что можно писать на rust

Что делает Rust универсальным языком программирования

что можно писать на rust. Смотреть фото что можно писать на rust. Смотреть картинку что можно писать на rust. Картинка про что можно писать на rust. Фото что можно писать на rust

Долгое время Rust позиционировался исключительно как язык для системного программирования. Попытки использовать Rust для высокоуровневых прикладных задач зачастую вызывали усмешку у значительной части сообщества: зачем использовать инструмент в том качестве, на которое он не рассчитан? Какая польза от возни с типами и анализатором заимствований (borrow checker), если есть Python и Java со сборкой мусора? Но другая часть сообщества всегда видела потенциал Rust именно как языка прикладного, и даже находила его удобным в использовании для быстрого прототипирования — во многом благодаря его особенностям, а не вопреки им.

Шло время, и сейчас использование Rust для высокоуровневых прикладных задач вызывает куда меньше споров, чем раньше. Сообщество накопило практический опыт, и практика показала, что у Rust есть свои преимущества в прикладной сфере. Посмотрите, как менялось официальное определение языка, с такого:

Rust is a systems programming language that runs blazingly fast, prevents segfaults, and guarantees thread safety.

Rust — невероятно быстрый язык для системного программирования без segfault’ов и с гарантиями потокобезопасности.

A language empowering everyone to build reliable and efficient software.

Язык, позволяющий каждому создавать надёжное и эффективное программное обеспечение.

Думаю, это хорошая иллюстрация смещения акцентов в позиционировании языка.

В данной статье я хочу рассказать о важных аспектах языка Rust, которые делают его универсальным, то есть равно успешно применимым и в системном, и в прикладном программировании. Более того, попытаюсь показать, как Rust устанавливает органичную связь между этими, казалось бы независимыми и даже противоположными сферами.

Что понимать под высоким и низким уровнем?

Понятия высокого/низкого уровня, применительно к языкам программирования, уже давно перестали носить абсолютный характер. По сравнению с ассемблером, язык Си — высокоуровневый, а по сравнению с Haskell — низкоуровневый. В случае с Rust ситуация усугубляется тем, что некоторые языковые возможности в нем близки к Haskell, а некоторые — к Си. Чтобы не запутаться, что считать высоким уровнем, а что низким, я предлагаю использовать простое правило: если языковая конструкция скорее выражает что мы делаем в терминах самой задачи, то она более высокого уровня, чем та, которая скорее говорит нам как именно реализуется решение.

Интересно, что с этой точки зрения декларативный подход выше уровнем, чем императивный. Также понятно, что для системного программирования особо важно, чтобы язык мог выражать как нечто работает в системе, потому что именно это как напрямую и есть что главной задачи системного программирования. Можно сказать, что низкоуровневый по отношению к множеству разных задач язык программирования может являться одновременно высокоуровневым предметно-ориентированным языком (DSL) для сугубо системных задач, так как лучшим образом отражает архитектуру системы.

unsafe-блоки

Давайте сразу обратимся к примеру и посмотрим, как в Rust работают итераторы:

Обратите внимание, что структура Iter содержит в качестве своих полей два указателя: ptr и end (строки 2 и 3). Из-за того, что эти указатели — это обычные Си-совместимые указатели (правда NonNull дополнительно требует, чтобы указатель не был нулевым), довольно низкоуровневые ссылочные типы, их время жизни никак не отслеживается borrow checker’ом. Поэтому заданное в объявлении структуры время жизни ссылки ‘a (1) мы вынуждены добавить в «фантомное» поле с типом нулевой размерности PhantomData (4). Иначе время жизни окажется никак не используемым внутри структуры, что приведет к ошибке компиляции. То есть, другими словами: мы хотим сделать безопасный итератор, который ссылается на элементы коллекции, по которой он итерируется, и для того, чтобы он был безопасным, нам нужно учитывать время жизни ссылок. Но наша внутренняя реализация основана на указателях и потому не подразумевает никакого отслеживания времен жизни со стороны компилятора. Поэтому мы должны гарантировать своей реализацией безопасность кода, работающего с указателями (в unsafe-блоках, подобных 5), и тогда можно реализовать безопасный внешний API по всем правилам работы в safe Rust.

Это очень наглядный пример того, что представляет собой Rust на самом деле. Это высокоуровневый, безопасный язык, в котором есть низкоуровневые небезопасные возможности. Тут граница, по которой одно отделяется от другого — это определение типа, а блоки unsafe выступают маркером того, что в реализации используются весьма низкоуровневые и небезопасные средства (на самом деле в общем случае граница проходит через определение модуля: пока в язык не будет добавлена возможность помечать поля как unsafe, потенциально небезопасным становится весь код в пределах модуля, если на поведение unsafe-методов влияет содержимое полей структуры).

Важный вывод, к которому мы здесь приходим, состоит в том, что Rust — самодостаточный язык. Его высокоуровневые возможности вполне реализуются на низком уровне им же самим. И наоборот: из низкоуровневых «кирпичей» в Rust можно конструировать высокоуровневые блоки, скрывая детали реализации за безопасным API.

Теперь должно быть понятно, что unsafe, который тут и там встречается в стандартной библиотеке Rust — это не баг, а фича. Есть довольно популярный упрек к Rust со стороны: дескать, какой же это безопасный и высокоуровневый язык, если у него в std сплошные unsafe-блоки? Он либо тогда должен быть весь unsafe, либо полностью safe. Но преимущество Rust как раз состоит в том, что он позволяет делать и то и другое, при этом отделяя одно от другого. Это одна из причин, почему Rust по-настоящему универсальный язык программирования.

Макросы

Посмотрите, как организуется простейший цикл for на Python:

Они похожи, не правда ли? Но for в Rust — это просто синтаксический сахар к более низкоуровневому представлению. Вот во что разворачивается данный цикл for :

Касательно процедурных макросов: забавно, как возможность делать низкоуровневые вещи открывает языку путь к построению предельно высокоуровневых абстракций. Дело в том, что процедурные макросы в Rust — это своего рода «плагины к компилятору», которые пишутся на самом Rust. Так как Rust — это язык без сборщика мусора, то он может использоваться для создания встраиваемых компонентов. В частности, можно написать динамическую библиотеку, которую подгрузит компилятор при компиляции вашей программы, и которая будет реализовывать ваши собственные расширения языка. Взглянем на пример использования атрибутных процедурных макросов в actix-web :

Здесь #[get(..)] и #[actix_rt::main] — это пользовательские атрибуты, которые приведут при компиляции к преобразованию элементов, на которые они навешены, в соответствии с заданной программой. Вот во что развернется код выше при компиляции:

Здесь макрос позволяет указать разметку в привычном виде, декларативно, на html-подобном языке, с вкраплениями Rust-кода. Похоже на JSX, расширение языка JavaScript. Только Rust изначально обладает средствами для создания подобных расширений, для него они — обычное дело.

Возможности процедурных макросов практически безграничны. Правда, вам самим придется заботиться о семантике, так как макросы работают на синтаксическом уровне, а рефлексии в Rust не предусмотрено. Тем не менее, грамотно написанные макросы могут сильно упростить создание абстракций, специфичных для конкретной предметной области. Таким образом, сам Rust становится низкоуровневым инструментом реализации требуемого высокоуровнего предметно-ориентированного языка, предельно соответствующего решаемой задаче.

В отличие от некоторых высокоуровневых языков (таких как Python), которые служат своего рода «клеем» для низкоуровневых компонентов, написанных на других языках, Rust сам выступает и в роли «клея», и в роли инструмента реализации «склеиваемых» компонентов.

Бесплатные абстракции

Удивительно, насколько наличие абстракций с нулевой стоимостью, даже самых элементарных, упрощает прикладную разработку. Посмотрите на следующий код, который написан на языке, считающимся высокоуровневым:

И сравните с тем, как то же самое поведение реализуется в Rust:

Где вам понятнее, что происходит и где, по-вашему, вероятность ошибиться меньше? Мне кажется, что ответ очевиден.

Числовой тип — это «низкоуровневый» тип, потому что он отвечает на вопрос как значение будет представлено в памяти, а не на вопрос что оно собой представляет в контексте задачи. Но в Rust можно очень легко и элегантно вводить новые типы поверх существующих:

Несмотря на то, что оба значения a и b имеют одинаковое числовое представление, они являются объектами разных типов, и поэтому перепутать и подставить одно значение вместо другого не получится. Этот паттерн называется «Новый тип» (New type), и он совершенно бесплатен в использовании. (Подробнее о преимуществах использования паттерна «Новый тип» вы можете прочитать в замечательной статье Передача намерений.)

«Новый тип», так же как и вообще любая пользовательская структура или перечисление в Rust, может выступать границей раздела нескольких уровней программирования. И чтобы пользователь мог переходить эту границу всегда, когда это удобно для решения его задачи, эти абстракции не должны сами по себе требовать сколь-либо значимых дополнительных расходов. Иначе пользователь будет вынужден чаще пользоваться имеющимися низкоуровневыми типами, вместо того, чтобы создавать на их основе свои, высокоуровневые.

Обобщенные типы

Помимо того, что обобщенные типы избавляют от написания шаблонного кода, они являются отличным инструментом абстрагирования и высокоуровневой спецификации поведения. Вот что я имею в виду:

Выглядит как что-то низкоуровневое. Но такое поведение часто реализует определенное требование самой задачи. Например, у нас есть тип с приватным конструктором:

Можно сделать так, что UserId будет возможно сконструировать только с помощью некоего сервиса, который либо выдает новое число из глобальной последовательности идентификаторов, либо десериализует значение UserId из ранее сконструированного и сохраненного. (Подробнее о преимуществах подобного подхода к проектированию типов вы можете прочитать в статье Парсите, а не валидируйте.)

Итак, на границе высокоуровневого и низкоуровневого кода, проходящей через определения обобщенных типов, мы можем столкнуться как с высокоуровневыми, так и с низкоуровневыми ограничениями, причем далеко не всегда просто отделить одни от других. Но помочь с этим может введение новых типажей:

Теперь можно вместо набора из трех ограничений писать только одно, которое автоматически будет выполняться для всякого типа, имеющего исходные три характеристики. Таким образом можно скрыть множество низкоуровневых требований за одним высокоуровневым.

Перечисление типов

АТД во многих случаях избавляет программиста от написания низкоуровневого кода для проверки целостности и непротиворечивости типов данных. Что актуально не только для языков с динамической типизацией, но и для статически типизированных языков.

Вообще, enum в Rust используется чуть менее, чем везде — и это прекрасно! Потому что АТД — это абстракция очень высокого уровня, сравнимая с наследованием классов и полиморфизмом подтипов в ООП. Выражение традиционно низкоуровневых концепций в терминах АТД неожиданно делает их не такими уж и низкоуровневыми.

Вот как решается проблема реализации отсутствующего значения в Rust:

Подробнее об АТД и преимуществах их использования, вы можете прочитать в статье Романа Душкина «Алгебраические типы данных и их использование в программировании».

Владение

Концепция владения в Rust постулирует единственность владельца ресурса в любой момент времени. Она вводилась для решения проблемы гонки данных при конкурентном доступе и проблемы использования памяти после освобождения. Однако кроме этого, концепция владения позволила легко реализовать механизм автоматического освобождения ресурсов, где ресурсом может выступать не только память, но также файлы, сокеты и любые другие пользовательские объекты. Если владелец ресурса всегда один, то когда он выходит из области видимости и уничтожается — ресурс автоматически освобождается. Пользователь может задавать собственную процедуру освобождения, реализуя типаж Drop для своего типа.

В Java, например, с try-with-resources ответственность за корректное освобождение ресурсов перекладывается на вызывающую сторону. К тому же не всегда использование ресурсов настолько локализовано, что безошибочное использование try-with-resources очевидно. Использование Cleaner улучшает ситуацию и избавляет пользователя от необходимости следить за освобождением в тривиальных случаях, но в более сложных — головной боли не избежать (подробнее о проблемах освобождения ресурсов в Java смотрите в лекции Евгения Козлова «Вы все еще используете finalize()? Тогда мы идем к вам»).

Rust же предоставляет простой и элегантный механизм, который основан на универсальной в рамках языка концепции владения, избавляющий программиста от необходимости низкоуровневого кодирования освобождения памяти и прочих ресурсов в местах их использования.

Дополнительно, с концепцией владения тесно связан принцип перемещения по-умолчанию: если вы передаете владельца из одного места в другое, то ресурс будет перемещен (логически), а не скопирован. Это удобно использовать при реализация всевозможных переходов, например, между состояниями абстрактного автомата:

Реализация подобного сценария желательна не так уж и редко, а в некоторых случаях она крайне необходима. Так что с помощью системы владения Rust защита последовательности смены состояний становится достаточно простым делом.

Заимствование

На низком уровне заимствование означает получение ссылки на объект, время жизни которой компилятор проверит на соответствие времени жизни исходного объекта. Но при взгляде с более высокого уровня, заимствование означает получение некоего представления (view), временно соотнесенного с исходным объектом. Такое представление не обязано быть единственным.

Что же в итоге?

Как видите, Rust — это не просто очередной системный язык программирования по мотивам Си. На системный язык, обогащенный рядом высокоуровневых концепций, можно смотреть и с другой стороны: как на прикладной язык, снабженный низкоуровневым инструментарием.

Полезны ли эти низкоуровневые инструменты в прикладной раработке? Я думаю, что да. Они позволяют создавать новые эффективные высокоуровневые абстракции, расширяя арсенал разработчика. Дополнительно, наличие средств, которые позволяют изолировать и связывать между собой разные уровни, делают Rust по-настоящему универсальным языком программирования.

Полагаю, что качество Rust-кода и удобство его доработки будет напрямую зависеть от того, насколько удачно программист решил проблему инкапсуляции низких уровней относительно высоких в рамках своей задачи. Конечно, тут у Rust еще большой простор для совершенствования, но имеющихся средств уже достаточно, чтобы довольно комфортно вести прикладную, высокоуровневую разработку, а не только решать низкоуровневые системные задачи.

Upd.: Отдельное спасибо T_12 за вычитку текста статьи и дельные замечания.

Источник

Rust — молодой и дерзкий язык программирования

Говорят, что это одновременно C++ и Haskell.

Первая версия языка Rust появилась в 2010 году, и он сразу занял третью строчку в списке любимых языков разработчиков на StackOverflow. Год спустя Rust возглавил этот список и держался там несколько лет. Давайте посмотрим, почему этот язык стал таким популярным, в чём его особенности и почему вокруг него много споров.

В чём идея языка Rust

Автору языка нравилась скорость работы и всемогущество языка C++ и надёжность Haskell. Он поставил перед собой задачу совместить оба этих подхода в одном языке, и за несколько лет он собрал первую версию языка Rust.

Rust позиционируется как компилируемый системный мультипарадигмальный язык высокого уровня. Сейчас поясним, что это значит.

👉 Компилируемый язык означает, что готовая программа — это отдельный файл, который можно запустить на любом компьютере с нужной операционной системой. Для запуска не нужно устанавливать среду разработки и компилятор, достаточно, чтобы скомпилированная версия подходила к вашему компьютеру.

👉 Системный — это когда на языке пишут программы для работы системы в целом. Это могут быть операционные системы, драйверы и служебные утилиты. Обычные программы тоже можно писать на Rust — от калькулятора до системы управления базами данных. Системный язык позволяет писать очень быстрые программы, которые используют все возможности железа.

👉 Мультипарадигмальный значит, что в языке сочетаются несколько парадигм программирования. В случае Rust это ООП, процедурное и функциональное программирование. Причём, ООП в Rust пришло из C++, а функциональное — из Haskell. Программист может сам выбирать, в каком стиле он будет писать код, или совмещать разные подходы в разных элементах программы.

Синтаксис и код

За основу синтаксиса в Rust взят синтаксис из C и C++.Например, классический «Привет, мир!» на Rust выглядит так:

fn main() <
println!(«Hello, world!»);
>

Если вы знакомы с подобным синтаксисом, то сможете быстро начать писать и на Rust. Другое дело, что в Rust есть свои особенности:

let x = if new_game() < 4 >
else if reload() < 3 >
else

Последнее разберём подробно. При такой записи переменная x будет равна четырём, если функция new_game() вернёт значение true. Если этого не случится, компилятор вызовет функцию reload() и проверит, что получилось. Если true, то x примет значение 3, а если и это не сработает — то x станет равным 0.

Ещё в Rust есть сравнение переменной с образцом. В зависимости от того, с каким образцом совпало значение переменной, выполнится та или иная функция:

Главная особенность программ на Rust

Несмотря на синтаксис, похожий на C, главную особенность программ на Rust разработчики взяли из Haskell, и звучит она так:

Если программа на Rust скомпилировалась и не упала во время запуска, то она будет работать до тех пор, пока вы сами её не остановите.

Это значит, что программы на Rust почти так же надёжны, как программы на Haskell. Почти — потому что если программист использует «небезопасный» блок unsafe, который даёт ему прямой доступ к памяти, то в теории это иногда может привести к сбоям. Но даже с такими блоками Rust старается справляться сам и падает только в безнадёжных случаях.

Плюсы и минусы языка

Когда язык совмещает в себе несколько разных подходов из других языков, он получает большинство преимуществ каждого из них:

Минусы в основном связаны со скоростью развития языка. Так как Rust развивается очень быстро, то часто бывает так, что код из старой версии не работает в новой версии. Ещё к минусам можно добавить:

Что написано на Rust

Чаще всего Rust используют в тех проектах, где нужна стабильность и надёжность при высокой нагрузке и общее быстродействие программы.

На практике Rust подходит для разработки ОС, веб-серверов, системных программ мониторинга, веб-движков, а также для создания масштабируемых частей фронтенда и бэкенда. Например, вот самые известные проекты, где Rust был основным языком программирования:

Источник

Первые шаги по Rust

что можно писать на rust. Смотреть фото что можно писать на rust. Смотреть картинку что можно писать на rust. Картинка про что можно писать на rust. Фото что можно писать на rust

Всем привет. Недавно познакомился с новым для себя языком программирования Rust. Я заметил, что он отличается от других, с которыми мне до этого доводилось сталкиваться. Поэтому решил покопать глубже. Результатами и своими впечатлениями хочу поделиться:

Сразу поясню, что я около десяти лет пишу на Java, так что рассуждать буду со своей колокольни.

Killer feature

Rust пытается занять промежуточное положение между низкоуровневыми языками типа C/C++ и высокоуровневыми Java/C#/Python/Ruby… Чем ближе язык находится к железу, тем больше контроля, легче предвидеть как код будет выполняться. Но и имея полный доступ к памяти намного проще отстрелить себе ногу. В противовес С/С++ появились Python/Java и все остальные. В них нет необходимости задумываться об очистки памяти. Самая страшная беда — это NPE, утечки не такое уж частое явление. Но чтобы это все работало необходим, как минимум, garbage collector, который в свою очередь начинает жить своей жизнью, параллельно с пользовательским кодом, уменьшая его предсказуемость. Виртуальная машина еще дает платформонезависимость, но на сколько это необходимо — спорный вопрос, не буду его сейчас поднимать.

Rust является низкоуровневым языком, на выходе компилятор выдает бинарник, для работы которого не нужны дополнительные ухищрения. Вся логика по удалению ненужных объектов интегрируется в код в момент компиляции, т.е. сборщика мусора во время выполнения тоже нет. В Rust так же нет пустых ссылок и типы являются безопасными, что делает его даже более надежным чем Java.

В основе управления памятью лежит идея владения ссылкой на объект и одалживания. Если каждым объектом владеет только одна переменная, то как только кончается срок ее жизни в конце блока, все на что она указывала можно рекурсивно очистить. Также ссылки можно одалживать для чтения или записи. Тут работает принцип один писатель и много читателей.

Эту концепцию можно продемонстрировать в следующем куске кода. Из метода main() вызывается test(), в котором создается рекурсивная структура данных MyStruct, реализующая интерфейс деструктора. Drop позволяет задать логику для выполнения, перед тем как объект будет уничтожен. Чем-то похоже на финализатор в Java, только в отличие от Java, момент вызова метода drop() вполне определен.

Вывод будет следующим:

Т.е. перед выходом из test() память была рекурсивно очищена. Позаботился об этом компилятор, вставив нужный код. Что такое Box и Option опишу чуть позже.

Таким образом Rust берет безопасность от высокоуровневых языков и предсказуемость от низкоуровневых языков программирования.

Что еще интересного

Далее перечислю черты языка по убыванию важности, на мой взгляд.

Тут Rust вообще впереди планеты всей. Если большинство языков пришли к тому, что надо отказаться от множественного наследования, то в Rust наследования нет вообще. Т.е. класс может только имплементировать интерфейсы в любом количестве, но не может наследоваться от других классов. В терминах Java это означало бы делать все классы final. Вообще синтаксическое разнообразие для поддержания OOP не так велико. Возможно, это и к лучшему.

Для объединения данных есть структуры, которые могут содержать имплементацию. Интерфейсы называются trait и тоже могут содержать имплементацию по умолчанию. До абстрактных классов они не дотягивают, т.к. не могут содержать полей, многие жалуются на это ограничение. Синтаксис выглядит следующим образом, думаю комментарии тут не нужны:

Из особенностей на которые я обратил внимание, стоит отметить следующее:

Еще немного безопасности

Как я уже говорил Rust уделяет большое внимание надежности кода и пытается предотвратить большинство ошибок на этапе компиляции. Для этого была исключена возможность делать ссылки пустыми. Это мне чем-то напомнило nullable типы из Kotlin. Для создания пустых ссылок используется Option. Так же как и в Kotlin, при попытке обратиться к такой переменной, компилятор будет бить по рукам, заставляя вставлять проверки. Попытка же вытащить значение без проверки может привести к ошибке. Но этого уж точно нельзя сделать случайно как, например, в Java.

Мне еще понравилось то, что все переменные и поля классов по умолчанию являются неизменяемыми. Опять привет Kotlin. Если значение может меняться, это явно надо указывать ключевым словом mut. Я думаю, стремление к неизменяемости сильно улучшает читабельность и предсказуемость кода. Хотя Option почему-то является изменяемым, этого я не понял, вот код из документации:

Перечисления

В Rust называются enum. Только помимо ограниченного числа значений они еще могут содержать произвольные данные и методы. Таким образом это что-то среднее между перечислениями и классами в Java. Стандартный enum Option в моем первом примере как раз принадлежит к такому типу:

Для обработки таких значений есть специальная конструкция:

А также

Я не ставлю себе целью написать учебник по Rust, а просто хочу подчеркнуть его особенности. В этом разделе опишу, что еще есть полезного, но, на мой взгляд, не такого уникального:

Ложки дегтя

Этот раздел необходим для полноты картины.

Killer problem

Главный недостаток происходит из главной особенности. За все приходится платить. В Rust очень неудобно работать c изменяемыми графовыми структурами данных, т.к. на любой объект должно быть не более одной ссылки. Для обхода этого ограничения есть букет встроенных классов:

И это неполный список. Для первой пробы Rust, я опрометчиво решил написать односвязный список с базовыми методами. В конечном счете ссылка на узел получилась следующая Option >:

Выглядит так себе, итого три обертки вокруг одно объекта. Код для простого добавления элемента в конец списка получился очень громоздкий, и в нем есть неочевидные вещи, такие как клонирования и одалживания:

На Kotlin то же самое выглядит намного проще:

Как выяснил позже подобные структуры не являются характерными для Rust, а мой код совсем неидиоматичен. Люди даже пишут целые статьи:

Тут Rust жертвует читабельностью ради безопасности. Кроме того такие упражнения еще могут привести к зацикленным ссылкам, которые зависнут в памяти, т.к. никакой garbage collector их не уберет. Рабочий код на Rust я не писал, поэтому мне сложно сказать насколько такие трудности усложняют жизнь. Было бы интересно получить комментарии практикующих инженеров.

Сложность изучения

Долгий процесс изучения Rust во многом следует из предыдущего раздела. Перед тем как написать вообще хоть что-то придется потратить время на освоение ключевой концепции владения памятью, т.к. она пронизывает каждую строчку. К примеру, простейший список у меня занял пару вечеров, в то время как на Kotlin то же самое пишется за 10 минут, при том что это не мой рабочий язык. Помимо этого многие привычные подходы к написанию алгоритмов или структур данных в Rust будут выглядеть по другому или вообще не сработают. Т.е. при переходе на него понадобится более глубокая перестройка мышления, просто освоить синтаксис будет недостаточно. Это далеко не JavaScript, который все проглотит и все стерпит. Думаю, Rust никогда не станет тем языком, на котором учат детей в школе программирования. Даже у С/С++ в этом смысле больше шансов.

В итоге

Мне показалась очень интересной идея управления памятью на этапе компиляции. В С/С++ у меня опыта нет, поэтому не буду сравнивать со smart pointer. Синтаксис в целом приятный и нет ничего лишнего. Я покритиковал Rust за сложность реализации графовых структур данных, но, подозреваю, что это особенность всех языков программирования без GC. Может быть, сравнения с Kotlin было и не совсем честным.

В этой статье я совсем не коснулся многопоточности, думаю это отдельная большая тема. Еще есть планы написать какую-нибудь структуру данных или алгоритм посложнее списка, если есть идеи, прошу поделиться в комментариях. Интересно было бы узнать приложения каких типов вообще пишут на Rust.

Почитать

Если вас заинтересовал Rust, то вот несколько ссылок:

UPD: Всем спасибо за комментарии. Узнал много полезного для себя. Исправил неточности и опечатки, добавил ссылок. Думаю, такие обсуждения сильно способствуют изучению новых технологий.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *