Непостоянная арифметическая прогрессия что это
Научный форум dxdy
Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
Правила форума
В этом разделе нельзя создавать новые темы.
Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе «Помогите решить/разобраться (М)».
Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.
Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.
Ещё раз о корректности формулировки олимпиадных задач
Насколько корректна формулировка следующей задачи?
Рассмотрим прогрессию
— Хаим, белый это цвет?
— Белый это цвет!
Это арифметическая прогрессия? Это арифметическая прогрессия!
Она состоит из натуральных чисел? Она состоит из натуральных чисел!
Она содержит бесконечно много чисел вида ? Она содержит бесконечно много чисел вида
!
Первый член прогрессии делится на её разность? Иными словами, 2 делится на 0?
Всяко, автором подразумевалась непостоянная арифметическая прогрессия. Но ведь можно было и открыто об этом сказать, а то найдётся придирчивый участник олимпиады, горящий желанием подать апелляцию (и, возможно, выиграть её). Как в случае с американкой, отсудившей 60 млн. USD у общеизвестной сети ресторанов быстрого питания за то, что они не потрудились написать, что кофе у них горячий. А она возьми да пролей этот кофе себе на самую нежную часть тела.
З. Ы.
Ясно, что если прогрессия непостоянна, ей придётся быть возрастающей, иначе натуральные числа когда-нибудь закончатся, ведь существует самое маленькое из них.
Если первый член не делится на разность, он даёт ненулевой остаток на эту разность. И все остальные члены тоже дают остаток
.
Но числа вида , начиная с некоторого момента будут делиться и на разность прогрессии. Таким образом, получаем противоречие, из которого видно, что у задачи этой не только формулировка малокорректна, но и сложность малоолимпиадна.
З. З. Ы.
Кстати, эту же задачу можно найти и вот здесь.
Да и катринка внизу до одури знакома.
Заслуженный участник |
Заслуженный участник |
Заслуженный участник |
Мне всегда казалось, что ноль делится на ноль. Другое дело, что, простите за каламбур, разделить их все равно нельзя 🙂
Заслуженный участник |
Не согласна с ewert : не подразумевает.
Кто сейчас на конференции
Сейчас этот форум просматривают: нет зарегистрированных пользователей
Арифметическая прогрессия (ЕГЭ 2022)
Знаменитый ученый Карл Гаусс однажды сказал:
«Ничего не сделано, если что-то осталось недоделанным.»
Поэтому давай сейчас разберем одну из важнейших тем алгебры – арифметическую прогрессию.
А если остались какие-то пробелы, заполним их.
Кстати, Гаусса мы вспомнили не просто так 🙂
Арифметическая прогрессия — коротко о главном
Определение арифметической прогрессии:
Арифметическая прогрессия — это числовая последовательность, в которой разница между соседними числами одинакова и равна \( \displaystyle d\).
Арифметическая прогрессия бывает возрастающей (\( \displaystyle d>0\)) и убывающей (\( \displaystyle d Формула нахождения n-ого члена арифметической прогрессии:
Как найти член прогрессии, если известны его соседние члены:
Сумма членов арифметической прогрессии:
Числовая последовательность
Итак, сядем и начнем писать какие-нибудь числа. Например: \( \displaystyle 4,\text< >7,\text< >-8,\text< >13,\text< >-5,\text< >-6,\text< >0,\text< >\ldots \)
Писать можно любые числа, и их может быть сколько угодно (в нашем случае их \( \displaystyle 7\)). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое – второе и так далее до последнего, то есть, можем их пронумеровать.
Это и есть пример числовой последовательности.
Числовая последовательность – это множество чисел, каждому из которых можно присвоить уникальный номер.
Например, для нашей последовательности:
Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и \( \displaystyle n\)-ное число) всегда одно.
Число с номером \( \displaystyle n\) называется \( \displaystyle n\)-ным членом последовательности.
Всю последовательность мы обычно называем какой-нибудь буквой (например, \( \displaystyle a\)), и каждый член этой последовательности – той же буквой с индексом, равным номеру этого члена: \( \displaystyle <_<1>>,\text< ><_<2>>,\text< >…,\text< ><_<10>>,\text< >…,\text< ><_
Арифметическая прогрессия — определения
Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна d.
Такая числовая последовательность называется арифметической прогрессией.
Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность.
Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.
Арифметическая прогрессия – это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается d.
Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:
Разобрался? Сравним наши ответы:
Является арифметической прогрессией – 2, 3.
Не является арифметической прогрессией – 1, 4.
Вернемся к заданной прогрессии (\( \displaystyle 3;\text< >7;\text< >11;\text< >15;\text< >19\ldots \)) и попробуем найти значение ее 6-го члена.
Существует два способа его нахождения.
Нахождения n-ого члена арифметической прогрессии
Способ I
Итак, 6-ой член описанной арифметической прогрессии равен 23.
Способ II
А что если нам нужно было бы найти значение \( \displaystyle 140\)-го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.
А теперь очень важно! Чтобы облегчить себе работу, нужно найти закономерность, потом описать ее формулой и потом пользоваться этой формулой, чтобы вычислять в разы быстрее.
Это и есть математика!
Важно научиться находить закономерности, а потом уже запоминать формулы. Потому что, даже если ты забудешь формулу, ты сможешь ее вывести. И, самое главное, ты сможешь проверить подходит та или иная формула для решения задачи, а не просто подставлять их как обезьянка.
Давай попробуем вывести формулу. Это легко и тебе понравится! Чтобы найти закономерности, надо пользоваться тем, что мы знаем.
Чему равен 2-й член арифметической прогрессии? Попробуй сначала написать числами, а потом в более общем виде, заменив числа буквами.
Закономерности пока не видны. Ок. Идем дальше. Чему равен 3-й член арифметической прогрессии?
Похоже что вырисовывается закономерность! Чтобы узнать значение 2-го члена прогрессии, мы прибавляли одно d, а чтобы узнать 3-го — два d! Иными словами, нам надо прибавлять каждый раз на одно d меньше, чем номер члена прогрессии.
Давай проверим? Чему равен 4-й член арифметической прогрессии?
Бинго! Закономерность подтверждается. Теперь осталось описать закономерность формулой и пользоваться ею!
Если нам нужно найти значение числа прогрессии с порядковым номером n, мы прибавляем к первому члену арифметической прогрессии число d, которое на одно значение меньше порядкового номера искомого числа.
А теперь запомни эту формулу и используй ее для быстрого счета. А если забудешь — то легко выведешь.
Например, посмотрим, из чего складывается значение \( \displaystyle 4\)-го члена данной арифметической прогрессии:
Попробуй самостоятельно найти таким способом значение члена \( \displaystyle n=6\) данной арифметической прогрессии.
Рассчитал? Сравни свои записи с ответом:
Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли \( \displaystyle d\) к предыдущему значению членов арифметической прогрессии.
Попробуем «обезличить» данную формулу – приведем ее в общий вид и получим:
Кстати, таким образом мы можем посчитать и \( \displaystyle 140\)-ой член данной арифметической прогрессии (да и \( \displaystyle 169\)-ый тоже можем, да и любой другой вычислить совсем несложно).
Попробуй посчитать значения \( \displaystyle 140\)-го и \( \displaystyle 169\)-го членов, применив полученную формулу.
Возрастающие и убывающие арифметические прогрессии
Возрастающие – прогрессии, в которых каждое последующее значение членов больше предыдущего.
Убывающие – прогрессии, в которых каждое последующее значение членов меньше предыдущего.
Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.
Проверим это на практике.
Нам дана арифметическая прогрессия, состоящая из следующих чисел: \( \displaystyle 13;\text< >8;\text< >4;\text< >0;\text< >-4.\)
Проверим, какое получится \( \displaystyle 4\)-ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:
Заметим, что так как арифметическая прогрессия убывающая, то значение \( \displaystyle d\) будет отрицательным, ведь каждый последующий член меньше предыдущего.
Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.
Попробуй самостоятельно найти \( \displaystyle 140\)-ой и \( \displaystyle 169\)-ый члены этой арифметической прогрессии.
Сравним полученные результаты:
Свойство арифметической прогрессии (или как найти n-й член прогрессии, зная соседние)
Усложним задачу — выведем свойство арифметической прогрессии.
Допустим, нам дано такое условие:
\( \displaystyle 4;\text< >x;\text< >12\ldots \) — арифметическая прогрессия, найти значение \( \displaystyle x\).
Легко, скажешь ты и начнешь считать по уже известной тебе формуле:
Получается, мы сначала находим \( \displaystyle d\), потом прибавляем его к первому числу и получаем искомое \( \displaystyle x\).
Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа \( \displaystyle 4024;
Согласись, есть вероятность ошибиться в вычислениях.
А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы?
Конечно да, и именно ее мы попробуем сейчас вывести.
Просуммируем предыдущий и последующий члены прогрессии:
Получается, что сумма предыдущего и последующего членов прогрессии – это удвоенное значение члена прогрессии, находящегося между ними.
Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на \( 2\).
Попробуем посчитать значение \( x\), используя выведенную формулу:
Все верно, мы получили это же число. Закрепим материал.
Посчитай значение \( x\) для прогрессии \( \displaystyle 4024;
x;6072\) самостоятельно, ведь это совсем несложно.
Молодец! Ты знаешь о прогрессии почти все!
Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» – Карл Гаусс…
Сумма первых n членов арифметической прогрессии
Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу:
«Сосчитать сумму всех натуральных чисел от \( \displaystyle 1\) до \( \displaystyle 40\) (по другим источникам до \( \displaystyle 100\)) включительно».
Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…
Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.
Допустим, у нас есть арифметическая прогрессия, состоящая из \( \displaystyle 6\)-ти членов: \( \displaystyle 6;\text< >8;\text< >10;\text< >12;\text< >14;\text< >16…\)
Нам необходимо найти сумму данных \( \displaystyle 6\) членов арифметической прогрессии.
Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму \( \displaystyle 100\) ее членов, как это искал Гаусс?
Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.
Попробовал? Что ты заметил? Правильно! Их суммы равны
А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии?
Конечно, ровно половина всех чисел, то есть \( \frac<6><2>=3\).
Исходя из того, что сумма двух членов арифметической прогрессии равна \( 22\), а подобных равных пар \( 3\), мы получаем, что общая сумма равна:
\( \displaystyle S\text< >=\text< >22\cdot 3\text< >=\text< >66\).
Таким образом, формула для суммы первых \( \displaystyle n\) членов любой арифметической прогрессии будет такой:
В некоторых задачах нам неизвестен \( \displaystyle n\)-й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу \( \displaystyle n\)-го члена. \( <_
Что у тебя получилось?
Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма \( \displaystyle 40\) чисел, начиная от \( \displaystyle 1\)-го, и сумма \( \displaystyle 100\) чисел начиная от \( \displaystyle 1\)-го.
Сколько у тебя получилось?
У Гаусса получилось, что сумма \( \displaystyle 100 \) членов равна \( \displaystyle 5050\), а сумма \( \displaystyle 40 \) членов \( \displaystyle 820\).
На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.
Например, представь Древний Египет и самую масштабную стройку того времени – строительство пирамиды… На рисунке представлена одна ее сторона.
Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.
Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется \( \displaystyle 6\) блочных кирпичей.
Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?
В данном случае прогрессия выглядит следующим образом:
\( \displaystyle 6;\text< >5;\text< >4;\text< >3;\text< >2;\ 1\).
Разность арифметической прогрессии \( \displaystyle
Количество членов арифметической прогрессии \( \displaystyle=6\).
Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).
Разность арифметической прогрессии \( \displaystyle
Количество членов арифметической прогрессии \( \displaystyle=6\).
Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).
Способ 1.
Способ 2.
А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде.
Молодец, ты освоил сумму \( \displaystyle n\)-ных членов арифметической прогрессии.
Конечно, из \( \displaystyle 6\) блоков в основании пирамиду не построишь, а вот из \( \displaystyle 60\)?
Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.
Верный ответ – \( \displaystyle 1830\) блоков:
Что такое непостоянная арифметическая прогрессия. Свойство членов арифметической прогрессии
Задачи по арифметической прогрессии существовали уже в глубокой древности. Они появлялись и требовали решения, поскольку имели практическую необходимость.
И в математических трудах древних греков встречаются изящные теоремы, имеющие отношение к арифметической прогрессии. Так, Гипсикл Александрийский (II век составивший немало интересных задач и добавивший четырнадцатую книгу к «Началам» Евклида, сформулировал мысль: «В арифметической прогрессии, имеющей четное число членов, сумма членов 2-ой половины больше суммы членов 1-ой на квадрату 1/2 числа членов».
Обозначается последовательность an. Числа последовательности называются ее членами и обозначаются обычно буквами с индексами, которые указывают порядковый номер этого члена (a1, a2, a3 … читается: «a 1-ое», «a 2-ое», «a 3-тье» и так далее).
Последовательность может быть бесконечной или конечной.
А что же такое арифметическая прогрессия? Под ней понимают получаемую сложением предыдущего члена (n) с одним и тем же числом d, являющимся разностью прогрессии.
Если d 0, то такая прогрессия считается возрастающей.
Арифметическая прогрессия называется конечной, если учитываются только несколько ее первых членов. При очень большом количестве членов это уже бесконечная прогрессия.
Задается любая арифметическая прогрессия следующей формулой:
Абсолютно верно утверждение, являющееся обратным: если последовательность задается подобной формулой, то это точно арифметическая прогрессия, которая имеет свойства:
В арифметической прогрессии любой необходимый (N-й) член найти можно, применяя следующую формулу:
К примеру: первый член (a1) в арифметической прогрессии задан и равен трём, а разность (d) равняется четырём. Найти нужно сорок пятый член этой прогрессии. a45 = 1+4(45-1)=177
Сумма членов арифметической прогрессии (подразумевается 1-ые n членов конечной прогрессии) вычисляется следующим образом:
Если известны и 1-ый член, то для вычисления удобна другая формула:
Сумма арифметической прогрессии, которая содержит n членов, подсчитывается таким образом:
Выбор формул для расчетов зависит от условий задач и исходных данных.
Помимо арифметической прогрессии существует еще и геометрическая, которая обладает своими свойствами и характеристиками.
Арифметическая и геометрическая прогрессии
Для любого натурального n
a n + 1 = a n + d
Для любого натурального n
b n + 1 = b n ∙ q, b n ≠ 0
Формула n-ого члена
Примеры заданий с комментариями
По формуле n-ого члена:
Необходимо найти разность прогрессий:
По формуле n-ого члена геометрической прогрессии:
2-й способ (с помощью рекуррентной формулы)
В арифметической прогрессии ( a n ) a 74 = 34; a 76 = 156. Найдите семьдесят пятый член этой прогрессии.
Для арифметической прогрессии характеристическое свойство имеет вид .
.
Подставим данные в формулу:
Для нахождения суммы n-первых членов арифметической прогрессии используют две формулы:
.
Какую из них в данном случае удобнее применять?
По формуле n-ого члена:
Записаны несколько последовательных членов геометрической прогрессии:
Подставив найденные значения в формулу, получим:
.
Из арифметических прогрессий, заданных формулой n-го члена, выберите ту, для которой выполняется условие a 27 > 9:
Так как заданное условие должно выполняться для 27-го члена прогрессии, подставим 27 вместо n в каждую из четырех прогрессий. В 4-й прогрессии получим:
.
Что это за прогрессия?
Прежде чем переходить к рассмотрению вопроса (как найти сумму арифметической прогрессии), стоит понять, о чем пойдет речь.
Любая последовательность действительных чисел, которая получается путем добавления (вычитания) некоторого значения из каждого предыдущего числа, называется алгебраической (арифметической) прогрессией. Это определение в переводе на язык математики принимает форму:
Можно легко показать, что для рассматриваемого ряда чисел выполняется следующее равенство:
Чему равна сумма арифметической прогрессии: формула
Прежде чем приводить формулу для указанной суммы, стоит рассмотреть простой частный случай. Дана прогрессия натуральных чисел от 1 до 10, необходимо найти их сумму. Поскольку членов в прогрессии немного (10), то можно решить задачу в лоб, то есть просуммировать все элементы по порядку.
Стоит учесть одну интересную вещь: поскольку каждый член отличается от последующего на одно и то же значение d = 1, то попарное суммирование первого с десятым, второго с девятым и так далее даст одинаковый результат. Действительно:
Как видно, этих сумм всего 5, то есть ровно в два раза меньше, чем число элементов ряда. Тогда умножая число сумм (5) на результат каждой суммы (11), вы придете к полученному в первом примере результату.
Если обобщить эти рассуждения, то можно записать следующее выражение:
Считается, что впервые до этого равенства додумался Гаусс, когда искал решение на заданную его школьным учителем задачу: просуммировать 100 первых целых чисел.
Сумма элементов от m до n: формула
Формула, приведенная в предыдущем пункте, дает ответ на вопрос, как найти сумму арифметической прогрессии (первых элементов), но часто в задачах необходимо просуммировать ряд чисел, стоящих в середине прогрессии. Как это сделать?
Ответить на этот вопрос проще всего, рассматривая следующий пример: пусть необходимо найти сумму членов от m-го до n-го. Для решения задачи следует представить заданный отрезок от m до n прогрессии в виде нового числового ряда. В таком представлении m-й член a m будет первым, а a n станет под номер n-(m-1). В этом случае, применяя стандартную формулу для суммы, получится следующее выражение:
Пример использования формул
Зная, как найти сумму арифметической прогрессии, стоит рассмотреть простой пример использования приведенных формул.
Ниже дана числовая последовательность, следует найти сумму ее членов, начиная с 5-го и заканчивая 12-м:
Приведенные числа свидетельствуют, что разность d равна 3. Используя выражение для n-го элемента, можно найти значения 5-го и 12-го членов прогрессии. Получается:
Зная значения чисел, стоящих на концах рассматриваемой алгебраической прогрессии, а также зная, какие номера в ряду они занимают, можно воспользоваться формулой для суммы, полученной в предыдущем пункте. Получится:
Стоит отметить, что это значение можно было получить иначе: сначала найти сумму первых 12 элементов по стандартной формуле, затем вычислить сумму первых 4 элементов по той же формуле, после этого вычесть из первой суммы вторую.
Первый элемент последовательности;
Пятый элемент последовательности;
— «энный» элемент последовательности, т.е. элемент, «стоящий в очереди» под номером n.
Последовательность можно задать тремя способами:
Например, Некто решил заняться личным тайм-менеджментом, и для начала посчитать в течение недели, сколько времени он проводит ВКонтакте. Записывая время в таблицу, он получит последовательность, состоящую из семи элементов:
В этом случае зависимость значения элемента последовательности от его номера выражается напрямую в виде формулы.
Чтобы найти значение элемента последовательности с заданным номером, мы номер элемента подставляем в формулу n-го члена.
То же самое мы делаем, если нужно найти значение функции, если известно значение аргумента. Мы значение аргумента подставляем вместо в уравнение функции:
Если, например, , то
Ещё раз замечу, что в последовательности, в отличие от произвольной числовой функции, аргументом может быть только натуральное число.
Например, рассмотрим последовательность ,
Арифметической прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.
Основное свойство арифметической прогрессии:
Посмотрим на рисунок.
, и в то же время
Сложив эти два равенства, получим:
.
Разделим обе части равенства на 2:
Итак, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних:
Больше того, так как
, и в то же время
, то
, и, следовательно,
Каждый член арифметической прогрессии, начиная с title=»k>l»>, равен среднему арифметическому двух равноотстоящих.
Мы видим, что для членов арифметической прогрессии выполняются соотношения:
Мы получили формулу n-го члена.
Сумма n членов арифметической прогрессии.
В произвольной арифметический прогрессии суммы членов, равноотстоящих от крайних равны между собой:
Расположим члены прогрессии сначала в порядке возрастания номеров, а затем в порядке убывания:
Итак, сумму n членов арифметической прогрессии можно найти по формулам:
Докажем, что разность между двумя соседними членами последовательности равна одному и тому же числу.
Мы получили, что разность двух соседних членов последовательности не зависит от их номера и является константой. Следовательно, по определению, эта последовательность является арифметической прогрессией.
а) Найдите 31 член прогрессии.
б) Определите, входит ли в данную прогрессию число 41.
Запишем формулу n-го члена для нашей прогрессии.
В общем случае
В нашем случае , поэтому
Что собой представляет арифметическая прогрессия?
Чтобы это понять, необходимо дать определение рассматриваемой прогрессии, а также привести основные формулы, которые далее будут использованы при решении задач.
Известно, что в некоторой прогрессии алгебраической 1-й член равен 6, а 7-й член равен 18. Необходимо найти разность и восстановить эту последовательность до 7 члена.
Чтобы восстановить последовательность до 7 члена, следует воспользоваться определением алгебраической прогрессии, то есть a 2 = a 1 + d, a 3 = a 2 + d и так далее. В итоге восстанавливаем всю последовательность: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14, a 6 = 14 + 2 = 16, a 7 = 18.
Пример №3: составление прогрессии
Пример №4: первый член прогрессии
Продолжим приводить примеры арифметической прогрессии с решением. Во всех предыдущих задачах было известно первое число алгебраической прогрессии. Теперь рассмотрим задачу иного типа: пусть даны два числа, где a 15 = 50 и a 43 = 37. Необходимо найти, с какого числа начинается эта последовательность.
Формулы, которыми пользовались до настоящего времени, предполагают знание a 1 и d. В условии задачи об этих числах ничего неизвестно. Тем не менее выпишем выражения для каждого члена, о котором имеется информация: a 15 = a 1 + 14 * d и a 43 = a 1 + 42 * d. Получили два уравнения, в которых 2 неизвестные величины (a 1 и d). Это означает, что задача сводится к решению системы линейных уравнений.
Если возникают сомнения в полученном результате, можно его проверить, например, определить 43 член прогрессии, который задан в условии. Получим: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Небольшая погрешность связана с тем, что при вычислениях использовалось округление до тысячных долей.
Пример №5: сумма
Теперь рассмотрим несколько примеров с решениями на сумму арифметической прогрессии.
Благодаря развитию компьютерных технологий можно эту задачку решить, то есть последовательно сложить все числа, что вычислительная машина сделает сразу же, как только человек нажмет клавишу Enter. Однако задачу можно решить в уме, если обратить внимание, что представленный ряд чисел является прогрессией алгебраической, причем ее разность равна 1. Применяя формулу для суммы, получаем: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.
Пример №6: сумма членов от n до m
Задача решается двумя способами. Первый из них предполагает нахождение неизвестных членов с 8 по 14, а затем их последовательное суммирование. Поскольку слагаемых немного, то такой способ не является достаточно трудоемким. Тем не менее предлагается решить эту задачу вторым методом, который является более универсальным.
Полученная формула является несколько громоздкой, тем не менее сумма S mn зависит только от n, m, a 1 и d. В нашем случае a 1 = 3, d = 4, n = 14, m = 8. Подставляя эти числа, получим: S mn = 301.
Как видно из приведенных решений, все задачи основываются на знании выражения для n-го члена и формулы для суммы набора первых слагаемых. Перед тем как приступить к решению любой из этих задач, рекомендуется внимательно прочитать условие, ясно понять, что требуется найти, и лишь затем приступать к решению.
Если возникают сомнения в полученном результате, то рекомендуется его проверять, как это было сделано в некоторых приведенных примерах. Как находить арифметическую прогрессию, выяснили. Если разобраться, то это не так сложно.
2>