случайная широкополосная вибрация что это

Случайная широкополосная вибрация что это

ГОСТ 28223-89
(МЭК 68-2-37-73)

Основные методы испытаний на воздействие внешних факторов

Испытание Fdc: Широкополосная случайная вибрация

Basic environmental testing procedures. Part 2. Tests. Test Fdc: Random vibration, wide band. Reproducibility low

ОКСТУ 6000, 6100, 6200, 6300

Дата введения 1990-03-01

1. Постановлением Государственного комитета СССР по стандартам от 15.08.89 N 2561 введен в действие государственный стандарт СССР ГОСТ 28223-89, в качестве которого непосредственно применен стандарт Международной Электротехнической Комиссии МЭК 68-2-37-73 с Поправкой N 1 (1983), с 01.03.90.

2. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ:

Обозначение отечественного нормативно-технического документа,
на который дана ссылка

Обозначение соответствующего стандарта

Раздел, подраздел, пункт, в котором приведена ссылка

3. Замечания к внедрению ГОСТ 28223-89

Техническое содержание стандарта МЭК 68-2-37-73* «Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Fdc. Широкополосная случайная вибрация. Низкая воспроизводимость» принимают для использования и распространяют на изделия электронной техники народнохозяйственного назначения.

4. ПЕРЕИЗДАНИЕ. Октябрь 2006 г.

1. Официальные решения или соглашения МЭК по техническим вопросам, подготовленные техническими комитетами, в которых представлены все заинтересованные национальные комитеты, выражают с возможной точностью международную согласованную точку зрения по рассматриваемым вопросам.

2. Эти решения представляют собой рекомендации для международного пользования и в этом виде принимаются национальными комитетами.

3. В целях содействия международной унификации МЭК выражает пожелание, чтобы все национальные комитеты приняли настоящий стандарт МЭК в качестве своего национального стандарта, насколько это позволяют условия каждой страны.

Любое расхождение с этим стандартом МЭК должно быть, по возможности, четко указано в соответствующих национальных стандартах.

ВВЕДЕНИЕ

Первый проект обсуждался на совещании в Стокгольме в 1968 г.

За издание стандарта голосовали следующие страны:

_______________
* Соединенное Королевство Великобритании и Северной Ирландии.

Соединенные Штаты Америки

Федеративная Республика Германии

1. ВВОДНАЯ ЧАСТЬ

В настоящем стандарте часто упоминаются два особо важных термина из области воздействия случайной вибрации.

Определения этих терминов приводятся ниже.

Спектр СПУ определяет закон изменения СПУ в пределах частотного диапазона.

2. ЦЕЛЬ

Испытания на воздействие случайной вибрации применимы к элементам и аппаратуре, которые в условиях эксплуатации могут подвергаться воздействиям вибраций, имеющих случайный характер. Целью испытания является также выявление возможных механических повреждений и (или) ухудшения заданных характеристик изделия, а также использование указанных данных наряду с требованиями соответствующей НТД для решения вопроса о пригодности образца.

Во время проведения испытания образец подвергают воздействию случайной вибрации с заданным уровнем в пределах широкой полосы частот. Вследствие сложной механической реакции образца и его крепления это испытание требует особой тщательности при его подготовке, проведении и установлении соответствия параметров образца заданным требованиям.

3. КРЕПЛЕНИЕ И КОНТРОЛЬ

Образец крепят на испытательной установке в соответствии с требованиями МЭК 68-2-47 (ГОСТ 28231).

3.2. Контрольные и измерительные точки

Требования к испытаниям обусловливаются измерениями в контрольной точке и, в некоторых случаях, в измерительных точках в зависимости от точек крепления образца. Измерения в измерительных точках необходимы только в том случае, когда используется воображаемая контрольная точка.

3.2.1. Точка крепления

Точкой крепления называется часть образца, которая находится в контакте с крепежным приспособлением или вибрационным столом и является обычно местом крепления при эксплуатации. Если образец крепят к вибрационному столу с помощью крепежного приспособления, то точками крепления образца считают точки крепления крепежного приспособления, а не образца.

3.2.2. Измерительная точка

Измерительной точкой является обычно точка крепления. Она должна быть расположена как можно ближе к точке крепления изделия и в любом случае должна быть жестко связана с ней.

Если задана воображаемая контрольная точка и имеются четыре или менее точек крепления, то каждая точка крепления должна рассматриваться как измерительная точка. Если имеется более четырех точек крепления, то в соответствующей НТД следует указать четыре характерные точки, которые должны использоваться как измерительные.

Примечание. Для больших и (или) сложных образцов важно, чтобы измерительные точки были указаны в соответствующей НТД.

3.2.3. Контрольная точка

Контрольная точка является единственной точкой, из которой получают контрольный сигнал, соответствующий требованиям испытания, и которая используется для получения информации о движении образца. Такой точкой может быть измерительная точка или воображаемая точка, полученная при ручной или автоматической обработке сигналов и измерительных точек.

Если используется воображаемая точка, то спектр контрольного сигнала определяется как среднеарифметическое значений СПУ всех измерительных точек на каждой частоте. В этом случае кумулятивное (суммарное) среднее квадратическое значение контрольного сигнала эквивалентно среднему квадратическому значению всех средних квадратических значений сигналов, полученных в измерительных точках.

В соответствующей НТД должна быть указана точка, которую следует использовать как контрольную, или способ, с помощью которого она может быть выбрана. Рекомендуется использовать воображаемую контрольную точку для больших и (или) сложных образцов.

4. ОБНАРУЖЕНИЕ РЕЗОНАНСНЫХ ЧАСТОТ

Если в соответствующей НТД предусматривается обнаружение резонанса, то допуски, указанные для испытания на синусоидальную вибрацию в МЭК 68-2-6 (ГОСТ 28202), следует применять на всех стадиях обнаружения резонансных частот.

4.1. Амплитуда синусоидальной вибрации

Если в соответствующей НТД не указано особо, амплитуда синусоидальной вибрации, которая используется для обнаружения резонанса, определяется заданным уровнем СПУ (табл.1). В данном случае в контрольной точке следует поддерживать амплитудное значение ускорения.

Источник

ГОСТ 28220-89 Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Fd: Широкополосная случайная вибрация. Общие требования

Текст ГОСТ 28220-89 Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Fd: Широкополосная случайная вибрация. Общие требования

ГОСТ 28220-89 (МЭК 68-2-34-73)

Основные методы испытаний на воздействие

ИСПЫТАНИЯ Испытание Fd:

Широкополосная случайная вибрация Общие требования

случайная широкополосная вибрация что это. Смотреть фото случайная широкополосная вибрация что это. Смотреть картинку случайная широкополосная вибрация что это. Картинка про случайная широкополосная вибрация что это. Фото случайная широкополосная вибрация что это

1. Официальные решения или соглашения МЭК по техническим вопросам, подготовленные техническими комитетами, в которых представлены все заинтересованные национальные комитеты, выражают с возможной точностью международную согласованную точку зрения по рассматриваемым вопросам.

2. Эти решения представляют собой рекомендации для международного пользования и в этом виде принимаются национальными комитетами.

3. В целях содействия международной унификации МЭК выражает пожелание, чтобы все национальные комитеты приняли настоящий стандарт МЭК в качестве своего национального стандарта, насколько это позволяют условия каждой страны. Любое расхождение с этим стандартом МЭК должно быть, по возможности, четко указано в соответствующих национальных стандартах.

Первый проект обсуждался на совещании в Стокгольме в 1968 г. Новый проект обсуждался на совещании в Тегеране в 1969 г., в результате решений которого национальным комитетам в феврале 1971 г. был разослан на утверждение по Правилу шести месяцев окончательный проект — документ 50А (Центральное бюро) 133.

За издание стандарта голосовали следующие страны:

Австралия Соединенные Штаты Америки

Федеративная Республика Еермания

* Соединенное Королевство Великобритании и Северной Ирландии.

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Основные методы испытаний на воздействие внешних факторов

Часть 2 ИСПЫТАНИЯ

Испытание Fd: Широкополосная случайная вибрация Общие требования

Basic environmental testing procedures Part 2. Tests

Test Fd: Random vibration wide band — general requirements

ОКСТУ 6000, 6100, 6200, 6300

Дата введения 01.03.90

1. ВВОДНАЯ ЧАСТЬ

Испытание на воздействие случайной вибрации представляет собой сложный вид испытания, в силу чего нормативно-техническая документация (далее — НТД) имеет значительный объем. Изложение методов испытания и теории испытания составляет вводную часть.

В настоящем стандарте часто упоминаются два особо важных термина из области воздействия случайной вибрации.

Определение этих терминов приведено ниже.

Спектральная плотность ускорения (далее — СИУ) — спектральная плотность ускорения случайной вибрации, выраженная в единицах «ускорение в квадрате, деленная на частоту, g 2 /Tц».

Спектр СПУ определяет закон изменения СПУ в пределах частотного диапазона.

1.1. Программа методов испытания

Для облегчения пользования методами испытаний материал делят на 4 раздела:

испытание Fd: МЭК 68-2-34 (ГОСТ 28220);

испытание Fda: МЭК 68-2-35 (ГОСТ 28221);

испытание Fdb: МЭК 68-2-36 (ГОСТ 28222);

испытание Fdc: МЭК 68-2-37 (ГОСТ 28223).

Каждый из последних трех разделов представляет собой законченный метод испытания с рекомендуемыми методами подтверждения, содержащимися в приложениях.

Все сведения, которые требуются разработчику соответствующей НТД, приведены в испытании Fd. Сведения, необходимые инженеру-испытателю, приведены в испытаниях Fda, Fdb и Fdc (в зависимости от того, какое из них требуется). Дополнительная информация будет представлена в приложениях А—Е настоящего стандарта*.

Несмотря на то, что разработчика соответствующей НТД интересует только испытание Fd, а инженера-испытателя — определенный метод, выбранный из испытаний Fda, Fdb и Fdc, настоятельно рекомендуется, чтобы все заинтересованные лица ознакомились с настоящим стандартом.

* В настоящем стандарте представлено только приложение А, остальные находятся на рассмотрении. Издание официальное Перепечатка воспрещена

© Издательство стандартов, 1989 © Стандартинформ, 2006

1.2. Теория испытания

Для всех методов испытаний требуется определенная степень воспроизводимости, особенно для квалификационных или приемочных испытаний, проводимых для испытания одного и того же типа образцов различными организациями, такими как поставщик и потребитель изделий электронной техники.

Слово «Воспроизводимость», употребляемое в настоящем документе, не означает сходимости результатов, полученных в условиях испытаний и в реальных условиях; под ним подразумевается получение аналогичных результатов испытаний, которые проводятся в различных лабораториях различным обслуживающим персоналом.

Большое расхождение требований к различным значениям допусков при определенном уровне жесткости, а также обеспечение достоверности результатов испытаний приводят к введению трех воспроизводимостей (см. разд. 5). Для каждой воспроизводимости можно сделать выбор метода подтверждения, принимая во внимание как динамические характеристики испытуемого образца, так и наличие испытательного оборудования.

В соответствующей НТД следует указывать воспроизводимость, соответствующую определенному случаю, причем право выбора метода подтверждения предоставляется испытательной лаборатории. Допуски должны быть выбраны таким образом, чтобы для определенной воспроизводимости каждый метод подтверждения давал приблизительно эквивалентные результаты.

Требования обеспечения воспроизводимости включают в себя контроль за уровнем вибрации в пределах узкой полосы частот. Несмотря на то, что выравнивание частот в узкой полосе обеспечивает лучшую воспроизводимость, чем в широкой полосе, выравнивание в узкой полосе частот в меньшей мере учитывает влияние окружающей среды на испытуемый образец. Однако выравнивание в широкой полосе частот приводит к тому, что резонанс внутри образца изменяет испытательный уровень настолько, что могут возникнуть пики и провалы. При эксплуатации реальные условия окружающей среды обычно способствуют возникновению пиков и провалов вследствие влияния окружающей среды на образец. Кроме того, маловероятно, чтобы эти пики и провалы совпали с пиками и провалами, возникающими при испытаниях в лаборатории.

В информационных целях в соответствующей НТД может быть приведен анализ уровня вибрации в узкой полосе частот для того, чтобы обеспечить испытание с низкой воспроизводимостью, в остальном соответствующее этой методике.

Только большой практический опыт при проведении испытаний на воздействие случайной вибрации может дать возможность инженеру-испытателю наилучшим образом использовать имеющееся оборудование, поэтому не следует особо подчеркивать тот факт, что только максимальное воспроизведение реальных условий определяет введение испытания на случайную вибрацию; при проведении этих испытаний необходимо принимать во внимание технические возможности испытательного оборудования. Это относится к выбору метода подтверждения и к конструкции крепления, а также к общему анализу результатов испытания.

2. ЦЕЛЬ

Цель испытания — определение способности изделий, элементов и аппаратуры выдерживать воздействие случайной вибрации заданной степени жесткости.

Испытания на воздействие случайной вибрации применимы к элементам и аппаратуре, которые в условиях эксплуатации могут подвергаться воздействиям вибраций, имеющих случайный характер. Целью испытания является также выявление возможных механических повреждений и (или) ухудшения заданных характеристик изделий, а также использование этих сведений наряду с требованиями соответствующей НТД для решения вопроса о пригодности образца.

Во время проведения испытания образец подвергают воздействию случайной вибрации с заданным уровнем в пределах широкой полосы частот. Вследствие сложной механической реакции образца и его крепления это испытание требует особой тщательности при его подготовке и проведении и в установлении соответствия параметров образца заданным требованиям.

3. КРЕПЛЕНИЕ И КОНТРОЛЬ

3.1. Крепление образца

Образец крепят на испытательной установке в соответствии с требованиями МЭК 68-2-47 (ГОСТ 28231).

3.2. Контрольные измерительные точки

Требования к испытаниям подтверждают измерениями в контрольной точке и, в некоторых случаях, в измерительных точках в зависимости от точек крепления образца. Измерения в измерительных точках необходимы для высокой воспроизводимости и когда определена воображаемая точка для средней и низкой воспроизводимостей.

В случае большого количества малогабаритных образцов, установленных на одном крепежном приспособлении, если самая низкая резонансная частота крепежного приспособления под нагрузкой выше верхнего предела частоты испытания^, контрольные и (или) измерительные точки могут быть связаны с крепежным приспособлением, а не с образцами.

3.2.1. Точка крепления

Точкой крепления называют часть образца, которая находится в контакте с крепежным приспособлением или вибрационным столом и является обычно местом крепления при эксплуатации. Если образец крепят к вибрационному столу с помощью крепежного приспособления, то точками крепления считают точки крепления крепежного приспособления, а не образца.

3.2.2. Измерительная точка

Измерительной точкой является обычно точка крепления. Она должна быть как можно ближе к точке крепления изделия и в любом случае должна быть жестко связана с ней.

Если имеется четыре или меньше точек крепления, то каждая такая точка рассматривается как измерительная. Если имеется более четырех точек крепления, то в соответствующей НТД должны быть указаны четыре характерные точки, которые могут рассматриваться как измерительные.

1. Для больших и (или) сложных образцов важно, чтобы измерительные точки были указаны в соответствующей НТД.

2. Допуски в измерительных точках устанавливают только для высокой воспроизводимости.

3.2.3. Контрольная точка

Контрольная точка является единственной точкой, из которой получают контрольный сигнал, соответствующий требованиям испытания, и которая используется для получения информации о движении образца. Ею может быть измерительная точка или воображаемая точка, полученная при ручной или автоматической обработке сигналов из измерительных точек.

Если используется воображаемая точка, то спектр контрольного сигнала определяют как среднеарифметическое значений СПУ всех измерительных точек на каждой частоте. В этом случае кумулятивное (суммарное) среднее квадратическое значение контрольного сигнала эквивалентно среднему квадратическому значению всех средних квадратических значений сигналов, полученных из измерительных точек.

В соответствующей НТД следует указывать точку, которую следует использовать как контрольную, или способ, с помощью которого она может быть выбрана. Рекомендуется применять воображаемую точку для больших и (или) сложных образцов.

Примечание. Для подтверждения кумулятивного среднего квадратического значения ускорения сигнала воображаемой контрольной точки допускается автоматическая обработка сигналов измерительных точек с помощью анализаторов. Однако не допускается подтверждение уровня СПУ без коррекции таких источников погрешностей, как ширина полосы анализатора, время выборки и т. д.

4. СТЕПЕНИ ЖЕСТКОСТИ

Для этого испытания степень жесткости вибрации определяют сочетанием следующих параметров:

Для каждого параметра в соответствующей НТД выбирают соответствующее требование из тех, которые даны ниже. Сочетание диапазона частот и уровня СПУ определяют требуемое для испытания кумулятивное среднее квадратическое значение ускорения (см. табл. 4а и 46).

Для простоты в этом испытании используют равномерный спектр. При особых обстоятельствах может оказаться возможной иная форма спектра. В этом случае в соответствующей НТД следует указать форму номинального спектра как функцию частоты. Пояснения, относящиеся к этому случаю, приводятся в качестве примечаний к пи. 4.1, 4.2 и 5.1.

4.1. Диапазон частот

Должен быть установлен один из следующих диапазонов частот по табл. 1.

Диапазон частот, Гц

Если необходимо, то в соответствующей НТД частота f\ может быть равна 5 или 10 Ец.

В особых случаях в соответствующей НТД Д может быть равна 200 Ец

Если необходимо, в соответствующей НТД частотаД может быть равна 50 Гц

Характер спектра СПУ в диапазоне частот Д и f2 показан на рисунке.

П римечание. Если в особых случаях необходимо установить какую-либо иную спектральную плотность ускорения, то диапазон частот следует выбирать по возможности из значений, приведенных выше.

4.2. Уровни спектра СПУ

Номинальный уровень спектра СПУ (0 дБ, см. рисунок) между частотами Д и Д следует выбирать из следующих значений: 0,0005; 0,001; 0,002; 0,005; 0,01; 0,02; 0,05; 0,1; 0,2; 0,5; 1; 2; 5; 10 g 2 /Iu;.

п римечание. Если в особых случаях должен быть установлен спектр СПУ с двумя или более уровнями, то их, по возможности, следует выбирать из табл. 1.

Спектр плотности ускорения (СПУ) и границы допусков

случайная широкополосная вибрация что это. Смотреть фото случайная широкополосная вибрация что это. Смотреть картинку случайная широкополосная вибрация что это. Картинка про случайная широкополосная вибрация что это. Фото случайная широкополосная вибрация что это

Mi — верхняя граница допуска, средняя воспроизводимость; М2 — верхняя граница допуска, средняя воспроизводимость; Hi — верхняя граница допуска, высокая воспроизводимость; Щ — нижняя граница допуска, высокая воспроизводимость; N — установленная СПУ (номинальный спектр)

4.3. Длительность выдержки

Длительность выдержки следует выбирать из значений, приведенных ниже. Если требуемая длительность равна или больше 10 ч в каждом направлении, то это время может быть разделено на периоды по 5 ч каждый, при условии, что напряжения, возникающие в изделии (вследствие нагрева и т. д.), не уменьшаются.

Любая заданная длительность является суммарным временем выдержки, которое должно быть поровну разделено между каждыми заданными направлениями: 30 с; 90 с; 3 мин; 9 мин; 30 мин; 90 мин; 3 ч; 9 ч; 30 ч.

5. СТЕПЕНИ ВОСПРОИЗВОДИМОСТИ 5.1. Допуски, характеризующие степени воспроизводимости

В пределах заданного диапазона частот fx—f2 воспроизводимость с учетом направления воздействия вибрации определяют допусками, указанными в табл. 2. Допуски указаны в децибелах относительно установленного уровня СИУ и соответствующего кумулятивного среднего квадратического значения ускорения.

Границы допусков, дБ

Истинное значение СПУ

Истинное кумулятивное среднее квадратическое значение ускорения (от до /2) в основном направлении

6.2. Испытания на обнаружение резонансных частот

В соответствующей НТД могут предусматриваться предварительное и заключительное испытания на обнаружение резонанса. В процессе этих испытаний сравнивают частоты, на которых возникают механические резонансы и другие зависящие от частоты явления (например, нарушение нормального режима работы) для того, чтобы получить дополнительную информацию относительно остаточных явлений, вызванных испытанием на воздействие случайной вибрации. В соответствующей НТД должно быть указано, что следует предпринять, если возникают какие-либо изменения резонансной частоты.

Если иное не оговорено в соответствующей НТД, для обнаружения резонанса следует применять сигнал с амплитудой, указанной в п. 6.1.

7. ПЕРВОНАЧАЛЬНЫЕ ИЗМЕРЕНИЯ

В соответствующей НТД должна быть указана необходимость измерения электрических параметров и проверки механических характеристик перед выдержкой.

8. ВЫДЕРЖКА

Во время выдержки образец подвергают воздействию случайной вибрации при заданном уровне. Образцы подвергают воздействию вибрации в трех взаимно перпендикулярных осях поочередно, если иное не оговорено в соответствующей НТД. Направления воздействия вибрации выбира

ются таким образом, чтобы все дефекты образца можно было легко выявить. Если иное не установлено в соответствующей НТД, то аппаратура должна находиться в рабочем состоянии, если это возможно, для того, чтобы можно было определить как нарушения работоспособности образца, так и его механические дефекты.

В соответствующей НТД следует установить, требуются ли измерения электрических параметров и проверка механических характеристик во время выдержки и на какой стадии они должны быть проведены.

9. ЗАКЛЮЧИТЕЛЬНЫЕ ИЗМЕРЕНИЯ

В соответствующей НТД должно быть указано, что после выдержки следует проводить измерения электрических параметров и проверку механических характеристик.

10. СВЕДЕНИЯ, КОТОРЫЕ СЛЕДУЕТ УКАЗЫВАТЬ В СООТВЕТСТВУЮЩЕЙ НТД

Если это испытание включено в соответствующую НТД, то по мере необходимости должны быть указаны следующие сведения:

Номер раздела, пункта

а), б), в), г), д): способы крепления образца (включая магнитные помехи, воздействие температуры и гравитационные эффекты; характеристики амор

тизаторов и дополнительные испытания) 3.1

е) контрольные и измерительные точки 3.2

ж) частотный диапазон* 4.1

и) длительность выдержки* 4.3

к) воспроизводимость* 5.2

л) испытания на обнаружение резонанса 6.2

м) значения ускорения при снятии частотной характеристики 6.1

и) первоначальные измерения* 7

о) рабочее состояние испытываемого изделия во время выдержки* 8

и) заключительные измерения* 9

* Сведения, которые следует указывать в обязательном порядке.

Кумулятивные средние квадратические значения ускорения

Заданный диапазон частот от до /2, Гц

Кумулятивное среднее квадратическое значение ускорения в единицах g

Примечание. В таблице приведено кумулятивное среднее квадратическое значение ускорения в единицахg для спектра прямоугольной формы для каждого частотного диапазона и каждой СПУ.

Кумулятивные средние квадратические значения ускорения

Заданный диапазон частот от до /2, Гц

Кумулятивное среднее квадратическое значение ускорения, м ■ с 2

Примечание. В таблице приведены кумулятивные средние квадратические значения ускорения в единицах м • с 2 для спектра прямоугольной формы для каждого частотного диапазона и каждой СПУ.

ПРИЛОЖЕНИЕ А Рекомендуемое

ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ, НА КОТОРЫХ ОСНОВАНО ИСПЫТАНИЕ НА ВОЗДЕЙСТВИЕ ШИРОКОПОЛОСНОЙ СЛУЧАЙНОЙ ВИБРАЦИИ

Ниже приводятся некоторые положения, которые позволяют потребителю иметь основание для выбора вида испытания на воздействие случайной вибрации, воспроизводимости и метода подтверждения.

АЛ. Испытания на воздействия широкополосной случайной вибрации, узкополосной случайной вибрации на фиксированных частотах и случайной вибрации методом качающейся частоты

Эти три метода испытаний на воздействие вибрации не рассматривают как эквивалентные и поэтому должны быть представлены как отдельные испытания. Широкополосное испытание рассматривают в первую очередь, кроме того, с технической точки зрения, этот вид испытания наиболее совершенен.

Методики испытания на воздействие случайной вибрации дополняют существующее испытание на воздействие синусоидальной вибрации по МЭК 68-2-6 (ГОСТ 28203), что является еще одним шагом вперед по воспроизведению типа вибрации, существующей в реальных условиях, а также для имитации воздействий на образец, более точно воспроизводящих условия эксплуатации. Испытание на случайную вибрацию следует применять во всех случаях, когда это экономически возможно, так как существуют повреждения, которые не выявляются при воздействии синусоидальной вибрации и которые могут быть легко выявлены в результате испытания на воздействие случайной вибрации.

Как указано во вводной части, п. 1.2 «Теория испытания», для всех методов испытания требуется определенная степень воспроизводимости. Испытание на воздействие случайной вибрации не является исключением.

Как разработчику испытательного оборудования, так и инженеру-испытателю требуется не только имитация воздействия реальных внешних факторов и соответствующая их воспроизводимость, но также простая и требующая мало времени методика испытания. К сожалению, на современном уровне развития техники не существует испытания на воздействие широкополосной случайной вибрации, у которого была бы хорошая воспроизводимость и простая, требующая минимального времени, методика. Испытания с простой методикой не имеют хорошей воспроизводимости, а у воспроизводимых испытаний отсутствует простая методика.

В некоторых случаях воспроизводимость испытания является более важной, чем простота его проведения. В других случаях, когда стоимость испытания слишком высока, простота является более важной, чем воспроизводимость.

А.З. Степени воспроизводимости

Единая методика испытания не может удовлетворять различным требованиям, предъявляемым к испытаниям, приведенным выше, поэтому вводят ряд воспроизводимостей, предусматривающий различные степени компромисса. Этот ряд включает высокую, среднюю и низкую воспроизводимости, которые имеют различные требования к допускам.

Воспроизводимость испытания на воздействие вибрации в основном зависит от контроля вибрации, действующей на образец при наличии резонирующих элементов внутри изделия. Для резонансов с большой избирательностью (высоким Q) требуется, чтобы возбуждение образца в точках установки или в точках крепления контролировалось в пределах узкой полосы частот, если необходимо получить высокую воспроизводимость. При испытании на случайную вибрацию это может привести к анализу очень узкой полосы частот и контролю СПУ в узкой полосе в точках механического возбуждения испытуемого образца.

В обычной испытательной аппаратуре общего назначения допускается, чтобы изменения в СПУ порядка 30—40 дБ были бы скрыты шириной полосы частот анализатора. В качестве примера резонанс образца с Q = 40, масса которого составляет 10 % общей подвижной массы (в случаях, когда общая масса включает образец, крепление и вибростол), может вызвать изменение 25 дБ в полосе частот от 25 до 500 Гц.

Для испытания на вибрацию (синусоидальную), указанную в МЭК 68-2-6 (ГОСТ 28203), требуется, чтобы амплитуда вибрации находилась в пределах + 15 % (+ 1,2 дБ) в измерительной точке. При подобной воспроизводимости испытания на воздействие широкополосной случайной вибрации требуется регулировка СПУ приблизительно + 30 % (+ 1,2 дБ) по всему диапазону частот. Этот уровень воспроизводимости для испытания на случайную вибрацию считается затруднительным при воспроизведении на практике.

При высокой воспроизводимости испытания на воздействие широкополосной случайной вибрации требуется регулировка значения СПУ в пределах + 3 дБ в контрольной точке. Это весьма затруднительно осуществить для больших и сложных образцов, но сравнительно легко для образцов небольших размеров по сравнению с вибрационным столом. Для высокой воспроизводимости необходимо указать допуски на истинное значение СПУ в основном направлении в измерительных точках, которые не являются контрольными, и в поперечном направлении в одной или нескольких выбранных точках. Границы допусков в измерительных точках шире, чем в контрольной точке. Для образцов, масса которых относительно велика по сравнению с массой вибрационного стола и крепления, пики СПУ в поперечном направлении могут быть достаточно велики и различаться по

частоте между различными испытательными устройствами. Поэтому допускается, чтобы уровень СПУ в поперечном направлении превышал заданный уровень СПУ в основном направлении на 5 дБ.

При средней воспроизводимости требуется регулировка в пределах + 6 дБ в контрольной точке. Обычно эта воспроизводимость может быть достигнута без особых трудностей на образцах небольших размеров и может вызвать затруднения для образцов большого размера и большой массы.

Низкая воспроизводимость не имеет определенного допуска на истинное значение СПУ, но требует допуск + 3 дБ на значение, непосредственно показываемое анализатором. Рекомендуемый метод подтверждения, приведенный в приложении к испытанию Fdc с низкой воспроизводимостью, также предназначен для разрешения вопроса о вибрационных испытаниях и совершенно отличается от обычно принятых испытаний на воздействие внешних факторов. Обычно реальные воздействующие факторы представлены заданной степенью жесткости и, следовательно, испытание должно давать самую высокую воспроизводимость, какая возможна на практике, для той же степени жесткости. Теоретические положения, на которых основано испытание Fdc, допускает наличие резонансов с высоким значением Q внутри образца и крепления, которые вызывают пики и провалы в спектре СПУ. Пики и провалы, вызванные резонирующими элементами образца, обычно существуют в действительности, но частоты, как правило, изменяются во время испытания. Только самые глубокие провалы наблюдаются как в реальных, так и в лабораторных условиях. В целом эта теория не может быть принята, так как результаты испытания будут сильно зависеть от конструкции крепления и размера вибратора. Допуски в этом испытании зависят от оборудования, применяемого в настоящее время; в результате применения этого испытания может оказаться необходимым дальнейший пересмотр зоны допусков.

А. 4. Методы подтверждения

В соответствующей НТД следует устанавливать степень воспроизводимости, требуемую для реального испытания, в то время как для низкой воспроизводимости может быть указана система «выравниватель-анализатор». При этих условиях инженер-испытатель может свободно выбирать метод подтверждения. Рекомендуемые методы приведены в соответствующих приложениях к испытаниям Fda (МЭК 68-2-35) (ГОСТ 28221), Fdb (МЭК 68-2-36) (ГОСТ 28222) и Fdc (МЭК 68-2-37) (ГОСТ 28223). Методы подтверждения в приложениях к Fda и Fdb считаются эквивалентными для одной и той же степени воспроизводимости.

Для систем «образец—крепление», где коэффициент передачи вибрации мало зависит от частоты, достаточно провести проверку равномерности огибающей спектра генератора шума и коэффициента передачи вибрации с помощью синусоидального качания частоты. Это косвенный метод, приведенный в приложении С испытаний Fda или Fdb. Если в систему включен выравниватель, то для этого метода потребуется ужесточение допуска на 4 дБ для высокой и средней воспроизводимости, чтобы компенсировать возможные изменения в уровне выравнивания, которые могут иметь место, когда уровень вибрации увеличивается от уровня, установленного при регулировке, до уровня, необходимого для выдержки.

А5. Оценка погрешностей методов подтверждения

В приложении А МЭК 68-2-35 (ГОСТ 28221) (Испытание Fda) и МЭК 68-2-36 (ГОСТ 28222) (Испытание Fdb) приведены диаграммы, в основе которых лежит диапазон фильтров, применяемых на практике, и которые применяются как вспомогательное средство для оценки пульсации и погрешности анализа. Эти диаграммы рассчитаны для тех частей спектра на участках, близких к всплескам «пики—провалы», которые возникают вследствие влияния на вибратор подвижной массы с одной степенью свободы. Было обнаружено, что наиболее важными параметрами являются частота «пик-провал», соотношения амплитуд, ширина полосы частот фильтра и для анализа погрешностей коэффициент формы спектра фильтра между точками затухания 12 и 3 дБ.

А6. Скорость качания и время усреднения

При анализе случайных процессов для характеристики данных применяются статистические усредненные значения. При случайной вибрации приборы должны осуществлять усреднение по времени. Для получения относительно малых колебаний при считывании показаний СПУ время усреднения должно быть достаточно большим для узкой полосы частот, необходимой для высокой и средней воспроизводимостей. Там, где применяется анализ с помощью метода качающейся частоты, усреднение по времени также вызывает нежелательное усреднение по частоте, в силу чего скорость качания должна поэтому быть низкой с верхним пределом, зависимым от времени усреднения.

А7. Измерение кумулятивного среднего квадратического ускорения

В общем случае спектр СПУ определяет как постоянную величину от нижней частоты Д до верхней частоты fi с некоторыми минимальными спадами за пределами этого диапазона. Соответствующей величиной в испытании является постоянная величина СПУ от f\ до/т, но поскольку она имеет довольно широкие допуски, то необходим жесткий контроль кумулятивного среднего квадратического значения ускорения. Используя косвенный метод подтверждения, указанный в разд. А4, когда анализ спектра СПУ обычно не требуется, измерение среднего квадратического значения ускорения является единственной контролируемой величиной во время заключительного испытания при полном уровне.

А8. Дальнейшее развитие

Методы подтверждения, приведенные в приложениях к испытаниям Fda, Fdb и Fdc, основаны на методах, широко применяемых на практике в настоящее время.

Могут также использоваться и другие методы подтверждения СПУ, например цифровой и ускоренный анализ спектра. Эти методы подтверждения могут быть включены в будущем при пересмотре этого испытания, как только оборудование и информация для таких анализов найдут широкое применение в лабораториях вибрационных испытаний.

ПРЕДПОЧТИТЕЛЬНЫЕ СТЕПЕНИ ЖЕСТКОСТИ ДЛЯ ИЗДЕЛИИ

ПРЕДПОЧТИТЕЛЬНЫЕ СТЕПЕНИ ЖЕСТКОСТИ ДЛЯ АППАРАТУРЫ

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. Постановлением Государственного комитета СССР по стандартам от 15.08.89 № 2560 введен в действие государственный стандарт СССР ГОСТ 28220—89, в качестве которого непосредственно применен стандарт Международной Электротехнической комиссии МЭК 68-2-34—73 с Поправкой № 1 (1983), с 01.03.90

2. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение отечественного нормативно-технического документа, на который дана ссылка

Обозначение соответствующего стандарта

Раздел, подраздел, пункт, в котором приведена ссылка

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *