переменное электрическое поле это
Большая Энциклопедия Нефти и Газа
Переменное электрическое поле
Переменное электрическое поле при наличии постоянного магнитного поля в условиях циклотронного резонанса вызывает увеличение кинетической энергии заряженной частицы. [3]
Переменное электрическое поле двух сближаемых или удаляемых электрических зарядов ( рис. 10) создает магнитное поле. Пока оба поля постоянны, они не имеют между собой ничего общего. Однако переменные электрическое и магнитное поля индуктируют друг друга и тем самым выдают свое родство. [4]
Переменное электрическое поле названо током смещения не только потому, что с его помощью удается формально замкнуть ток проводимости. Из § 17 из вестно, что переменное электрическое поле создает магнитное, являясь его вихрем. [5]
Переменное электрическое поле порождает магнитное поле. [6]
Переменное электрическое поле при наличии постоянного магнитного поля в условиях цинло-тронного резонанса вызывает увеличение нине-ти ческой энергии заря-тенной частицы. [7]
Переменное электрическое поле порождает магнитное поле. [8]
Переменное электрическое поле порождает магнитное поле. [10]
Переменное электрическое поле создает вокруг себя, так же как и электрический ток, переменное магнитное поле. Но переменное магнитное поле создает вокруг себя электрическое поле, которое также будет переменным. Поэтому возникает вопрос, не могут ли переменные электрическое и магнитное поля, поддерживая друг друга, существовать в вакууме без зарядов и токов. [12]
Переменное электрическое поле вызывает механические колебания пластинки с частотой колебаний этого поля. В свою очередь механические колебания вызывают появление на гранях пластинки электрических зарядов, которые достигают наибольшей величины при частоте, соответствующей механическому резонансу системы. Это позволяет связать электрические колебания, возникающие в цепях электронного генератора, с механическими колебаниями кварцевой пластинки. [13]
Электрическое поле. Действие электрического поля на электрические заряды.
Электрическое поле — это особая форма материи, посредством которой осуществляется взаимодействие электрически заряженных частиц.
Введение понятия электрического поля понадобилось для объяснения взаимодействия электрических зарядов, т. е. для получения ответа на вопросы: почему возникают силы, действующие на заряды, и как они передаются от одного заряда к другому?
Понятия электрического и магнитного полей ввел великий английский физик Майкл Фарадей. Согласно идее Фарадея, электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд, и наоборот. По мере удаления от заряда поле ослабевает.
С введением понятия поля в физике утвердилась теория близкодействия, главным отличием которой от теории дальнодействия является идея о существовании определенного процесса в пространстве между взаимодействующими телами, который длится конечное время.
Идея эта получила подтверждение в работах великого английского физика Дж. К. Максвелла, который теоретически доказал, что электромагнитные взаимодействия должны распространяться в пространстве с конечной скоростью — с, равной скорости света в вакууме (300 000 км/с). Экспериментальным доказательством этого утверждения явилось изобретение радио.
Электрическое поле возникает в пространстве, окружающем неподвижный заряд, точно так же, как вокруг движущихся зарядов — токов либо постоянных магнитов — возникает магнитное поле. Магнитные и электрические поля могут превращаться друг в друга, образуя единое электромагнитное поле. Электрическое поле (как и магнитное) является лишь частным случаем общего электромагнитного поля. Переменные электрические и магнитные поля могут существовать и без зарядов и токов, их породивших. Электромагнитное поле переносит определенную энергию, а также импульс и массу. Таким образом, электромагнитное поле — физическая сущность, обладающая определенными физическими свойствами.
Итак, природа электрического поля состоит в следующем:
1. Электрическое поле материально, оно существует независимо от нашего сознания.
2. Главным свойством электрического поля является действие его на электрические заряды с некоторой силой. По этому действию устанавливается факт его существования. Действие поля на единичный заряд — напряженность поля — является одной из его основных характеристик, по которой изучается распределение поля в пространстве.
Электрическое поле неподвижных зарядов называют электростатическим. Со временем оно не меняется, неразрывно связано с зарядами, его породившими, и существует в пространстве, их окружающем.
Тема 1.1. Электрическое поле.
Идея электрического поля была введена М. Фарадеем и теоретически обоснована Дж. Максвеллом.
Электрическое поле это вид материи посредством которого осуществляется взаимодействие электрических зарядов.
Свойства электрического поля :
Порождается электрическим зарядом.
Обнаруживается по действию на заряд.
Действует на заряд с некоторой силой.
Распространяется в пространстве с конечной скоростью с=3·10 8 м/с.
Направление вектора напряженности совпадает с направлением вектора кулоновской силы.
Напряженность поля не зависит от значения пробного заряда q ; определяется зарядами – источниками поля, является силовой характеристикой этого поля.
Единица в СИ – Н/Кл или В/м.
Неоднородное электрическое поле :
Силовая линия (линия напряженности) электрического поля – линия, в каждой точке которой напряженность поля направлена по касательной. Силовые линии поля в электростатике начинаются на положительных зарядах и заканчиваются на отрицательных. Густота силовых линий пропорциональна модулю вектора напряженности.
Однородное электрическое поле:
На электрический заряд помещенный в однородное электрическое поле действует кулоновская сила способная совершать работу по перемещению электрического заряда.
Энергетической характеристикой электрического поля является потенциал (разность потенциалов), скалярная физическая величина, выражаемая в вольтах (В); 1В = 1 Дж / 1 Кл.
Потенциал поля в данной точке, находящейся на расстоянии R от заряда Q :
Потенциал поля может быть как положительным, так и отрицательным. Следуя принципу суперпозиции полей, можно утверждать, что если в данной точке пространства известен потенциал поля, созданного отдельно каждым из N зарядов (тел), то потенциал суммарного поля равен алгебраической сумме потенциалов каждого из полей
На практике используют разность потенциалов :
В электрическом поле разность потенциалов между двумя любыми точками равна напряжению между этими точками.
Эквипотенциальная поверхность – поверхность, во всех точках которой потенциал имеет одно и то же значение.
На рисунке показаны эквипотенциальные поверхности точечных положительного и отрицательного зарядов и системы двух положительных зарядов.
Связь между напряженностью электрического поля и напряжением:
Электри́ческий ток — направленное (упорядоченное) движение частиц или квазичастиц — носителей электрического заряда.
Такими носителями могут являться: в металлах — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определённых условиях — электроны, в полупроводниках — электроны или дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.
Электрический ток имеет следующие проявления:
изменение химического состава проводников (наблюдается преимущественно в электролитах);
создание магнитного поля (проявляется у всех без исключения проводников)
Различают постоянный и переменный электрические токи, а также всевозможные разновидности переменного тока. В таких понятиях часто слово «электрический» опускают.
Постоянный ток — ток, направление и величина которого не меняются во времени.
Период переменного тока — наименьший промежуток времени (выраженный в секундах), через который изменения силы тока (и напряжения) повторяются. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц (Гц) соответствует одному периоду в секунду.
Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование. Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.
Ток, пропущенный через организм человека или животного, производит следующие действия:
термическое (ожоги, нагрев и повреждение кровеносных сосудов);
электролитическое (разложение крови, нарушение физико-химического состава);
биологическое (раздражение и возбуждение тканей организма, судороги);
механическое (разрыв кровеносных сосудов под действием давления пара, полученного нагревом током крови).
Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:
безопасным считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА (переменный ток 50 Гц) и 100 мкА постоянного тока;
минимально ощутимый человеком переменный ток составляет около 0,6—1,5 мА (переменный ток 50 Гц) и 5—7 мА постоянного тока;
пороговым неотпускающим называется минимальный ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10—15 мА, для постоянного — 50—80 мА;
фибрилляционным порогом называется сила переменного тока (50 Гц) около 100 мА и 300 мА постоянного тока, воздействие которого дольше 0,5 с с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.
Лекция №8. Электрическое поле. Постоянный и переменный электрический ток. физические основы реографии
1. Понятие об электрическом поле. Силовая и энергетическая характеристики электрического поля
Электрическое поле – это вид материи, образующийся вокруг заряженных тел, посредством которого они взаимодействуют друг с другом.
Выделяют следующие характеристики электрического поля:
За направление напряжённости принимают направление силы, действующей на положительный заряд.
Величина напряжённости электрического поля графически изображается в виде силовых линий – тех линий, направление касательных к которым в любой точке совпадают с направлением напряжённости электрического поля. Чем больше линий – тем больше напряжённость.
2. энергетическая характеристика электрического поля – потенциал.
В каждой точке электрического поля на внесённый в это поле заряд действует определённая сила. При перемещении заряда в электрическом поле будет совершаться работа. При этом каждая точка электрического поля будет характеризоваться потенциалом.
Потенциал поля в данной точке – это потенциальная энергия электрического поля в этой точке, приходящаяся на единицу помещённого в эту точку заряда: φ = Wp/q [В] Потенциал поля характеризует возможную работу, которую совершает электрическое поле или которая совершается над электрическим полем при перемещении этого заряда в точку с другим потенциалом: Δφ = A/q.
Только разность потенциалов можно измерить с помощью вольтметра. Считают, что напряженность электрического поля – отрицательный градиент потенциала.
2. Действие электрического поля на вещества
Действие электрического поля на различные вещества неодинаково и зависит от их внутреннего строения. По этому действию все вещества делят на:
— проводники электрического тока
— полупроводники
— изоляторы, или диэлектрики.
Проводники характеризуются тем, что в них под действием электрического поля образуется электрический ток – направленное движение заряженных частиц. Это происходит благодаря тому, что в проводниках имеются свободные заряды. Существуют проводники 1 рода (металлы, в которых есть свободные электроны) и 2 рода (растворы электролитов, в которых свободными зарядами являются положительно заряженные ионы – катионы и отрицательно заряженные ионы – анионы).
Полупроводники при обычной температуре имеют мало свободных зарядов. Причём когда электроны в полупроводниках становятся свободными, то на их месте образуется дырка – избыток положительного заряда. Поэтому носителями заряда в полупроводниках являются электроны и дырки.
В диэлектриках нет свободных носителей зарядов, поэтому под действием электрического поля в них не возникает электрического тока, но возникает явление, называемое поляризацией диэлектрика – приобретение диэлектриком полярности за счёт разделения в нём положительных и отрицательных зарядов под действием электрического поля. Поляризация существует в 3 вариантах: ориентационная, электронная и ионная.
Указанные различия хорошо описываются зонной теорией твёрдых тел, или квантовой теорией энергетического спектра электронов в кристалле. Согласно теории в кристалле существуют запрещённые и разрешённые энергетические зоны для электронов. Нижние зоны заполнены полностью электронам. Физические свойства кристаллов определяются верхними зонами, содержащими электроны. Если между верхней зоной и следующей разрешённой зоной запрещённая зона узкая (энергетический интервал невелик), то вещество является проводником, а если запрещённая зона велика – то диэлектриком.
3. Электрический ток
Основной характеристикой электрического тока является сила тока – количество заряда, пересекающее поперечное сечение проводника за единицу времени. Iср = Δq/Δt или для мгновенной силы тока : I = dq/dt. Единицей измерения силы тока является ампер (A). 1 ампер – сила тока, когда заряд 1 кулон проходит через поперечное сечение проводника за 1 секунду. Часто используют миллиампер (мА). 1 мА = 0,001 A. Обычно за направление электрического тока в проводнике принимают направление движения положительных зарядов.
Другой величиной, характеризующей электрический ток, является плотность тока – сила тока, приходящаяся на единицу площади проводника. Измеряется в амперах на квадратный метр: J = I/S.
Различают:
— Постоянный ток – электрический ток, параметры которого (сила и направление) не изменяются во времени. Источниками постоянного тока являются генераторы, которые поддерживают постоянную разность потенциалов на концах проводника.
— Переменный ток – электрический ток, параметры которого изменяются во времени по закону синуса или косинуса. Электрический ток, передаваемый в потребительской электросети, представляет собой синусоидальное колебание частотой 50 Гц: I = Imax·cos(ωt + φ0).
Основным законом, описывающим постоянный электрический ток, является закон Ома: сила тока в проводнике прямо пропорциональна разности потенциалов между его концами, или электрическому напряжению (U): I = U/R.
Величина R называется электрическим сопротивлением. Сопротивление является свойством проводников препятствовать прохождению через него электрического тока, при этом электрическая энергия превращается в тепловую энергию. Сопротивление возникает из-за столкновения заряженных частиц (носителей тока) с внутренними структурами проводника – атомами и молекулами. Единицей измерения сопротивления является Ом. Обратная величина сопротивлению называется электрической электропроводностью (D).
Для многих веществ сопротивление является постоянной величиной, независимой от силы тока. Сопротивление проводника является функцией его размера, формы, строения и температуры. Величина сопротивления провода: R = ρ(1/S) (5)
На основе удельной электропроводности характеризуют свойство веществ проводить электрический ток. Хорошие проводники тока имеют высокую удельную электропроводность. Изоляторы, или диэлектрики, имеют низкую удельную электропроводность. Полупроводники имеют промежуточную удельную электропроводность. Используя удельную электропроводность, как характеристику вещества, можно представить закон Ома в другой форме: J = γE.
Из формулы следует, что плотность тока в проводнике прямо пропорциональна напряженности электрического поля (Е), создающего этот ток, и удельной электропроводности вещества проводника (γ).
Удельная электропроводность электролитов и биологических тканей
Плотность тока в растворе электролитов определяется электрическим зарядом положительных и отрицательных ионов, их концентрациями и скоростями движения в электрическом поле: J = q+n+v+ + q—n—v.
Если принять, что концентрация и величина электрического заряда положительных и отрицательных ионов равны, то J = qn(v+ + v—)(8)
Скорость v ионов пропорциональна напряженности электрического поля E и зависит от подвижности ионов u, которая, в свою очередь, является функцией размера, степени гидратации ионов, вязкости растворителя:
v = uE (9)
Тогда J = qn(u+ + u—)·E (10).
Это выражение является законом Ома для растворов электролитов.
Хотя сопротивление биологических тканей постоянному электрическому току велико, и по удельной электропроводности биологические ткани близки к диэлектрикам, для объяснения различий в электропроводности различных тканей, их рассматривают как проводники 2 рода, носителями заряда в которых служат ионы.
Биологические ткани не различаются существенно по их ионному составу, но отличаются условиями ионного перемещения. Поэтому ткани разнородны с точки зрения их электрических свойств. Мембраны клеток препятствуют перемещению ионов. Их электрическое сопротивление является наибольшим. Кровь, лимфа, цереброспинальная жидкость характеризуются низким сопротивлением электрическому току. Внутренние органы, содержащие много воды (мышцы, печень, почки, и т.п.), также имеют сравнительно низкое сопротивление. Но сопротивление таких тканей, как кожа и кости, очень высокое. Постоянный электрический ток плохо проникает через сухую кожу. Он распространяется в теле человека, главным образом, вдоль кровеносных и лимфатических сосудов и через мышцы.
Причиной высокого сопротивления биологических тканей постоянному электрическому току – наличие статической ёмкости вследствие изоляционных свойств мембран и явления поляризации, происходящие в клетках, в результате которых возникает встречная эдс, препятствующая прохождению через ткань тока. Причём при малых значениях силы тока он не проходит через ткань вследствие влияния этой ЭДС, а при больших – происходит дезинтеграция (разрушение) клеточных структур, в результате чего сопротивление падает, однако дальнейшие исследования не имеют смысла.
Поляризация – разделение положительных и отрицательных зарядов. многие полагают, что явление поляризации связано с наличием полупроницаемых мембран. Под действием электрического поля ионы начинают перемещаться, но не могут проникнуть через мембрану, в результате у внутренней поверхности мембраны возникает разделение зарядов. Внутри клетки образуется поляризационное поле. Как только его напряженность компенсирует внешнее поле перемещение ионов прекращается. Соответственно этому на внешней стороне мембраны концентрируются противоположно заряженные частицы.
Другие, рассматривая клетки как слоистый диэлектрик, рассматривают явления поляризации как результат гетерогенности клеточных элементов по электропроводности, а также поляризацию связывают с дипольными молекулами (ориентация диполей вдоль силовых линий поля).
Постоянный ток используют в медицинской практике, для реализации двух методов – гальванизации и лекарственного электрофореза.
Гальванизация
Гальванизация – метод терапии, основанный на применении постоянного электрического тока. Метод назван в честь итальянского врача и ученого Луиджи Гальвани – основоположника изучения электрических токов, генерируемых биологическими тканями.
Метод гальванизации состоит в пропускании постоянного тока через определенные области тела человека. Величина напряжения должна составлять не более 50-80 Вольт. Под электроды, изготовленные из металла, помещают увлажненные фланелевые прокладки. Величина силы тока может составлять от нескольких миллиампер до 50 миллиампер. Но плотность тока не должна превышать 0,1 миллиампер на квадратный сантиметр. Ток не должен беспокоить пациента.
Неорганические ионы и ионы воды перемещаются под действием электрической поля. Подвижность органических ионов значительно меньше, чем неорганических ионов. Наибольшие изменения при гальванизации происходят в мембранах клеток. Они состоят в осуществлении электрохимических процессов, которые изменяют поляризацию мембраны и влияют на проницаемость мембраны и величину трансмембранного потенциала. Эти процессы стимулируют рецепторы, вызывают различные физиологические реакции и изменения метаболизма. Гальванизация используется по большей части для лечения системных болезней нервной системы.
Лекарственный электрофорез
Переменный ток. Полное сопротивление
Емкость. Если два проводника (пластины металла) разделены посредине изоляцией, они способны накапливать некоторое количество электрического заряда. Величина, равная отношению суммарного заряда, накопленного на пластинах, к разности потенциалов между пластинами называется емкостью (измеряется в Фарадах (F): C = q/U (13).
Емкостной реактанс XC является обратной величиной произведения угловой (циклической) частоты тока и емкости этой части цепи: XC = 1/(ω·C)(15).
Индуктивный реактанс XL равен произведению угловой частоты переменного тока на индуктивность проводника: XL = ωL (16).
Доказано, что индуктивный реактанс приводит к тому, что изменения напряжения в электрической цепи опережают изменения силы тока на четверть периода (π/2). Это можно объяснить тем, эдс самоиндукции препятствует нарастанию силы тока в цепи.
Наоборот, емкостной реактанс приводит к тому, что изменения напряжения в электрической цепи отстают от изменения силы тока на четверть цикла (π/2). На рис. 3. проиллюстрировано данное явление.
Если суммировать активное сопротивление и общий реактанс, который препятствует прохождению переменного тока в электрической цепи, получим величину, которая называется полным сопротивлением Z – импедансом:
Биофизические основы реографии
Когда некоторый объем крови протекает через сосуды любого органа в течение систолы, объем этого органа увеличивается. Такие изменения объема изучались в прошлом с помощью, так называемой, плетизмографии, которая была основана на механических измерениях. Но возможности этого метода были ограничены. Он мог применяться только для изучения кровенаполнения верхних конечностей.
Позже было обнаружено, что при изменении количества крови в сосудах органов, изменяется их электрическое сопротивление. Это изменение определяется формулой Кедрова:
Изменение активного электрического сопротивления вызывает изменение полного сопротивления. По техническим причинам более удобно измерять именно изменения импеданса, чем изменения активного сопротивления постоянному току. В реографии кинетика полного сопротивления тела человека отражает частоту и объем локального кровенаполнения органов.
Реография применяется для изучения кинетики полного электрического сопротивления различных органов: сердца (реокардиография), мозга (реоэнцефалография), печени (реогепатография), глаза (реоофтальмография) и т.п.
Электрическое поле и его характеристики
теория по физике 🧲 электростатика
Вокруг заряженных тел существует особая среда — электрическое поле. Именно это поле является посредником в передаче электрического взаимодействия.
Свойства электрического поля
Характеристики электрического поля
Напряженность численно равна электрической силе, действующей на единичный положительный заряд:
q 0 — пробный заряд.
Пример №1. Сила, действующая в поле на заряд в 20 мкКл, равна 4Н. Вычислить напряженность поля в этой точке.
20 мкКл = 20∙10 –6 Кл
Силовые линии — линии, касательные к которым совпадают с вектором напряженности.
Потенциальная энергия взаимодействия двух зарядов W (Дж) в вакууме:
Потенциальная энергия взаимодействия двух зарядов W (Дж) в среде:
Знак потенциальной энергии зависит от знаков заряженных тел:
Потенциал — энергетическая характеристика электрического поля. Обозначается как ϕ. Единица измерения — Вольт (В).
Численно потенциал равен отношению потенциальной энергии взаимодействия двух зарядов к единичному положительному заряду:
q 0 — пробный заряд.
Потенциал — скалярная физическая величина. Знак потенциала зависит от знака заряда, создающего поле. Отрицательный заряд создает отрицательный потенциал, и наоборот.
Значение потенциала зависит от выбора нулевого уровня для отсчета потенциальной энергии, а разность потенциалов — от выбора нулевого уровня не зависит.
Напряжение — разность потенциалов. Обозначается как U. Единица измерения — Вольт (В). Численно напряжение равно отношению работы электрических сил по перемещению заряда из точки 1 в точку 2:
Эквипотенциальные поверхности — поверхности, имеющие одинаковый потенциал. Они равноудалены от заряженных тел и обычно повторяют их форму. Эквипотенциальные поверхности перпендикулярны силовым линиям.
Пылинка, имеющая массу 10 −6 кг, влетела в однородное электрическое поле в направлении против его силовых линий с начальной скоростью 0,3 м/с и переместилась на расстояние 4 см. Каков заряд пылинки, если её скорость уменьшилась при этом на 0,2 м/с, а напряжённость поля 105 В/м?