Неверно что кожухотрубчатые аппараты характеризуются
Принцип работы и устройство кожухотрубных теплообменников
Среди всех разновидностей теплообменников этот вид наиболее распространен. Его применяют при работе с любыми жидкостями, газовыми средами и парообразными, в том числе, если состояние среды меняется в процессе перегона.
История появления и внедрения
Изобрели кожухотрубные (или кожухотрубчатые) теплообменники в начале прошлого века, дабы активно использовать при работе ТЭС, где большое количество нагретой воды перегонялось при повышенном давлении. В дальнейшем изобретение стали использовать при создании испарителей и нагревающих конструкций. С годами устройство кожухотрубного теплообменника совершенствовалось, конструкция стала менее громоздкой, ее теперь разрабатывают так, чтобы было доступно чистить отдельные элементы. Чаще стали применять подобные системы в нефтеперегонной промышленности и производстве бытовой химии, поскольку продукты этих отраслей несут в себе массу примесей. Их осадок как раз и требует периодической чистки внутренних стенок теплообменника.
Устройство кожухотрубного теплообменника
Как мы видим на представленной схеме, кожухотрубный теплообменник состоит из пучка трубок, которые расположены в своей камере и закреплены на доске либо решетке. Кожух – собственно, название всей камеры, сваренной из листа не менее 4 мм (или больше, в зависимости от свойств рабочей среды), в которой находятся мелкие трубки и доска. В качестве материала для доски используют обыкновенно листовую сталь. Между собой трубки соединяются патрубками, имеются также вход и выход в камеру, отвод для конденсата, перегородки.
В зависимости от количества труб и их диаметра, колеблется мощность теплообменника. Так, если передающая тепло поверхность составляет около 9 000 кв. м., мощность теплообменника составит 150 МВт, это пример работы паровой турбины.
Устройство кожухотрубного теплообменника подразумевает соединение сварных труб с доской и крышками, которое может быть разным, равно как и изгиб кожуха (в виде буквы U или W). Ниже представлены типы устройств, наиболее часто встречающиеся на практике.
Еще одной особенностью устройства является расстояние между трубами, которое в 2-3 раза должно превышать их сечение. Благодаря чему коэффициент отдачи тепла является небольшим, и это способствует эффективности всего теплообменника.
Принцип работы кожухотрубного теплообменника
Исходя из названия, теплообменник – это устройство, создаваемое с целью передать вырабатываемое тепло на нагреваемый предмет. Теплоносителем в данном случае выступает конструкция, описанная выше. Работа кожухотрубного теплообменника заключается в том, что холодная и горячая рабочие среды двигаются по разным кожухам, и теплообмен происходит в пространстве между ними.
Рабочей средой внутри труб является жидкость, в то время как горячий пар проходит в расстоянии между труб, образуя конденсат. Поскольку стенки труб нагреваются больше, чем доска, к которой они прикреплены, эту разность необходимо компенсировать, иначе бы устройство имело значительные потери тепла. Для этого применяются так называемые компенсаторы трех типов: линзы, сальники или сильфоны.
Также, при работе с жидкостью под высоким давлением используют однокамерные теплообменники. Они имеют изгиб U, W-образного типа, необходимое чтобы избежать высоких напряжений в стали, вызываемых тепловым удлинением. Их производство достаточно дорогое, трубы в случае ремонта сложно заменить. Поэтому такие теплообменники пользуются меньшим спросом на рынке.
Виды кожухотрубчатых теплообменников
В зависимости от способа крепления труб к доске или решетке, выделяют:
По типу конструкции кожухотрубные теплообменники бывают (см. рисунок-схему выше):
Широкие возможности кожухотрубного теплообменника
Есть ли у конструкции недостатки? Не без них: кожухотрубчатый теплообменник весьма громоздкий. Из-за своих габаритов он нередко требует отдельного технического помещения. Ввиду большой металлоемкости стоимость изготовления такого устройства тоже велика.
Вывод и рекомендации
В сравнении с теплообменниками U, W-трубчатыми и с неподвижными трубками кожухотрубные имеют больше преимуществ и являются эффективнее. Поэтому их чаще покупают, несмотря на высокую стоимость. С другой стороны, самостоятельное изготовление подобной системы вызовет большие трудности, а скорее всего, приведет к значительным потерям тепла в процессе работы.
Особое внимание при эксплуатации теплообменника следует уделять состоянию труб, а также настройке в зависимости от конденсата. Любое вмешательство в систему приводит к изменению площади теплообмена, поэтому ремонт и пуско-наладку должны производить обученные специалисты.
Теплообменные аппараты: виды, устройство, принцип работы
Введение
Теплообменник – техническое устройство, предназначенное для передачи тепла между нагретой средой и холодной. Чаще всего теплообмен осуществляется через элементы конструкции аппарата, хотя встречаются агрегаты, принцип действия которых основан на смешении двух сред.
Области применения теплообменных аппаратов:
Виды теплообменных аппаратов
Теплообменные аппараты подразделяются на несколько групп в зависимости от:
Наиболее наглядно классификация теплообменных аппаратов представлена на следующем изображении (если нужно увеличить картинку, то просто кликните по ней):
Рис. 1. Виды устройств теплообменников в зависимости от принципа работы
По типу взаимодействия сред
Поверхностные
Теплообменные аппараты данного вида подразумевают, что среды (теплоноситель и теплопотребитель) между собой не смешиваются, а теплопередача происходит через контактную поверхность – пластины в пластинчатых теплообменниках или трубки в кожухотрубных.
Смесительные
Кроме поверхностных теплообменников используются агрегаты, в основе эксплуатации которых лежит непосредственный контакт двух веществ.
Наиболее известным вариантом смесительных теплообменников являются градирни:
Рис. 2. Градирни – один из видов смесительных ТО
Градирни используются в промышленности для охлаждения больших объемов жидкости (воды) направленным потоком воздуха.
К смесительным теплообменникам относятся:
По типу передачи тепла
Рекуперативные
В данном виде устройств теплопередача происходит непрерывно через контактную поверхность. Примером такого теплообменного аппарата является пластинчатый разборный теплообменник.
Регенеративные
Отличаются от рекуператоров тем, что движение теплоносителя и теплопотребителя имеют периодический характер. Основная область применения таких установок – охлаждение и нагрев воздушных масс.
Установки с подобным типом действия нужны в многоэтажных офисных зданиях, когда теплый отработанный воздух выходит из здания, но его энергию передают свежему входящему потоку.
Рис. 3. Регенеративный теплообменник
На изображении видно, как в теплообменник поступают 2 потока: горячий (I) и холодный (II). Проходя через коллектор 1, горячая среда нагревает гофрированную ленту, свернутую в спираль. В это время через коллектор 3, проходит холодный поток.
Спустя какое-то время (от нескольких минут до нескольких часов), когда коллектор 1, заберет достаточное количество тепла (точное время зависит от тех. процесса), крыльчатки 2 и 4 поворачиваются.
Таким образом изменяется направление потоков I и II. Теперь холодный поток идет через коллектор 1 и забирает тепло.
По типу конструкции
Вариаций конструкций теплообменных аппаратов очень много. Их выбор и подбор конкретной модели зависит от большого количества условий эксплуатации и технических характеристик:
Подробную классификацию типов конструктивов теплообменных аппаратов можно посмотреть выше на Рис. 1.
По направлению движения сред
Одноходовые теплообменники
В данном виде агрегатов теплоноситель и теплопотребитель пересекают внутренний объем теплообменника однократно по кратчайшему пути. Наглядно это показано в следующем видео:
Подобная схема движения в ТО используется в простых случаях, когда не требуется повышать теплоотдачу от теплоносителя хладогенту. Кроме того, одноходовые теплообменники требуют более редкого обслуживания и промывки, так как на внутренних поверхностях скапливается меньше отложений и загрязнений.
Многоходовые теплообменники
Применяются, когда рабочие среды плохо отдают или принимают тепло, поэтому КПД теплообменного аппарата увеличивают за счет более длительного контакта теплоносителя с пластинами агрегата.
Пример работы двухходового пластинчатого теплообменника представлен в данном видео:
Устройство теплообменника
Как отмечалось выше, конструкции теплообменных аппаратов очень сильно отличаются между собой, поэтому подробно о каждой из них будет рассказано в следующих статьях.
В качестве примера можно рассмотреть пластинчатый разборный теплообменник, как наиболее современный и вытесняющий старые поколения теплообменных аппаратов: кожухотрубные (кожухотрубчатые), «труба в трубе» и другие виды.
Данный вид ТО состоит из двух главных пластин: подвижной и неподвижной прижимных плит. Обе плиты имеют несколько отверстий.
Отверстия, имеющие входящее и выходящее назначение потоков, надежно укрепляют специальной прокладкой и прочными кольцами спереди и сзади соответственно.
Рис. 4. Устройство РПТО
При монтаже к входным и выходным отверстиям через патрубки подключаются элементы трубопровода. Для соединения могут быть использованы трубы различного диаметра и с разным типом резьбы (современные требования предлагают использовать резьбу ГОСТа №12815 и ГОСТа №6357). Оба вида имеют прямую зависимость от устройства и его вида.
Посередине между прижимными плитами размещается множество пластин. Толщина пластин находится в пределах всего 0,5 мм, изготавливаются они, только из нержавеющей стали или титана с помощью метода холодной штамповки.
Все слои пластин перемежаются тонкой специальной уплотнительной резиной, которая устанавливается между всеми слоями пластин. Материал резины обладает заметной повышенной устойчивостью к высоким температурам, благодаря которой рабочие каналы становятся полностью герметичными.
Прямые направляющие снизу и сверху обеспечивают фиксацию пакета пластин, а также являются направляющими при сборке агрегата. Пластины сжимаются до необходимого размера при помощи затяжных гаек.
Внутреннее расположение пластин выбрано не случайно, каждая пластина через одну повернута на 180° относительно, рядом расположенных, соседних пластин. Благодаря данному устройству теплообменного аппарата входящее канальное отверстие имеет двойное уплотнение.
Наглядно устройство пластинчатого теплообменника, его сборку и принцип действия можно посмотреть в данном видео:
Принцип работы теплообменника
Передняя и задняя плита имеют отверстия, которые подключаются к трубопроводу. По ним теплоноситель и теплопотребитель поступают внутрь агрегата.
Рис. 5. Движение сред внутри пакета пластин
Пристенный слой гофрированного типа, в условиях потока, имеющего большую скорость, начинает постепенно набирать турбулентность. Каждая среда перемещается на встречу друг другу с разных сторон пластины, чтобы избежать смешения.
Параллельно расположенные пластины формируют рабочие каналы. Перемещаясь по всем каналам, каждая среда производит тепловой обмен и покидает внутренние пределы оборудования. Это означает, что все пластины являются самым важным элементом среди всех деталей теплообменника.
Потоки внутри пластинчатого теплообменника могут идти по одноходовым и многоходовым схемам в зависимости от технических характеристик и условий решаемой задачи:
Рис. 6. Схемы движения теплоносителей в пластинчатом разборном теплообменнике в зависимости от принципа работы
Заключение
Стоит помнить, что в настоящее время кожухотрубные (кожухотрубчатые) теплообменники активно вытесняются пластинчатыми, поскольку последние более универсальны и просты в обслуживании.
Если вам нужно подобрать теплообменник под свою задачу, то вы можете посмотреть модели, которые поставляет наша компании в соответствующих разделах каталога.
Если же у вас возникают трудности, то свяжитесь с нашими инженерами или заполните форму:
Принцип работы кожухотрубного теплообменника
Вообще, видов теплообменников несколько, вот здесь мы уже рассказывали про пластинчатый теплообменник.
В этой статье поговорим про кожухотрубный или кожухотрубчатый теплообменник.
Теплообменники широко используются на электростанциях, в системах охлаждения и кондиционирования воздуха, в космической химической, ядерной, нефтехимической и криогенной промышленности. Теплообменники бывают самых разных форм и размеров. Они могут быть огромными, как конденсатор электростанции, передающего сотни мегаватт тепла, или крошечным, как электронный охладитель микросхем, который передает всего несколько ватт тепловой энергии.
Любой процесс, который включает в себя охлаждение, нагревание, конденсацию, кипение или испарение потребует для этой цели теплообменника.
Кожухотрубные теплообменники состоят из ряда трубок. Один набор этих трубок содержит жидкость, которую необходимо либо нагреть, либо охладить. Тепло передается от одной жидкости к другой через стенки трубы либо со стороны трубы на сторону оболочки, либо наоборот. Эта система работает с жидкостями при разном давлении; жидкость с более высоким давлением обычно направляется по трубам, а текучая среда с более низким давлением циркулирует через кожух.
Набор трубок называется пучком труб и он может состоять из нескольких типов труб: гладких, с продольным оребрением и т. д. Кожухотрубные теплообменники обычно используются для приложений с высоким давлением (с давлением более 30 бар и температурой выше чем 260 0 c
Оболочка изготавливается либо из трубы, либо из прокатного и сварного листового металла. Из соображений экономии стандартной является низкоуглеродистая сталь, но часто используются другие материалы, подходящие для экстремальных температур или коррозионной стойкости. Использование общедоступных труб снижает стоимость и упрощает производство, отчасти потому, что они обычно более идеально круглые, чем катаные и сварные кожухи. Округлость и постоянный внутренний диаметр кожуха необходимы для сведения к минимуму пространства между внешним краем перегородки и кожухом, поскольку чрезмерное пространство позволяет отводить жидкость и снижает производительность.
Трубы обычно делают бесшовные или сварные. Бесшовные трубы производятся методом экструзии(процесс плавления). Сварные трубы производятся путем скатывания полосы в цилиндр и сварки шва.
Трубки изготавливаются из низкоуглеродистой стали, нержавеющей стали, титана, инконеля, меди и т. Д. Толщина трубки должна выдерживать:
1) Давление внутри и снаружи трубки
2) Температура с обеих сторон
3) Термическое напряжение из-за разного расширения оболочки и пучка труб.
Более длинная труба уменьшает диаметр кожуха за счет более высокого давления на кожух. Трубки большего диаметра иногда используются либо для облегчения механической очистки, либо для снижения перепада давления. Максимальное количество трубок в кожухе увеличивает турбулентность, что увеличивает скорость теплопередачи. Ребристые трубы также используются, когда жидкость с низким коэффициентом теплопередачи течет в межтрубном пространстве.
Трубные листы изготавливаются из круглого плоского куска металла с просверленными отверстиями для концов трубок в точном месте и по шаблону относительно друг друга. Как правило, материал трубной решетки такой же, как и материал трубки. Трубки надлежащим образом прикреплены к трубной решетке, поэтому жидкость на стороне кожуха не смешивается с жидкостью на стороне трубки. Трубки вставляются через отверстия в трубных решетках и прочно удерживаются на месте сваркой, механическим или гидравлическим расширением.
Перегородки выполняют следующие функции:
Теплообменники с фиксированной головкой предназначены для работы с перепадами температур до 93,33 ° C. Тепловое расширение не позволяет теплообменнику с фиксированной головкой превысить эту разницу температур. Он лучше всего подходит для работы конденсатора или нагревателя.
Теплообменники с плавающей головкой рассчитаны на высокие перепады температур выше 93,33 ° C.
Кожухотрубные теплообменники рассчитаны на работу с высокими расходами в непрерывном режиме.
Технологическая жидкость, которая должна быть нагрета или охлаждена в теплообменнике, обычно называется «обслуживаемой». Сервис может быть однофазным (газ или жидкость) или двухфазным (смесь газа и жидкости).
С другой стороны, одна из текучих сред (со стороны кожуха или трубы) может быть не технологической текучей средой, которая используется только для нагрева или охлаждения технологической текучей среды. Такой поток известен как «служебный». Сеть также может быть однофазной или двухфазной.
Существуют следующие типы обменников:
Конструкция кожухотрубного теплообменника определяется на основании ряда факторов, таких как:
Использование стандарта TEMA в российском производстве осложнено некоторым несоответствием размеров в связи с различающимися метрическими системами. Но в целом, отечественные теплообменные аппараты, изготавливаемые по ТУ ВНИИНефтемаш ( головной научно-исследовательский и проектно-конструкторский институт отрасли химического и нефтяного машиностроения. Институт является автором Государственных стандартов, нормативно-технической документации на серийно-выпускаемое оборудование, а также руководящих документов по выбору материального оформления оборудования) можно соотнести со стандартом TEMA.
Так как Крым наш, у нас есть партнеры и оттуда.
Устойчиво ходят слухи среди производителей кожухотрубных теплообменников, что SECESPOL JAD – польский производитель теплообменников(они тоже являются нашими партнерами), почти 30 лет активно работающий на международных рынках, получила технические разработки военного института советского времени перед распадом СССР. Современные теплообменники, производимые этой компанией были созданы на основе конструкторских проектов для подводных лодок, до 90-х годов прошлого века информация считалась засекреченной, а после было принято решение поделиться с поляками.
Большим преимуществом наших партнеров является собственное конструкторское бюро и полный цикл производства кожухотрубных теплообменников.
Кожухотрубные теплообменники совместно используются в узлах для нагрева химических жидкостей, в системах с большим объемом воды, станции СИП-мойки, в узлах отвода конденсата в пищевой промышленности.
Подписывайтесь на наш канал Телеграм, там всегда много полезного и интересного.
Типы кожухотрубных (кожухотрубчатых) теплообменников
Базовое устройство и классификация теплообменников
Принципиальная схема кожухотрубного теплообменника не зависит от его типа: два теплоносителя подаются через входные фланцы и проходят сквозь теплообменник, не смешиваясь: один – сквозь трубный пучок, другой – внутри корпуса, омывая при этом трубы с первым теплоносителем. В процессе происходит передача тепловой энергии от одного теплоносителя другому сквозь стенки труб трубного пучка. Существует технологический нюанс: нагрев или охлаждение теплоносителя вызывает температурную деформацию, расширение или сжатие, элементов теплообменника – труб, трубной решётки, корпуса.
Если разница температур невелика, то и деформация незначительна. При существенной разнице возникает механическое напряжение в местах соединения элементов с различной температурой, что может привести к повреждению этих соединений или самих элементов. Для смягчения этого эффекта применяются некоторые модификации базового устройства кожухотрубного теплообменника.
Принятая техническая классификация подразумевает использование буквенных обозначений «Н», «К», «П», «У» и «ПК» для различных типов кожухотрубчатых теплообменников:
Модификации конструкции обуславливают не только температурные технические характеристики агрегата, но и нюансы обслуживания при эксплуатации кожухотрубного теплообменника.
1. Тип «Н».
В агрегате данного типа трубные решётки в количестве 2-х шт. с закреплёнными в них противоположными концами труб фиксируются в корпусе теплообменника неподвижно. Трубы имеют прямую форму; отверстия труб выходят в противостоящие друг другу распределительные камеры, закреплённые на корпусе фланцевым соединением. Подача и вывод теплоносителей осуществляются через штуцеры на кожухе и распределительных камерах (в случае многоходовых теплообменников – на передней камере).
К достоинствам данной конструкции можно причислить прежде всего её простоту и, как следствие, отсутствие дополнительных этапов при производстве, влияющих на общую стоимость агрегата. Малое количество деталей придаёт агрегату дополнительную надёжность и упрощает техническое обслуживание. В качестве дополнительного преимущества можно упомянуть возможность механической очистки внутренней поверхности труб, для осуществления которой достаточно снять распределительные камеры с кожуха.
Ввиду отсутствия элементов, компенсирующих температурные деформации материала труб и кожуха, теплообменники типа «Н» рассчитаны на использование в условиях, когда с разница температур теплоносителей не превышает 50 градусов Цельсия. Однако, для большинства производственных и хозяйственных нужд такой диапазон достаточен; недорогие и надёжные, кожухотрубные теплообменники типа «Н» являются наиболее распространёнными и используются в качестве водо-водяных подогревателей, охладителей воды и масла, испарителей, конденсаторов и др.
2. Тип «П».
Поскольку распределительная камера пусть незначительно, но смещается относительно корпуса, размещение выпускного штуцера на ней не представляется возможным; в случае необходимости именно такого подключения можно выбрать конструкцию типа «ПК» (плавающая головка с компенсатором, см. п. 4).
Теплообменники с плавающей головкой рассчитаны на эксплуатацию при разнице в температурах рабочих сред в 100 и более градусов Цельсия, благодаря чему могут использоваться для специфического круга задач.
3. Тип «К».
При нагреве или охлаждении температурные деформации характерны не только для внутренних элементов теплообменника, но и для его кожуха. Для их нивелирования на агрегатах типа «К» предусмотрены компенсаторы различных видов – линзовые, сильфонные и др. Они представляют собой ∩-, П- или С-образные полые кольцевые выступы, охватывающие кожух обменника и пружинно расширяющиеся или сжимающиеся при изменении температуры кожуха.
Использование компенсаторов на кожухе значительно увеличивает температурный диапазон теплообменников «К» в сравнении с агрегатами типа «Н». Но, поскольку компенсаторы выполняются, как правило, методом вваривания сложных фигурных кольцевых элементов в разрез корпуса, увеличивается и себестоимость таких теплообменников; наличие сварных швов усложняет процесс производства и тестирования агрегата.
4. Тип «ПК».
Компенсаторы могут устанавливаться не только на кожух обменника, но и на плавающую головку; точнее – на её выводной штуцер (см. абз. 2 п. 2). Принцип действия таких компенсаторов принципиально аналогичен компенсаторам типа «К» с той разницей, что
Достоинством данного типа агрегатов является их полужёсткая конструкция с возможностью осевого подключения систем подачи/вывода теплоносителя. Недостатком – усложнённость и увеличенная стоимость конструкции. При этом, меньшая толщина стенок компенсаторов и наличие сварных швов не оказывает решающего влияния на эксплуатационные характеристики агрегатов типа «ПК», так как учитывается при первоначальном расчёте теплообменника.
5. Тип «У».
В теплообменниках данного типа, в отличие от всех перечисленных выше видов, используются не прямые, а U-образные трубы, которые за счёт своей формы компенсируют температурное расширение материала. Трубная решётка одна; распределительная камера также одна, разделённая на две части – вводную и выпускную.
Достоинством такой конструкции является её относительная простота, сравнимая с простотой агрегатов типа «Н». Недостатками являются затруднённость механической очистки внутренней поверхности труб и то, что замена единственной трубы в случае её повреждения, как правило, требует полного демонтажа всех остальных труб пучка, что экономически не оправдано. Кроме того, форма труб усложняет их плотное взаимное размещение, что сказывается на характеристиках теплоотдачи. Тем не менее, теплообменники типа «У», как и агрегаты типа «ПК», находят применение для выполнения определённых задач.
Следует отметить, что при равных соотношениях площадей и одинаковом материале труб трубного пучка, все типы теплообменников будут обладать фактически равнозначными показателями теплообмена. Подбор кожухотрубного теплообменника (для новой линии или взамен выработавшего свой ресурс агрегата) в данном случае должен осуществляться по другим параметрам – температурной разнице сред, принципу подключения к системе подачи/отвода теплоносителей и предельному расчётному давлению в системе. Предпочтительными в данном случае являются современные теплообменники, рассчитанные и произведенные на специальном оборудовании, по индивидуальному заказу, с учётом абсолютно всех технологических нюансов.