритмы тоже вероятностные и имеют свой FAR и FRR. Так что не нужно забывать вовремя отслеживать сигналы об атаке и высылать охранника.
Кроме атаки на саму систему возможно атаковать окружение системы. Когда-то мы натолкнулись на забавную ситуацию в этой стране. Многие интеграторы не особо запариваются над передачей данных. Для передачи они используют стандартный протокол Виганда. При этом особо не запариваясь в большинстве случаев они его даже не шифруют. Так что проще не систему обманывать, а найти провод и послать ключик через него…
Надеюсь, что мои размышления о том, какая бывает биометрия и с чем её едят — когда-нибудь вам помогут. Или для того, чтобы поставить себе такую систему, или для того, чтобы обмануть чужую)
Многоуровневая идентификация в системах контроля доступа
Криминальная безопасность
Соответственно в регламенте устанавливаются требования к техническим средствам противо-криминальной защиты, которые должны обеспечивать криминальную безопасность. Причем понятие криминальной безопасности рассматривается с учетом террористических угроз, которые также относятся к криминальным действиям.
В значительной мере террористические и криминальные угрозы связаны с преднамеренными действиями человека в целях несанкционированного проникновения на объект для осуществления или подготовки к осуществлению криминальных или террористических действий. Роль технических средств обеспечения проти-вокриминальной защиты объектов и имущества в этом случае состоит в защите от несанкционированного проникновения.
Средства и системы контроля и управления доступом могут быть рассмотрены как технические средства защиты объектов и имущества от несанкционированного проникновения и способны играть существенную роль в защите от террористических и криминальных угроз, так как контроль доступа является фундаментальным понятием процесса обеспечения безопасности Любая система безопасности должна определить человека по принципу «свой/чужой» для защиты объекта от проникновения посторонних лиц.
Принципы построения системы противокриминальной защиты
Эффективность СКУД в составе ИСБ может определяться по степени (уровню или классу) обеспечения защиты объекта (помещения, зоны) от несанкционированного проникновения При определении этого показателя, конечно, необходимо учитывать множество факторов, исходя при этом из общих принципов построения системы противокриминальной защиты объекта:
Принцип адекватности принятым моделям угроз предполагает, что принятые на объекте организационные и административные меры, технические способы реализации защиты объектов и их элементов должны соответствовать принятым угрозам и моделям нарушителей.
Зональный принцип определяет, что система противокриминальной защиты объекта должна предусматривать организацию и создание зон ограниченного доступа и охраняемых зон, обеспечивающих «эшелонированную» защиту охраняемых объектов и их критических элементов. Принцип равнопрочности требует обеспечения заданного уровня эффективности системы противокриминальной защиты для всех выявленных в процессе анализа уязвимости типов нарушителей и способов совершения криминальных актов.
Принцип адаптивности определяет, что система противокриминальной защиты не должна создавать препятствий функционированию объекта и должна адаптироваться к технологическим особенностям его работы, в том числе в чрезвычайных ситуациях, с учетом принятых на объекте мер технологической и пожарной безопасности.
Возможные несанкционированные действия
В значительной мере эффективность СКУД по защите от несанкционированного проникновения определяется выбранным методом идентификации и использованием соответствующих технологий с учетом защиты от возможных несанкционированных действий (НСД), целью которых является несанкционированное проникновение в зону доступа (охраняемый объект) Перечень основных НСД определен в ГОСТ Р 51241-98 с учетом уточнений новой редакции:
Идентификация и аутентификация
В стандарте ГОСТ Р 51241-98 термин «идентификация» определен как процесс опознавания субъекта или объекта по присущему ему или присвоенному ему идентификационному признаку. Под идентификацией понимается также присвоение субъектам и объектам доступа идентификатора и (или) сравнение предъявляемого идентификатора с перечнем присвоенных идентификаторов. С практической точки зрения процесс идентификации рассматривается как сравнение введенного в систему идентификационного признака (кода) с образцами кодов, хранящимися в памяти системы (поиск и сравнение «одного» со «многими»).
Введение в новом стандарте этих двух терминов связано с тем, что данные понятия близки по смыслу, часто используются не только в области контроля доступа, но и в информационных системах, в области защиты информации и других сферах. В СКУД предлагается рассматривать эти процессы именно так, как они определены в новом проекте стандарта.
Идентификация и аутентификация в СКУД могут производиться по следующим основным принципам.
Достоинства и недостатки идентификаторов
Принципиальной защиты от подобных случаев и преднамеренных действий в СКУД с использованием идентификации по запоминаемому и вещественному признаку нет. Это в целом существенно снижает уровень защищенности охраняемого объекта от несанкционированного проникновения.
Повысить эффективность СКУД в этом случае можно с помощью многоуровневой идентификации. Например, двухуровневая идентификация предполагает использование кодовой клавиатуры и Prox-карты. Принципиально задачу защиты от НСД такая идентификация не решает, однако затрудняет работу нарушителей, ведь им в данном случае, необходимо украсть или сымитировать карту и узнать код (пароль) доступа. Можно также дополнительно использовать охранника и выводить на экран монитора фотографию пользователя в момент прохода через турникет, но этот метод фактически означает отказ от автоматизации контроля доступа, что существенно повышает затраты и к тому же усугубляет влияние человеческого фактора.
Биометрическая идентификация
Биометрическая идентификация основана на определении индивидуальных физических признаков человека.
Принцип работы биометрических считывателей строится на анализе различных персональных физиологических характеристик людей, например отпечатков пальца, геометрии кисти руки, характеристики голоса и ряда других.
Однако основное отличие биометрического способа идентификации от других состоит в том, что идентификация носит принципиально вероятностный характер.
Для систем, использующих запоминаемые коды или вещественные идентификаторы, решение о допуске принимается детерминированно. Ошибки здесь возможны только при аппаратных неисправностях или программных сбоях.
Для биометрических систем решения принимаются на основе вероятностного характера полученной информации. В этом случае ошибки в принятии решений неизбежны, и можно говорить только о снижении вероятности появления ошибок. Уровень этих ошибок будет являться критерием качества системы и должен быть указан в руководстве по эксплуатации или, по крайней мере, известен пользователю системы на основании эмпирических данных.
Этот критерий определяется двумя техническими характеристиками:
Снижение вероятности ошибок
Очевидно, что величину ошибок хотелось бы уменьшить. Эти две характеристики можно изменять, уменьшая или увеличивая чувствительность анализирующих приборов. Однако следует иметь в виду, что, уменьшая таким способом одну величину, мы одновременно увеличиваем другую. В данной ситуации, безусловно, необходимо найти оптимальное значение, когда величина суммарных ошибок системы минимальна.
Значения допустимых вероятностей ошибок должны выбираться исходя из требуемых условий эксплуатации.
Величина ошибки первого рода определяет защищенность системы от несанкционированного допуска, и снижение ее величины более важно, чем ошибки второго рода. Пределы, в которых находится эта величина, в настоящее время составляют от 0,0001 до 0,1%.
Ошибка второго рода в основном влияет на пропускную способность системы. Если система вас не пропустила с первого раза, то можно ввести данные вторично. Это приводит к снижению пропускной способности, но зато надежность системы не ухудшается. Пределы, в которых находится эта величина, в современных системах составляют от 0,1 до1%.
Применение биометрических систем связано также с некоторыми другими трудностями и особенностями. Как правило, вероятностные характеристики биометрических считывателей, в которых заложены встроенные алгоритмы распознавания, указываются и определяются при условии проведения аутентификации, то есть при сравнении «один к одному». При использовании таких устройств в составе больших систем (при числе пользователей порядка сотен и более человек) необходимо переходить от процедуры аутентификации к процессу идентификации. При этом вероятность ошибки первого рода, которая определяет защищенность системы от несанкционированного допуска, существенно снижается.
В такой ситуации на помощь может прийти многоуровневая идентификация, предполагающая использование наряду с биометрическим считывателем клавиатуры или Рrох-карты В этом случае задача применения дополнительного уровня идентификации заключается в замене процесса идентификации по биометрическим данным аутентификацией, что обеспечивает заданную высокую надежность распознавания и существенно снижает время анализа, так как происходит только сравнение с заданным биометрическим шаблоном. Тем самым достигаются следующие результаты:
Вопрос выбора системы
В заключение можно отметить, что при выборе метода и средств идентификации, а также в ходе принятии решения об использовании многоуровневой идентификации в СКУД следует учитывать и другие возможности технологий, исходя из задач защиты объекта, степеней угроз и экономических факторов.
Зачастую правильное организационное построение структуры СКУД, учет взаимодействия технических средств в составе ИСБ, а также их рациональное использование могут обеспечить высокую эффективность и надежность защиты объекта от несанкционированных проникновений. При этом надо иметь в виду, что выбор сложных (а зачастую «модных», широко рекламируемых и соответственно дорогих) решений может оказаться неэффективным.
Современные биометрические методы идентификации
В последнее время на Хабре появляется множество статей, посвящённых Гугловским системам идентификации по лицам. Если честно, то от многих из них так и несёт журналистикой и мягко говоря некомпетентностью. И захотелось мне написать хорошую статью по биометрии, оно же мне не в первой! Пара неплохих статей по биометрии на Хабре есть — но они достаточно короткие и неполные. Тут я попробую вкратце обрисовать общие принципы биометрической идентификации и современные достижения человечества в этом вопросе. В том числе и в идентификации по лицам.
У статьи есть продолжение, которое, по-сути, является её приквэлом.
Обратите внимание, статья 2011 года. С тех пор произошло пару революций в ComputerVision.
Если вам нужна биометрия сейчас — обратите внимание на лица (ссылка на статью 2018 года в 2021 тоже немного не актуальна, на все же). А так, я часто пишу на своем канале (vk, telegram) про более новые методы/подходы.
В качестве основы для статьи будет использована совместная с коллегой публикация в журнале (БДИ, 2009), переработанная под современные реалии. Коллеги пока Хабре нет, но публикацию переработанной статьи тут он поддержал. На момент публикации статья являлась кратким обзором современного рынка биометрических технологий, который мы проводили для себя перед тем как выдвинуть свой продукт. Оценочные суждения о применимости, выдвинутые во второй части статьи основаны на мнениях людей, использовавших и внедрявших продукты, а так же на мнениях людей, занимающихся производством биометрических систем в России и Европе.
Общая информация
6%), но лишь в идеальных условиях.
Чтобы ощутить вероятности FAR и FRR, можно оценить, как часто будут возникать ложные совпадения, если установить систему идентификации на проходной организации с численностью персонала N человек. Вероятность ложного совпадения полученного сканером отпечатка пальца для базы данных из N отпечатков равна FAR∙N. И каждый день через пункт контроля доступа проходит тоже порядка N человек. Тогда вероятность ошибки за рабочий день FAR∙(N∙N). Конечно, в зависимости от целей системы идентификации вероятность ошибки за единицу времени может сильно варьироваться, но если принять допустимым одну ошибку в течение рабочего дня, то:
(1)
Тогда получим, что стабильная работа системы идентификации при FAR=0.1% =0.001 возможна при численности персонала N≈30.
Биометрические сканеры
На сегодняшний день понятие «биометрический алгоритм» и «биометрический сканер» не обязательно взаимосвязаны. Компания может выпускать эти элементы по одиночке, а может совместно. Наибольшая дифференциация производителей сканеров и производителей софта достигнута на рынке биометрии папиллярного узора пальцев. Наименьшая на рынке сканеров 3D лица. По сути уровень дифференциации во многом отображает развитость и насыщенность рынка. Чем больше выбора — тем более тематика отработана и доведена до совершенства. Различные сканеры имеют различный набор способностей. В основном это набор тестов для проверки подделан объект биометрии или нет. Для сканеров пальцев это может быть проверка рельефности или проверка температуры, для сканеров глаза это может быть проверка аккомодации зрачка, для сканеров лица — движение лица.
Сканеры очень сильно влияют на полученную статистику FAR и FRR. В некоторых случаях эти цифры могут изменяться в десятки раз, особенно в реальных условиях. Обычно характеристики алгоритма даются для некой «идеальной» базы, или просто для хорошо подходящей, где выброшены нерезкие и смазанные кадры. Лишь немногие алгоритмы честно указывают и базу и полную выдачу FAR/FRR по ней.
А теперь поподробнее про каждую из технологий
Отпечатки пальцев
Статистические характеристики метода
В качестве источника данных по FAR и FRR использовались статистические данные VeriFinger SDK, полученные при помощи сканера отпечатков пальцев DP U.are.U. За последние 5-10 лет характеристики распознавания по пальцу не сильно шагнули вперёд, так что приведённые цифры неплохо показывают среднее значение современных алгоритмов. Сам алгоритм VeriFinger несколько лет выигрывал международное соревнование «International Fingerprint Verification Competition», где соревновались алгоритмы распознавания по пальцу.
Характерное значение FAR для метода распознавания отпечатков пальцев – 0.001%.
Из формулы (1) получим, что стабильная работа системы идентификации при FAR=0.001% возможна при численности персонала N≈300.
Преимущества и недостатки метода
Преимущества метода. Высокая достоверность — статистические показатели метода лучше показателей способов идентификации по лицу, голосу, росписи. Низкая стоимость устройств, сканирующих изображение отпечатка пальца. Достаточно простая процедура сканирования отпечатка.
Недостатки: папиллярный узор отпечатка пальца очень легко повреждается мелкими царапинами, порезами. Люди, использовавшие сканеры на предприятиях с численностью персонала порядка нескольких сотен человек заявляют о высокой степени отказа сканирования. Многие из сканеров неадекватно относятся к сухой коже и не пропускают стариков. При общении на последней выставке MIPS начальник службы безопасности крупного химического предприятия рассказывал что их попытка ввести сканеры пальцев на предприятии (пробовались сканеры различных систем) провалилась — минимальное воздействие химических реактивов на пальцы сотрудников вызывало сбой систем безопасности сканеров — сканеры объявляли пальцы подделкой. Так же присутствует недостаточная защищённость от подделки изображения отпечатка, отчасти вызванная широким распространением метода. Конечно, не все сканеры можно обмануть методами из Разрушителей Легенд, но всё же. Для некоторых людей с «неподходящими» пальцами (особенности температуры тела, влажности) вероятность отказа в доступе может достигать 100%. Количество таких людей варьируется от долей процентов для дорогих сканеров до десяти процентов для недорогих.
Конечно, стоит отметить, что большое количество недостатков вызвано широкой распространённостью системы, но эти недостатки имеют место быть и проявляются они очень часто.
Ситуация на рынке
На данный момент системы распознавания по отпечаткам пальцев занимают более половины биометрического рынка. Множество российских и зарубежных компаний занимаются производством систем управления доступом, основанных на методе дактилоскопической идентификации. По причине того, что это направление является одним из самых давнишних, оно получило наибольшее распространение и является на сегодняшний день самым разработанным. Сканеры отпечатков пальцев прошли действительно длинный путь к улучшению. Современные системы оснащены различными датчиками (температуры, силы нажатия и т.п.), которые повышают степень защиты от подделок. С каждым днем системы становятся все более удобными и компактными. По сути, разработчики достигли уже некоего предела в данной области, и развивать метод дальше некуда. Кроме того, большинство компаний производят готовые системы, которые оснащены всем необходимым, включая программное обеспечение. Интеграторам в этой области просто нет необходимости собирать систему самостоятельно, так как это невыгодно и займет больше времени и сил, чем купить готовую и уже недорогую при этом систему, тем более выбор будет действительно широк.
Среди зарубежных компаний, занимающихся системами распознавания по отпечаткам пальцев, можно отметить SecuGen(USB-сканеры для PC, сканеры, которые можно устанавливать на предприятия или встраивать в замки, SDK и ПО для связи системы с компьютером); Bayometric Inc. (fingerprint scanners, TAA/Access control systems, fingerprint SDKs, embedded fingerprint modules); DigitalPersona, Inc. (USB-scanners, SDK). В России в данной области работают компании: BioLink (дактилоскопические сканеры, биометрические устройства управления доступом, ПО); Сонда (дактилоскопические сканеры, биометрические устройства управления доступом, SDK); СмартЛок (дактилоскопические сканеры и модули) и др.
Радужная оболочка
Радужная оболочка глаза является уникальной характеристикой человека. Рисунок радужки формируется на восьмом месяце внутриутробного развития, окончательно стабилизируется в возрасте около двух лет и практически не изменяется в течение жизни, кроме как в результате сильных травм или резких патологий. Метод является одним из наиболее точных среди биометрических методов.
Система идентификации личности по радужной оболочке логически делится на две части: устройство захвата изображения, его первичной обработки и передачи вычислителю и вычислитель, производящий сравнение изображения с изображениями в базе данных, передающий команду о допуске исполнительному устройству.
Время первичной обработки изображения в современных системах примерно 300-500мс, скорость сравнения полученного изображения с базой имеет уровень 50000-150000 сравнений в секунду на обычном ПК. Такая скорость сравнения не накладывает ограничений на применения метода в больших организациях при использовании в системах доступа. При использовании же специализированных вычислителей и алгоритмов оптимизации поиска становится даже возможным идентифицировать человека среди жителей целой страны.
Сразу могу ответить что я несколько предвзято и положительно отношусь к этому методу, так как именно на этой ниве мы запускали свой стартап. Небольшому самопиару будет посвящён абзац в конце.
Статистические характеристики метода
Характеристики FAR и FRR для радужной оболочки глаза наилучшие в классе современных биометрических систем (за исключением, возможно, метода распознавания по сетчатке глаза). В статье приведены характеристики библиотеки распознавания радужной оболочки нашего алгоритма — EyeR SDK, которые соответствуют проверенному по тем же базам алгоритму VeriEye. Использовались базы фирмы CASIA, полученные их сканером.
Характерное значение FAR – 0.00001%.
Согласно формуле (1) N≈3000 — численность персонала организации, при которой идентификация сотрудника происходит достаточно стабильно.
Здесь стоит отметить немаловажную особенность, отличающую систему распознавания по радужной оболочке от других систем. В случае использования камеры разрешения от 1.3МП можно захватывать два глаза на одном кадре. Так как вероятности FAR и FRR являются статистически независимыми вероятностями, то при распознавании по двум глазам значение FAR будет приблизительно равняться квадрату значения FAR для одного глаза. Например, для FAR 0,001% при использовании двух глаз вероятность ложного допуска будет равна 10-8 %, при FRR всего в два раза выше, чем соответствующее значение FRR для одного глаза при FAR=0.001%.
Преимущества и недостатки метода
Преимущества метода. Статистическая надёжность алгоритма. Захват изображения радужной оболочки можно производить на расстоянии от нескольких сантиметров до нескольких метров, при этом физический контакт человека с устройством не происходит. Радужная оболочка защищена от повреждений — а значит не будет изменяться во времени. Так же, возможно использовать высокое количество методов, защищающих от подделки.
Недостатки метода. Цена системы, основанной на радужной оболочке выше цены системы, основанной на распознавании пальца или на распознавании лица. Низкая доступность готовых решений. Любой интегратор, который сегодня придёт на российский рынок и скажет «дайте мне готовую систему» — скорее всего обломается. В большинстве своём продаются дорогие системы под ключ, устанавливаемые большими компаниями, такими как Iridian или LG.
Ситуация на рынке
На данный момент удельный вес технологий идентификации по радужной оболочке глаза на мировом биометрическом рынке составляет по разным подсчетам от 6 до 9 процентов (в то время как технологии распознавания по отпечаткам пальцев занимают свыше половины рынка). Следует отметить, что с самого начала развития данного метода, его укрепление на рынке замедляла высокая стоимость оборудования и компонентов, необходимых, чтобы собрать систему идентификации. Однако по мере развития цифровых технологий, себестоимость отдельной системы стала снижаться.
Лидером по разработке ПО в данной области является компания Iridian Technologies.
Вход на рынок большому количеству производителю был ограничен технической сложностью сканеров и, как следствие, их высокой стоимостью, а так же высокой ценой ПО из-за монопольного положения Iridian на рынке. Эти факторы позволяли развиться в области распознавания радужной оболочки только крупным компаниям, скорее всего уже занимающимся производством некоторых компонентов пригодных для системы идентификации (оптика высокого разрешения, миниатюрные камеры с инфракрасной подсветкой и т.п.). Примерами таких компаний могут быть LG Electronics, Panasonic, OKI. Они заключили договор с Iridian Technologies, и в результате совместной работы появились следующие системы идентификации: Iris Access 2200, BM-ET500, OKI IrisPass. В дальнейшем возникли усовершенствованные модели систем, благодаря техническим возможностям данных компаний самостоятельно развиваться в этой области. Следует сказать, что вышеперечисленные компании разработали также собственное ПО, но в итоге в готовой системе отдают предпочтение программному обеспечению Iridian Technologies.
На Российском рынке «преобладает» продукция зарубежных компаний. Хотя и ту можно купить с трудом. Длительное время фирма Папилон уверяла всех, что у них есть распознавание по радужной оболочке. Но даже представители РосАтома — их непосредственного закупщика, для которого они делали систему рассказывают, что это не соответствует действительности. В какой-то момент проявлялась ещё какая-то российская фирма, которая сделала сканеры радужной оболочки. Сейчас уже не вспомню названия. Алгоритм они у кого-то закупили, возможно у того же VeriEye. Сам сканер представлял собой систему 10-15 летней давности, отнюдь не бесконтактную.
В последний год на мировой рынок вышло пара новых производителей в связи с истечением первичного патента на распознавание человека по глазам. Наибольшего доверия из них, на мой взгляд, заслуживает AOptix. По крайней мере их превью и документация не вызывает подозрений. Второй компанией является SRI International. Даже на первый взгляд человеку, занимавшемуся системами распознавания радужки их ролики кажутся весьма лживыми. Хотя я не удивлюсь если в реальности они что-то умеют. И та и та система не показывает данных по FAR и FRR, а так же, судя по всему, не защищена от подделок.
Распознавание по лицу
Существует множество методов распознавания по геометрии лица. Все они основаны на том, что черты лица и форма черепа каждого человека индивидуальны. Эта область биометрии многим кажется привлекательной, потому что мы узнаем друг друга в первую очередь по лицу. Данная область делится на два направления: 2-D распознавание и 3-D распознавание. У каждого из них есть достоинства и недостатки, однако многое зависит еще и от области применения и требований, предъявленных к конкретному алгоритму.
В кратце расскажу про 2-d и перейду к одному из самых интересных на сегодня методов — 3-d.
2-D распознавание лица
2-D распознавание лица — один из самых статистически неэффективных методов биометрии. Появился он довольно давно и применялся, в основном, в криминалистике, что и способствовало его развитию. В последствие появились компьютерные интерпретации метода, в результате чего он стал более надёжным, но, безусловно, уступал и с каждым годом все больше уступает другим биометрическим методам идентификации личности. В настоящее время из-за плохих статистических показателей он применяется, в мультимодальной или, как ее еще называют, перекрестной биометрии, или в социальных сетях.
Статистические характеристики метода
Для FAR и FRR использованы данные для алгоритмов VeriLook. Опять же, для современных алгоритмов он имеет весьма обыкновенные характеристики. Иногда промелькивают алгоритмы с FRR 0.1% при аналогичном FAR, но базы по которым они получены ну уж очень сомнительны (вырезанный фон, одинаковое выражение лица, одинаковые причёска, освещение).
Характерное значение FAR – 0.1%.
Из формулы (1) получаем N≈30 — численность персонала организации, при которой идентификация сотрудника происходит достаточно стабильно.
Как видно, статистические показатели метода достаточно скромные: это нивелирует то преимущество метода, что можно проводить скрытую съемку лиц в людных местах. Забавно наблюдать, как пару раз в год финансируется очередной проект по обнаружению преступников через видеокамеры, установленные в людных местах. За последние десяток лет статистические характеристики алгоритма не улучшились, а количество таких проектов — выросло. Хотя, стоит отметить, что для ведения человека в толпе через множество камер алгоритм вполне годится.
Преимущества и недостатки метода
Преимущества метода. При 2-D распознавании, в отличие от большинства биометрических методов, не требуется дорогостоящее оборудование. При соответствующем оборудовании возможность распознавания на значительных расстояниях от камеры.
Недостатки. Низкая статистическая достоверность. Предъявляются требования к освещению (например, не удается регистрировать лица входящих с улицы людей в солнечный день). Для многих алгоритмов неприемлемость каких-либо внешних помех, как, например, очки, борода, некоторые элементы прически. Обязательно фронтальное изображение лица, с весьма небольшими отклонениями. Многие алгоритмы не учитывают возможные изменения мимики лица, то есть выражение должно быть нейтральным.
3-D распознавание лица
Реализация данного метода представляет собой довольно сложную задачу. Несмотря на это в настоящее время существует множество методов по 3-D распознаванию лица. Методы невозможно сравнить друг с другом, так как они используют различные сканеры и базы. далеко не все из них выдают FAR и FRR, используются абсолютно различные подходы.
Переходным от 2-d к 3-d методом является метод, реализующий накопления информации о лицу. Этот метод имеет лучшие характеристики, чем 2d метод, но так же как и он использует всего одну камеру. При занесении субъекта в базу субъект поворачивает голову и алгоритм соединяет изображение воедино, создавая 3d шаблон. А при распознавании используется несколько кадров видеопотока. Этот метод скорее относится к экспериментальным и реализации для систем СКУД я не видел ни разу.
Наиболее классическим методом является метод проецирования шаблона. Он состоит в том, что на объект (лицо) проецируется сетка. Далее камера делает снимки со скоростью десятки кадров в секунду, и полученные изображения обрабатываются специальной программой. Луч, падающий на искривленную поверхность, изгибается — чем больше кривизна поверхности, тем сильнее изгиб луча. Изначально при этом применялся источник видимого света, подаваемого через «жалюзи». Затем видимый свет был заменен на инфракрасный, который обладает рядом преимуществ. Обычно на первом этапе обработки отбрасываются изображения, на котором лица не видно вообще или присутствуют посторонние предметы, мешающие идентификации. По полученным снимкам восстанавливается 3-D модель лица, на которой выделяются и удаляются ненужные помехи (прическа, борода, усы и очки). Затем производится анализ модели — выделяются антропометрические особенности, которые в итоге и записываются в уникальный код, заносящийся в базу данных. Время захвата и обработки изображения составляет 1-2 секунды для лучших моделей.
Так же набирает популярность метод 3-d распознавания по изображению, получаемому с нескольких камер. Примером этого может являться фирма Vocord со своим 3d сканером. Этот метод даёт точность позиционирования, согласно уверениям разработчиков, выше метода проецирования шаблона. Но, пока не увижу FAR и FRR хотя бы по их собственной базе — не поверю. Но его разрабатывают уже года 3, а подвижки на выставках пока не видны.
Статистические показатели метода
Полные данные о FRR и FAR для алгоритмов этого класса на сайтах производителей открыто не приведены. Но для лучших моделей фирмы Bioscript (3D EnrolCam, 3D FastPass), работающих по методу проецирования шаблона при FAR = 0.0047% FRR составляет 0.103%.
Считается, что статистическая надежность метода сравнима с надежностью метода идентификации по отпечаткам пальцев.
Преимущества и недостатки метода
Преимущества метода. Отсутствие необходимости контактировать со сканирующим устройством. Низкая чувствительность к внешним факторам, как на самом человеке (появление очков, бороды, изменение прически), так и в его окружении (освещенность, поворот головы). Высокий уровень надежности, сравнимый с метом идентификации по отпечаткам пальцев.
Недостатки метода. Дороговизна оборудования. Имеющиеся в продаже комплексы превосходили по цене даже сканеры радужной оболочки. Изменения мимики лица и помехи на лице ухудшают статистическую надежность метода. Метод еще недостаточно хорошо разработан, особенно в сравнении с давно применяющейся дактилоскопией, что затрудняет его широкое применение.
Ситуация на рынке
Распознавание по геометрии лица причисляют к «трем большим биометрикам» вместе с распознаванием по отпечаткам пальцев и радужной оболочке. Надо сказать, что данный метод довольно распространен, и ему отдают пока предпочтение перед распознаванием по радужке глаза. Удельный вес технологий распознавания по геометрии лица в общем объеме мирового биометрического рынка можно оценивать в пределах 13-18 процентов. В России к данной технологии также проявляется больший интерес, чем, например, к идентификации по радужной оболочке. Как уже упоминалось ранее, существует множество алгоритмов 3-D распознавания. В большинстве своем компании предпочитают развивать готовые системы, включающие сканеры, сервера и ПО. Однако есть и те, кто предлагает потребителю только SDK. На сегодняшний день можно отметить следующие компании, занимающиеся развитием данной технологии: Geometrix, Inc. (3D сканеры лица, ПО), Genex Technologies (3D сканеры лица, ПО) в США, Cognitec Systems GmbH (SDK, специальный вычислители, 2D камеры) в Германии, Bioscrypt (3D сканеры лица, ПО) – дочернее предприятие американской компании L-1 Identity Solutions.
В России в данном направлении работают компании Artec Group (3D сканеры лица и ПО) – компания, головной офис которой находится в Калифорнии, а разработки и производство ведутся в Москве. Также несколько российских компаний владеют технологией 2D распознавания лица – Vocord, ITV и др.
В области распознавания 2D лица основным предметом разработки является программное обеспечение, т.к. обычные камеры отлично справляются с захвата изображения лица. Решение задачи распознавания по изображению лица в какой-то степени зашло в тупик – уже на протяжении нескольких лет практически не происходит улучшения статистических показателей алгоритмов. В этой области происходит планомерная «работа над ошибками».
3D распознавание лица сейчас является куда более привлекательной областью для разработчиков. В нём трудится множество коллективов и регулярно слышно о новых открытиях. Множество работ находятся в состоянии «вот-вот и выпустим». Но пока что на рынке лишь старые предложения, за последние годы выбор не изменился.
Одним из интересных моментов, над которыми я иногда задумываюсь и на которые, возможно ответит Хабр: а точности kinect хватит для создания такой системы? Проекты по вытаскиванию 3d модели человека через него вполне себе есть.
Распознавание по венам руки
Это новая технология в сфере биометрии, широкое применение её началось всего лет 5-10 назад. Инфракрасная камера делает снимки внешней или внутренней стороны руки. Рисунок вен формируется благодаря тому, что гемоглобин крови поглощает ИК излучение. В результате, степень отражения уменьшается, и вены видны на камере в виде черных линий. Специальная программа на основе полученных данных создает цифровую свертку. Не требуется контакта человека со сканирующим устройством.
Технология сравнима по надёжности с распознаванием по радужной оболочке глаза, в чём-то превосходя её, а в чём-то уступая.
Значение FRR и FAR приведено для сканера Palm Vein. Согласно данным разработчика при FAR 0,0008% FRR составляет 0.01%. Более точный график для нескольких значений не выдаёт ни одна фирма.
Преимущества и недостатки метода
Преимущества метода. Отсутствие необходимости контактировать со сканирующим устройством. Высокая достоверность — статистические показатели метода сравнимы с показаниями радужной оболочки. Скрытость характеристики: в отличие от всех вышеприведённых — эту характеристику очень затруднительно получить от человека «на улице», например сфотографировав его фотоаппаратом.
Недостатки метода. Недопустима засветка сканера солнечными лучами и лучами галогеновых ламп. Некоторые возрастные заболевания, например артрит – сильно ухудшают FAR и FRR. Метод менее изучен в сравнении с другими статическими методами биометрии.
Ситуация на рынке
Распознавание по рисунку вен руки является довольно новой технологией, и в связи с этим ее удельный вес на мировом рынке невелик и составляет около 3%. Однако к данному методу проявляется все больший интерес. Дело в том, что, являясь довольно точным, этот метод не требует столь дорогого оборудования, как, например, методы распознавания по геометрии лица или радужной оболочке. Сейчас многие компании ведут разработки в данной сфере. Так, например, по заказу английской компании TDSi было разработано ПО для биометрического считывателя вен ладони PalmVein, представленного компанией Fujitsu. Сам сканер был разработан компанией Fujitsu в первую очередь для борьбы с финансовыми махинациями в Японии.
Также в сфере идентификации по рисунку вен работают следующие компании Veid Pte. Ltd. (scanner, software), Hitachi VeinID (scanners)
В России компаний, занимающихся данной технологией, мне не известно.
Сетчатка глаза
До недавнего времени считалось, что самый надёжный метод биометрической идентификации и аутентификации личности — это метод, основанный на сканировании сетчатки глаза. Он содержит в себе лучшие черты идентификации по радужной оболочке и по венам руки. Сканер считывает рисунок капилляров на поверхности сетчатки глаза. Сетчатка имеет неподвижную структуру, неизменную по времени, кроме как в результате болезни, например, катаракты.
Сканирование сетчатки происходит с использованием инфракрасного света низкой интенсивности, направленного через зрачок к кровеносным сосудам на задней стенке глаза. Сканеры сетчатки глаза получили широкое распространение в системах контроля доступа на особо секретные объекты, так как у них один из самых низких процентов отказа в доступе зарегистрированных пользователей и практически не бывает ошибочного разрешения доступа.
К сожалению, целый ряд трудностей возникает при использовании этого метода биометрии. Сканером тут является весьма сложная оптическая система, а человек должен значительное время не двигаться, пока система наводится, что вызывает неприятные ощущения.
По данным компании EyeDentify для сканера ICAM2001 при FAR=0,001% значение FRR составляет 0,4%.
Преимущества и недостатки метода
Преимущества. Высокий уровень статистической надёжности. Из-за низкой распространенности систем мала вероятность разработки способа их «обмана».
Недостатки. Сложная при использовании система с высоким временем обработки. Высокая стоимость системы. Отсутствие широкого рынка предложение и как следствие недостаточная интенсивность развития метода.
Геометрия рук
Этот метод, достаточно распространённы ещё лет 10 назад и произошедший из криминалистики в последние годы идёт на убыль. Он основан на получении геометрических характеристик рук: длин пальцев, ширины ладони и.т.д. Этот метод, как и сетчатка глаза — умирающий, а так как у него куда более низкие характеристики, то даже не будем вводить его боле полного описания.
Иногда считается что в системах распознавания по венам применяют геометрические методы распознавания. Но в продаже мы такого явно заявленного ни разу не видели. Да и к тому же часто при распознавании по венам делается снимок только ладони, тогда как при распознавании по геометрии делается снимок пальцев.
Немного самопиара
В своё время мы разработали неплохой алгоритм распознавания по глазам. Но на тот момент такая высокотехнологичная штука в этой стране была не нужна, а в буржуйстан (куда нас пригласили после первой же статьи) — ехать не хотелось. Но внезапно, спустя года полтора таки нашлись инвесторы, которые захотели построить себе «биометрический портал» — систему, которая бы кушала 2 глаза и использовала цветовую составляющую радужной оболочки (на что у инвестора был мировой патент). Собственно теперь мы этим и занимаемся. Но это не статья про самопиар, это краткое лирическое отступление. Если кому интересно тут есть немного инфы, а когда-нибудь в будущем, когда мы выйдем на рынок (или не выйдем) я тут напишу пару слов о перипетиях биометрического проекта в России.
Выводы
Даже в классе статических систем биометрии имеется большой выбор систем. Какую из них выбрать? Всё зависит от требований к системе безопасности. Самыми статистически надежными и устойчивыми к подделке системами доступа являются системы допуска по радужной оболочке и по венам рук. На первые из них существует более широкий рынок предложений. Но и это не предел. Системы биометрической идентификации можно комбинировать, достигая астрономических точностей. Самыми дешёвыми и простыми в использовании, но обладающими хорошей статистикой, являются системы допуска по пальцам. Допуск по 2D лицу удобен и дёшев, но имеет ограниченную область применений из-за плохих статистических показателей.
Рассмотрим характеристики, которые будет иметь каждая из систем: устойчивость к подделке, устойчивость к окружающей среде, простота использования, стоимость, скорость, стабильность биометрического признака во времени. Расставим оценки от 1 до 10 в каждой графе. Чем ближе оценка к 10, тем лучше система в этом отношении. Принципы выбора оценок были описаны в самом начале статьи.
Также рассмотрим соотношение FAR и FRR для этих систем. Это соотношение определяет эффективность системы и широту её использования.
Стоит помнить, что для радужной оболочки можно увеличить точность системы практически квадратично, без потерь для времени, если усложнить систему, сделав её на два глаза. Для дактилоскопического метода — путём комбинирования нескольких пальцев, и распознаванию по венам, путём комбинирования двух рук, но такое улучшение возможно только при увеличении времени, затрачиваемого при работе с человеком.
Обобщив результаты для методов, можно сказать, что для средних и больших объектов, а так же для объектов с максимальным требованием в безопасности следует использовать радужную оболочку в качестве биометрического доступа и, возможно, распознавание по венам рук. Для объектов с количеством персонала до нескольких сотен человек оптимальным будет доступ по отпечаткам пальцев. Системы распознавания по 2D изображению лица весьма специфические. Они могут потребоваться в случаях, когда распознавание требует отсутствия физического контакта, но поставить систему контроля по радужной оболочке невозможно. Например, при необходимости идентификации человека без его участия, скрытой камерой, или камерой наружного обнаружения, но возможно это лишь при малом количестве субъектов в базе и небольшом потоке людей, снимаемых камерой.
Юному технику на заметку
У некоторых производителей, например у Neurotechnology на сайте доступны демо-версии методов биометрии, которые они выпускают, так что вполне можно подключить их и поиграться. Для тех же, кто решит покопаться в проблеме посерьёзнее, могу посоветовать единственную книжку которую я видел на русском — «Руководство по биометрии» Р.М. Болл, Дж.Х. Коннел, Ш. Панканти. Там есть много алгоритмов и их математических моделей. Не всё полно и не всё соответствует современности, но база неплохая и объемлющая.