Нестабильность элементарных частиц обозначает что

Нестабильность элементарных частиц.

Квантовой или волновой механике (физике), созданной в течение нескольких лет в двадцатые годы XX столетия, суждено было стать фундаментом современной физики.

Необычность некоторых положений квантовой механики становится более понятной при сопоставлении, сравнении явлений и процессов, происходящих в микромире, с макроскопическими процессами.

B природе существует множество элементарных частиц, большинство из которых являются нестабильными.

Все элементарные частицы можно подразделить главным образом по основному признаку – вид взаимодействия, на 4 класса – фотон, лептоны, барионы и мезоны.

Взаимодействие микромира имеет обменный характер, т.е. осуществляется некоторыми виртуальными частицами. Так, сильное взаимодействие между кварками осуществляется глюонами (8 разновидностей), слабое взаимодействие осуществляется векторными бозонами, электромагнитное взаимодействие – виртуальными фотонами, гравитационное взаимодействие – гравитонами.

Тема 3

ФУНДАМЕНТАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ

Характеристика видов взаимодействия.

Взаимодействие – причина движения материи, присуще всем материальным объектом.

В физике известны четыре вида взаимодействия: гравитационное, электромагнитное, сильное и слабое.

Гравитационное – взаимное притяжение любых материальных объектов, передается посредством гравитационного поля, определяется законом всемирного тяготения.

По мере увеличения массы вещества гравитационное взаимодействие возрастает. Гравитационное взаимодействие – наиболее слабое из всех известных взаимодействий. Гравитационное взаимодействие универсальное: все тела, частицы и поля участвуют в нем. Переносчики гравитационного взаимодействия – гравитоны, кванты гравитационного поля. Радиус действия неограничен.

Электромагнитное взаимодействие – универсальное, сильнее гравитационного, радиус его действия неограничен. Существует между любыми телами, обусловлено электрическими зарядами и передается с помощью электрического и магнитного полей. Описывается законом Кулона, законом Ампера в общем виде электромагнитной теорией Максвелла, связывающей электрическое и магнитное поля.

Электромагнитное взаимодействие обеспечивает возникновение атомов, молекул, химических реакций, различных агрегатных состояний веществ, сил упругости, трения. Переносчиками электромагнитного взаимодействия являются фотоны – кванты электромагнитного поля с нулевой массой покоя.

Внутри атомного ядра проявляются сильные и слабые взаимодействия.

Сильное – обеспечивает связь нуклонов в ядре (протонов и нейтронов), и кварков внутри нуклонов, отвечает за стабильность атомных ядер. Сильное взаимодействие передается глюонами – частицами, «склеивающими» кварки.

Слабое – взаимодействие имеется для всех элементарных частиц, кроме фотона.

Переносчиками являются бозоны (промежуточные векторные частицы, с массой в 100 раз больше массы протона).

Концепция дальнодействия и близкодействия.

В истории науки можно выделить два подхода к описанию взаимодействия между темами: дальнодействия и близкодействия.

Согласно концепции близкодействия между телами удаленными друг от друга осуществляется с помощью промежуточных звеньев (среды), передающих взаимодействие от точки к точке с конечной скоростью.

Согласно концепции дальнодействия действие тел друг на друга передается мгновенно через пустоту на сколь угодно большие расстояния.

Большинство физических сил представляют собой силы контактного типа, возникающие при соприкосновении.

В XVII – XVIII вв. решался вопрос о механизме взаимодействия между удаленными телами. В XVII в. И.Ньютон открыл закон всемирного тяготения, согласно которому любые тела притягиваются друг к другу с силой, пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними.

Этот закон количественно описывает величину взаимодействия и ее зависимость от массы и расстояния. Ученые XVIII в. истолковали всемирное тяготение в духе концепции дальнодействия.

Тема 4

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ

Дата добавления: 2018-10-26 ; просмотров: 499 ; Мы поможем в написании вашей работы!

Источник

Элементарные частицы. Тайны природы, которые нам предстоит открыть

Открытие «невидимых» элементарных частиц положило начало современной физике. В ней всё время совершаются новые грандиозные прорывы: например, подтвердилось существование бозона Хиггса. Знать, что такое лептоны, кварки и бозоны, очень важно для понимания актуальной картины мира. Мы собрали базовые знания по физике элементарных частиц, которые пригодятся всем.

В конце XVIII — начале XIX века физики были твердо убеждены, что в их науке больше нечего исследовать и никаких прорывов в ней не предвидится. Однако прошло всего полвека, и в научных журналах стали появляться статьи, описывавшие необъяснимые результаты экспериментов. То Рентген откроет лучи, которые проникают через стекло и отклоняются в магнитном поле, то Беккерель засветит фотопластинку минералом урана… Эти явления заставили людей задуматься о том, что атомный мир намного сложнее, чем они думали.

Свойства волны и частицы во многом противоположны. Например, частица, ударяясь о препятствие, отскакивает, а волна может его огибать. Показателен в этом плане эксперимент Томаса Юнга, в котором ученый пропускал свет через две узкие щели. Казалось бы, если фотоны (еще одна элементарная частица, квант света) — это частицы, то они должны проходить через щель и оставлять на экране за ней две полосы. Но оказалось, что полос гораздо больше! Всё это легко объяснимо, если принять, что фотон — это волна, а волнам свойственно огибать препятствия (это явление называется дифракцией). Как рябь на воде огибает камень, так и электромагнитные волны могут «обходить» встречающиеся на их пути преграды.

Какие бывают элементарные частицы

С каждым витком развития науки люди стремились поделить вещество на мельчайшие части, чтобы понять, как оно устроено. Оказалось, что вся материя, которая нас окружает, похожа на матрешку с четырьмя оболочками:

Последняя «оболочка» была открыта не так давно и на данный момент считается самой маленькой. Она включает в себя все элементарные или фундаментальные частицы.

Да, их очень много но так даже интереснее. Со времен открытия электрона ученые обнаружили огромное количество фундаментальных частиц и разделили их на две большие группы: фермионы (от фамилии итальянского физика Энрико Ферми) и бозоны (в честь индийского физика Сатьендры Нат Бозе).

Нестабильность элементарных частиц обозначает что. Смотреть фото Нестабильность элементарных частиц обозначает что. Смотреть картинку Нестабильность элементарных частиц обозначает что. Картинка про Нестабильность элементарных частиц обозначает что. Фото Нестабильность элементарных частиц обозначает чтоВсе частицы Стандартной модели, собранные в подобие системы Менделеева. Справа — бозоны, слева — фермионы

Элементарные частицы, в отличие от атомов, — это не всегда реально существующие объекты. Это, скорее, модели, созданные для описания разных видов взаимодействий и свойств материи.

Например, электромагнитное взаимодействие передается с помощью фотонов, ядро атома находится в стабильном состоянии благодаря мезонам — частицам, удерживающим протоны и нейтроны.

Физики выделяют разные виды взаимодействий (сильное, слабое, электромагнитное, гравитационное) и типы материи (атомы, антиматерия, темная материя, излучения). Чтобы изучить их свойства, нужно подробно описать их природу.

Во второй половине ХХ века группа ученых создала теорию под названием «Стандартная модель». Она помогла систематизировать большое количество открытых на тот момент элементарных частиц и соотнести каждую со своим видом материи или взаимодействия. Сейчас эта теория считается завершенной и включает 17 видов элементарных частиц, вместе описывающих 3 фундаментальных взаимодействия и некоторую часть известных видов материи. Однако Стандартная модель описывает далеко не всё. Например, в ее рамках нельзя описать силу гравитации, и ученые до сих пор ломают голову над тем, как бы ее объяснить.

Чтобы разобраться в мире элементарных частиц, мы расскажем обо всех 17 частицах Стандартной модели, разделив их на две большие группы: фермионы и бозоны.

I. Фермионы

В этот класс входят 12 обычных частиц и столько же античастиц. Они противоположны по заряду: например, античастица отрицательно заряженного электрона — это положительно заряженный позитрон.

Эти 12 частиц, в свою очередь, можно поделить на две группы по 6 штук: кварки и лептоны.

Как устроен атом

Атом состоит из ядра, в котором сосредоточено более 99 % его массы, и электронной оболочки, окружающей его, как облако. Электроны, составляющие внешнюю оболочку, — это элементарные частицы. Ядро же состоит из протонов и нейтронов (вместе они называются нуклонами). Протоны заряжены положительно, чтобы компенсировать отрицательный заряд электронов на внешней оболочке, а нейтроны, как следует из названия, вообще не имеют заряда и «склеивают» ядро, не давая ему распасться (как это происходит с радиоактивными элементами).

Долгое время протоны и нейтроны считались неделимыми, но они слишком большие для элементарных частиц. Позже ученые установили, что каждая из них состоит из трех кварков.

Кварки — любители ходить в парах

В отличие от электронов кварки не могут существовать в свободном состоянии и соединяются в пары. Эти пары называются мезонами — это частицы, которые перемещаются между протонами и нейтронами и удерживают ядро в стабильном состоянии. Три кварка образуют нуклоны — протон или нейтрон. Частицы, состоящие из четырех или пяти кварков, являются экзотическими и отчасти вызывают гравитационное взаимодействие между телами.

Лептоны — одиночки

Лептоны похожи на волков-одиночек, и самый влиятельный и могущественный среди них (прямо как волк с Уолл-стрит) — электрон, самый распространенный и наиболее изученный лептон.

Долгое время ученые не могли понять, в чем «сила» электрона. В конце концов они нашли этому одно разумное объяснение: электрон — это единственная стабильная заряженная частица из своего класса. Остальные 5 заряженных лептонов не существуют дольше 2 микросекунд: они либо распадаются на несколько более мелких частиц, либо, наоборот, соединяются в одну более крупную.

Нейтрино — неуловимые лептоны

Еще один вид лептонов — нейтрино, практически неуловимые частицы, которые движутся в космосе со скоростью света. Еще с середины ХХ века проводятся эксперименты, чтобы их поймать и изучить. Многое в этих «неуловимых» частицах уже исследовано, и ученые даже пытались создать коммуникацию с их помощью, но идея осталась лишь в планах. Нейтрино могут быть индикаторами различных процессов, происходящих в ядрах звезд. Например, в нашем Солнце протекает множество термоядерных реакций каждую секунду, и практически каждая такая реакция выделяет хотя бы одно нейтрино.

Нейтрино бывают нескольких видов: электронное, мюонное и тау-нейтрино. Все эти названия взяты не с потолка.

Каждое нейтрино соответствует своему лептону (электрону, мюону, тау-лептону), так как напоминает его по своим квантовым характеристикам. Разные виды этих частиц, двигаясь совместно, могут переходить друг в друга — это называется нейтринной осцилляцией.

Итак, фермионы бывают двух видов: кварки и лептоны. Первые могут существовать только группами, а вторые — только по отдельности. Первые входят в состав ядер атомов, вторые — в состав электронных оболочек этих атомов.

А теперь мы переходим ко второй, не менее интересной группе элементарных частиц — бозонам. Готовы спорить, что она у вас на слуху благодаря одному известному ее представителю.

II. Бозоны

Невольно возникает вопрос: а чем фермионы отличаются от бозонов? Всё дело в квантовой характеристике — спи́не. У фермионов он дробный: чтобы при повороте в пространстве частица стала симметричной себе, надо повернуть ее больше чем на один полный оборот. А у бозонов спин целый — то есть либо они одинаковы, как ни крути, либо для совмещения самих с собой в пространстве их нужно повернуть на 180 или 360 градусов.

Спин обуславливает обменное взаимодействие элементарных частиц, когда между двумя одинаково заряженными частицами может возникать связь (это свойство исчезает при переходе к большим системам). Если по законам классической механики два электрона должны отталкиваться, то квантовая механика «разрешает» им находиться относительно близко друг от друга — на одной орбитали.

Нестабильность элементарных частиц обозначает что. Смотреть фото Нестабильность элементарных частиц обозначает что. Смотреть картинку Нестабильность элементарных частиц обозначает что. Картинка про Нестабильность элементарных частиц обозначает что. Фото Нестабильность элементарных частиц обозначает чтоТраектории движения элементарных частиц, образующихся в результате столкновения двух протонов

Бозоны, слава богу, не делятся ни на какие группы. В Стандартной модели их выделяют всего пять: фотон, W-бозон, Z-бозон, глюон и бозон Хиггса. С фотоном мы уже знакомы, его функция — переносить электромагнитное возбуждение (то есть свет разного диапазона длин волн). W- и Z-бозоны — это своего рода волшебные палочки. W-бозоны переносят электрический заряд, понижая или повышая его у выбранной цели, и могут превращать один вид кварков в другой. Z-бозоны помогают передавать импульс и спин от одной частицы к другой при их столкновении.

Выделяют 8 типов глюонов.

Глюоны напоминают кварки и фотоны одновременно: их никогда не видели в свободном состоянии, они не имеют заряда и в теории не обладают массой. Глюоны отвечают за передачу между кварками квантовой характеристики, называемой цветом (общее с теми цветами, которые мы видим, — только название).

Последний тип — бозоны Хиггса — очень странная вещь. Они существовали лишь теоретически, их долго не могли обнаружить, однако в 2012 году это удалось сделать с помощью Большого адронного коллайдера (БАК).

Бозон Хиггса обуславливает массы всех элементарных частиц. Его открытие завершило Стандартную модель.

Она описывает 3 вида взаимодействий: электромагнитное, сильное (между нуклонами в ядре атома) и слабое, но ее нельзя считать Теорией всего, так как она не описывает, например, гравитационное взаимодействие, темную материю и энергию. Так что у физики большое и светлое будущее.

Итак, бозоны переносят различные виды взаимодействий. Они имеют целочисленный спин и различаются между собой массой и свойствами. Существование всех этих частиц ученые уже доказали с помощью БАК.

Составные частицы

Фермионы и бозоны — это лишь основа всей физики элементарных частиц. Соединяясь, они образуют что-то вроде молекул. Это очень похоже на химическую реакцию: две элементарные частицы могут соединяться друг с другом, как и химические вещества.

Самый известный вид составных частиц — адроны. Их делят на два вида: барионы и мезоны. Барионы — это частицы, состоящие из кварков, в том числе протоны и нейтроны; мезоны переносят взаимодействие между нуклонами в ядрах атомов.

Физика элементарных частиц невероятно разнообразна. Кроме перечисленных основных классов выделяют также квазичастицы («почти»-частицы), которые формально не существуют: человек придумал их для описания различных природных процессов. Кроме того, есть много гипотетических частиц, существование которых экспериментально не подтверждено.

Сегодня мы знаем Вселенную едва ли на 0,1 %. С помощью физики мы пытаемся расширить границы познания и описать всё, что нам непонятно. Но каждый новый шаг вперед всё труднее: если пять лет назад вы были на острие прогресса и понимали всё, что происходит в вашей науке, то сегодня она вас озадачит своей сложностью и запутанностью.

Однако сложность добавляет физике прелесть и очарование, которое притягивает новые пытливые умы. С помощью них мы, быть может, скоро создадим Теорию всего и постигнем все тайны мироздания.

А потом природа преподнесет нам сюрприз, и окажется, что всё, что мы знали, — полная туфта.

Источник

Астрономические времена: 7. Сверхдолгоживущие частицы

Нестабильность элементарных частиц обозначает что. Смотреть фото Нестабильность элементарных частиц обозначает что. Смотреть картинку Нестабильность элементарных частиц обозначает что. Картинка про Нестабильность элементарных частиц обозначает что. Фото Нестабильность элементарных частиц обозначает что Нестабильность элементарных частиц обозначает что. Смотреть фото Нестабильность элементарных частиц обозначает что. Смотреть картинку Нестабильность элементарных частиц обозначает что. Картинка про Нестабильность элементарных частиц обозначает что. Фото Нестабильность элементарных частиц обозначает что

Внутренность японского детектора Super-Kamikande: огромный бак со сверхчистой водой и тысячи фотоумножителей, установленные на стенках для регистрации редчайших событий превращения элементарных частиц. Изначально он строился для поиска распада протонов, но его основное направление работы сейчас — изучение нейтрино

Самые кратчайшие промежутки времени, про которые современная физика может сказать что-то достоверное, относятся к жизни элементарных частиц. Поразительно, но и самые долгие времена, доступные эксперименту — тоже относятся к микромиру! И сейчас мы разберемся, почему так получается.

В природе существуют разнообразные нестабильные атомные ядра, в том числе и очень долгоживущие. Времена жизни некоторых из них намного превышают возраст нашей Вселенной, и тем не менее физики способны измерять такие огромные промежутки времени! Рекордсменом тут является ядро теллура-128: его экспериментально измеренный период полураспада составляет 2·10 24 лет, что на четырнадцать порядков (!) превышает возраст Вселенной.

Как вообще можно измерять настолько длительное время, которое не вмещается даже в жизнь Вселенной, не говоря уже про лабораторный эксперимент? Объяснение кроется в двух простых фактах.

Нестабильность элементарных частиц обозначает что. Смотреть фото Нестабильность элементарных частиц обозначает что. Смотреть картинку Нестабильность элементарных частиц обозначает что. Картинка про Нестабильность элементарных частиц обозначает что. Фото Нестабильность элементарных частиц обозначает что

Во-первых, элементарных частиц и даже атомных ядер определенного типа очень много. Пригоршня вещества — это примерно число Авогадро молекул. Во-вторых, время жизни нестабильной частицы — это не гарантированное, а лишь среднее ожидаемое время до распада. Каждая конкретная частица может распасться и прямо сейчас, и попозже, а иногда — намного позже, чем номинальное время жизни. Объединим эти два факта, добавим чуть-чуть математики, и получаем простой, но очень важный закон:

Нестабильность элементарных частиц обозначает что. Смотреть фото Нестабильность элементарных частиц обозначает что. Смотреть картинку Нестабильность элементарных частиц обозначает что. Картинка про Нестабильность элементарных частиц обозначает что. Фото Нестабильность элементарных частиц обозначает чтоесли у нас есть N частиц с временем жизни T, то количество распадов за короткое время tT примерно равно

n =tN.
T

Для того, чтобы хотя бы приблизительно измерить время жизни очень долгоживущей частицы, надо просто собрать много таких частиц вместе и сосчитать количество распадов за разумное время.

Давайте оценим, до каких времен жизни сможет «дотянуться» топовый лабораторный эксперимент. Пусть у нас есть килограмм какого-то редкого изотопа. Килограмм — это чуть больше числа Авогадро, скажем, порядка 10 24 ядер. Мы поместили этот килограмм в сверхчувствительную установку, заэкранировали ее от космических лучей и прочих воздействий, и за год наблюдения зафиксировали всего один-единственный — но зато достоверный! — акт распада. Тогда используя формулу, мы по этому одному событию оцениваем время жизни этого изотопа:

T =Nt =10 24 лет.
n

Самый экстремальный пример эксперимента такого типа — это ограничение на время жизни протона. Вообще, по современным представлениям протон полностью стабилен. Но существуют теории, и причем довольно привлекательные для физиков, которые предсказывают, что эта стабильность неабсолютна и что спустя очень большое время протон распадется на позитрон и фотоны. Поэтому физики давно уже начали ставить эксперименты по поиску хоть каких-то следов распада протона.

В отличие от редких изотопов, протоны есть везде, причем в изобилии — ведь это ядра атомов водорода. Поэтому можно взять сколько угодно подходящего вещества и поставить эксперимент гигантского масштаба. Ограничивает эти фантазии лишь несовершенство детектирующей аппаратуры и невозможность полностью избавиться от побочных эффектов. Тем не менее, детекторы получаются очень впечатляющие. Например, специализированный японский детектор Super-Kamiokande, который был изначально построен как раз для поиска распада протона, представляет собой 40-метровый бак, заполненный 50 тысячами тонн сверхчистой воды и напичканный тысячами светочувствительных элементов. Такой объем воды содержит 6·10 33 отдельных протонов. Так вот, если такой детектор проработает, скажем, 10 лет и не зарегистрирует ни одного события распада протона — а при этом мы уверены, что каждый такой распад был бы замечен, — то мы сможем установить ограничение снизу порядка 10 34 лет. Слова «ограничение снизу» означают, что по результатам нашего эксперимента мы не можем точно сказать, стабилен протон или нет, однако даже если он нестабилен, его время жизни заведомо превышает это ограничение.

Реальные ограничения на распад протона примерно такими и получаются — чуть больше 10 33 лет. Вдумайтесь только — это на 23 порядка больше, чем возраст Вселенной! За всю жизнь Вселенной не протикало столько секунд, сколько нынешних «возрастов Вселенной» должно протикать, прежде чем протоны начнут активно распадаться. И тем не менее, современная физика способна чувствовать такие безумно долгие времена!

Источник

Просто о сложном: бозоны, фермионы, кварки и другие элементарные составляющие Вселенной

Теории и практики

Из-за обширной терминологии большинство популярных книг и статей по физике элементарных частиц не углубляются дальше самого факта существования кварков. Сложно что-либо обсуждать, если широкой аудитории не до конца понятны основные термины. Студент МФТИ и сотрудник лаборатории фундаментальных взаимодействий Владислав Лялин взял на себя функцию путеводителя в то, что называется Стандартной моделью, — главенствующую физическую теорию, объясняющую все известные науке частицы и их взаимодействие между собой, то есть устройство Вселенной на самом глубоком уровне.

Строение вещества

Нестабильность элементарных частиц обозначает что. Смотреть фото Нестабильность элементарных частиц обозначает что. Смотреть картинку Нестабильность элементарных частиц обозначает что. Картинка про Нестабильность элементарных частиц обозначает что. Фото Нестабильность элементарных частиц обозначает что

Владислав Лялин

Итак, все состоит из молекул, а молекулы состоят из атомов. Атом состоит из ядра и облаков электронов вокруг него, которые совершают куда более сложные движения, чем просто вращение. Ядро примерно в 10 тысяч раз меньше размера атома, хотя это и есть почти вся его масса, и состоит из протонов и нейтронов. Как правило, на этом большинство школьных курсов физики заканчиваются, но на этом не заканчивается физика. В 50-х годах прошлого века ученые знали о существовании пяти частиц, которые они называли элементарными. Это были протон, нейтрон, электрон, фотон и электронное нейтрино. Уже через несколько десятков лет (с появлением первых коллайдеров) частиц, которые стоило бы причислить к элементарным, стало несколько десятков, и это число только росло. Термин «элементарная частица» пришлось пересматривать — и заодно придумывать новую теорию, еще сильнее углубляться в строение вещества. Со временем была создана теория, названная Стандартной моделью, описывающая все известные взаимодействия (кроме гравитации).

Еще с древних времен материя и силы (взаимодействия) в физике были отделены. Эта идея присутствует и в Стандартной модели. Все элементарные частицы в ней делятся на «кирпичики материи» — фермионы и переносчики взаимодействия — бозоны. Эти классы частиц сильно отличаются друг от друга, одним из самых ярких отличий является отсутствие принципа запрета Паули у бозонов. Грубо говоря, в одной точке пространства может быть не более одного фермиона, но сколько угодно бозонов.

Бозоны

В Стандартной модели всего шесть элементарных бозонов. Фотон не обладает электрическим зарядом, он передает электромагнитное взаимодействие — то самое, которое связывает атомы в молекулы. Глюон передает сильное взаимодействие и обладает своим видом заряда (об этом еще будет сказано). Именно сильное взаимодействие отвечает за ядерные силы, скрепляющие протоны и нейтроны в ядрах. W+, W- и Z0 означает, что бозоны заряжены соответственно положительно, отрицательно и нейтрально (не заряжены). Они отвечают за так называемое слабое взаимодействие, которое умеет превращать одни частицы в другие. Самый простой пример слабого взаимодействия — распад нейтрона: один из кварков, составляющих нейтрон, излучает W-бозон и превращается в другой кварк, а распадается на электрон и нейтрино.

Нестабильность элементарных частиц обозначает что. Смотреть фото Нестабильность элементарных частиц обозначает что. Смотреть картинку Нестабильность элементарных частиц обозначает что. Картинка про Нестабильность элементарных частиц обозначает что. Фото Нестабильность элементарных частиц обозначает что

Остается последний бозон — бозон Хиггса. Теоретически он был предсказан еще в 60-х годах прошлого века, но экспериментально его существование было доказано только в 2013 году. Он отвечает за инертную массу элементарных частиц — именно массу, ответственную за эффекты инерции, а не притяжения. Квантовой теории, которая связала бы и инерцию, и гравитацию, пока что нет.

Фермионы

Элементарных фермионов гораздо больше, чем элементарных бозонов. Их делят на два класса: лептоны и кварки. Они отличаются тем, что кварки участвуют в сильном взаимодействии, а лептоны — нет.

Лептоны

Кварки

В английском слово funny может иметь значения «забавный» и «странный». Вот кварки как раз и есть funny. Они забавно называются: верхний, нижний, странный, очарованный, прелестный и истинный. И они очень странно себя ведут. Существует три поколения кварков, по два кварка в каждом, и точно так же у них у всех существуют античастицы. Кварки участвуют как в электромагнитном и слабом взаимодействиях, так и в сильном. Для заметки: фермионы, участвующие в сильном взаимодействии, называются адронами; таким образом, адроны — это частицы, состоящие из кварков. Поэтому Большой адронный коллайдер, собственно, называется адронным: там сталкивают протоны или ядра атомов (адроны), но не электроны. Кварки любят образовываться в частицы из трех и двух кварков, но никогда не появляются по одному. В этом и заключается их странность. Частицы из трех кварков называют барионами, а из двух — мезонами.

Нестабильность элементарных частиц обозначает что. Смотреть фото Нестабильность элементарных частиц обозначает что. Смотреть картинку Нестабильность элементарных частиц обозначает что. Картинка про Нестабильность элементарных частиц обозначает что. Фото Нестабильность элементарных частиц обозначает что

Почему они так делают? Это происходит из-за особенностей сильного взаимодействия, которое удерживает кварки в адронах. Сильное взаимодействие очень интересно: вместо одного заряда, как в электромагнитном, у сильного их бывает три. И оказывается, что существуют только нейтральные частицы, а нейтральной частица может быть, только если в ней есть либо три разных заряда одного знака, либо два одинаковых заряда разного знака. Из-за этой особенности (и для удобства) заряды начали называть красным, зеленым и синим, а соответствующие отрицательные заряды — антикрасным, антизеленым и антисиним. Получается, что если взять красный, зеленый и синий, мы получим белый, то есть нейтральный; если взять красный и антикрасный, мы тоже получим белый. Это легко запоминается, но стоит подчеркнуть, что это не имеет никакого отношения к цветам, к которым мы привыкли в жизни. Это просто красивая и удобная аналогия со смешиванием. В Стандартной модели каждый кварк может быть любого из трех цветов, а антикварк — любого из трех «антицветов». Получается, что ни один из кварков не может быть непосредственно зарегистрирован, ведь свободно существовать могут только бесцветные частицы, а кварки «раскрашены». Эта особенность их поведения называется конфайнментом, что с английского дословно переводится как «заточение».

Конфайнмент

Хорошо — допустим, что кварки не могут существовать свободно. Но что если просто взять мезон, состоящий из двух кварков, и разорвать его на две части? Не получим ли мы два кварка? (На самом деле нет.) Представьте, что мезон очень сильно растягивают. В отличие от электромагнитного, сильное взаимодействие тем сильнее до определенного предела, чем взаимодействующие частицы дальше друг от друга. Это похоже на пружину: чем сильнее ее растягивать, тем сильнее она будет сжиматься и тем больше у нее будет энергии. Чтобы сильнее стягивать кварки, сильное взаимодействие создает новые глюоны. И чем дальше мы их растягиваем, тем больше глюонов создается. Но в момент энергия этих созданных глюонов становится настолько большой, что выгоднее становится создать новую пару кварк-антикварк, чем продолжать плодить глюоны. Много глюонов исчезает, вместо них появляются кварк и антикварк. В момент появления кварк-антикварковой пары из четырех кварков создаются два мезона, каждый из которых бесцветен.

Может показаться, что теория замкнута сама на себе и что кварков на самом деле не существует, а конфайнмент, по сути, костыль, который придумали только для того, чтобы прекратить поиски кварков; что это просто удобная модель, которая не имеет под собой физического обоснования. Долгое время в научных кругах ходила такая мысль. Однако поздние теоретические исследования и недавние экспериментальные показывают, что при определенных условиях кварки могут покидать адроны. Более того, это состояние материи существовало практически сразу после большого взрыва, и только после сильного охлаждения кварки связались в адроны. Такое состояние материи сейчас исследуют на Большом адронном коллайдере в эксперименте ALICE. Для его получения нужна температура в два триллиона градусов. Это состояние материи называется кварк-глюонной плазмой.

Для понимания, что есть кварк-глюонная плазма, стоит провести аналогию. Представьте себе воду в невесомости. Она находится в жидком агрегатном состоянии, и сил поверхностного натяжения она имеет вид шара — можно сказать, что она заточена в этот шар. Начнем повышать температуру. Когда она достигнет 100 градусов, вода начнет кипеть, активно испаряться и со временем полностью станет паром, у которого уже не будет силы поверхностного натяжения. Явление превращения воды в пар называется фазовым переходом. Если продолжить нагревать пар, то примерно при 1 400 градусах молекулы воды разделятся на водород и кислород — сдиссоциируют, — и вода станет смесью кислородной и водородной плазм. Это еще один фазовый переход. Теперь возьмем газ — но не из молекул воды, а из адронов — и начнем его нагревать. Придется нагревать весьма сильно, потому что для фазового перехода нужна температура примерно в два триллиона градусов. При такой температуре адроны как бы «диссоциируют» в свободные кварки и глюоны. Таким образом, адрон совершит фазовый переход в состояние кварк-глюонной плазмы. Это явление называется деконфайнментом, то есть процессом освобождения кварков из адронов.

В поисках теории всего

Последнего экспериментального подтверждения Стандартная модель ждала около 50 лет, но теперь бозон Хиггса найден — что дальше? Можно ли думать, что великие открытия закончились? Конечно, нет. Стандартная модель изначально не претендовала на звание теории всего (ведь она не включает в себя описание гравитации). Более того, в декабре прошлого года ATLAS и CMS в коллаборации опубликовали статьи о возможном обнаружении новой тяжелой частицы, не вписывающейся в Стандартную модель. И физики не грустят, а, наоборот, рады, ведь сам Большой адронный коллайдер строили не для того, чтобы подтверждать уже известное, а чтобы открывать новое. И так же «новая физика» не говорит о том, что Стандартная модель будет вычеркнута и предана анафеме. Мы ученые, и если что-то точно работает (а Стандартная модель это доказала), то оно должно быть частным случаем любой новой теории, иначе новая теория будет противоречить старым экспериментам. Для примера: механика Ньютона является прекрасной моделью для описания движения с низкими (значительно меньше скорости света) скоростями — несмотря на то, что сейчас мы знаем специальную теорию относительности. Точно так же, когда появятся новые модели (или модификации Стандартной), будут существовать условия, при которых будет верно то, что мы знаем сейчас.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *