Нуклеотид что это простыми словами
Нуклеотид
Нуклеоти́ды — фосфорные эфиры нуклеозидов, нуклеозидфосфаты. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов.
Содержание
Строение
Нуклеотиды являются сложными эфирами нуклеозидов и фосфорных кислот. Нуклеозиды, в свою очередь, являются N-гликозидами, содержащими гетероциклический фрагмент, связанный через атом азота с C-1 атомом остатка сахара.
Фосфатный остаток в нуклеотидах обычно образует сложноэфирную связь с 2′-, 3′- или 5′-гидроксильными группами рибонуклеозидов, в случае 2′-дезоксинуклеозидов этерифицируются 3′- или 5′-гидроксильные группы.
Номенклатура
Код | Означает | Комплемен- тарная пара |
---|---|---|
A | A | T в ДНК; U в РНК |
C | C | G |
G | G | C |
T или U | T в ДНК; U в РНК | A |
M | A или C | K |
R | A или G | Y |
W | A или T | W |
S | C или G | S |
Y | C или T | R |
K | G или T | M |
V | A или C или G | B |
H | A или C или T | D |
D | A или G или T | H |
B | C или G или T | V |
X или N | A или C или G или T (U) | любой |
Соединения, состоящие из двух нуклеотидовых молекул, называются динуклеотидами, из трёх — тринуклеотидами, из небольшого числа — олигонуклеотидами, а из многих — полинуклеотидами, или нуклеиновыми кислотами.
Названия нуклеотидов представляют собой аббревиатуры в виде стандартных трёх- или четырёхбуквенных кодов.
Если аббревиатура начинается со строчной буквы «д» (англ. d ), значит подразумевается дезоксирибонуклеотид; отсутствие буквы «д» означает рибонуклеотид. Если аббревиатура начинается со строчной буквы «ц» (англ. c ), значит речь идёт о циклической форме нуклеотида (например, цАМФ).
Первая прописная буква аббревиатуры указывает на конкретное азотистое основание или группу возможных нуклеиновых оснований, вторая буква — на количество остатков фосфорной кислоты в структуре (М — моно-, Д — ди-, Т — три-), а третья прописная буква — всегда буква Ф («-фосфат»; англ. P ).
Латинские и русские коды для нуклеиновых оснований:
История
В домолекулярной генетике для обозначения наименьшего элемента в структуре ДНК, который может быть подвержен спонтанной или индуцированной мутации, применялся особый термин рекон. В настоящее время показано, что таким наименьшим элементом является один нуклеотид (или одно азотистое основание в составе нуклеотида), поэтому данный термин более не употребляется. Для определения понятия единица мутации применялся термин мутон. В настоящее время показано, что фенотипически мутация может проявляется даже при замене одного нуклеотида (или азотистого основания в составе нуклеотида), таким образом, термин мутон соответствует одному нуклеотиду.
Все живое на планете состоит из многочисленных клеток. Они поддерживают упорядоченность своей организации с помощью генетической информации, содержащейся в ядре, которая сохраняется, передается и реализуется высокомолекулярными сложными соединениями — нуклеиновыми кислотами. Кислоты эти, в свою очередь, состоят из мономерных звеньев – нуклеотидов.
Понятие нуклеотида
Как и белки, нуклеиновые кислоты необходимы для жизни. Это генетический материал всех живых организмов, включая вирусы.
Выяснение структуры одного из двух типов нуклеиновых кислот ДНК позволило понять, каким образом в живых организмах хранится информация, необходимая для регулирования жизнедеятельности и как она передается потомству. Нуклеотид представляет собой мономерную единицу, образующую соединения более сложные — нуклеиновые кислоты. Без них невозможно хранение, воспроизведение и передача генетической информации. Свободные нуклеотиды – главные компоненты, которые участвуют в энергетических и в сигнальных процессах. Они поддерживают нормальную жизнедеятельность отдельных клеток и организма в целом.Из них строятся длинные молекулы — полинуклеотиды.Чтобы разобраться со структурой полинуклеотида следует понять строение нуклеотидов.
Что такое нуклеотид? Молекулы ДНК собраны из мелких мономерных соединений. Другими словами, нуклеотид — это органическое сложное соединение, представляющее собой составную часть нуклеиновых кислот и других биологических соединений, необходимых для жизнедеятельности клетки.
Состав и основные свойства нуклеотидов
В состав молекулы нуклеотида (мононуклеотида) в определенной последовательности входят три химических соединения:
2. Азотистая пиримидиновая или пуриновая основа, связанная с углеродным атомом сахара. Это соединение называют нуклеозидом
Свойствами нуклеотидов являются:
Нуклеиновые кислоты
В молекуле положение атома углерода обозначается цифрой со штрихом (например:1C´, 3C´, 5C´). Так как у вех процессов считывания с молекулы нуклеиновой кислоты наследственной информации имеется строгая направленность, нумерация углеродных атомов и их расположение служат указателем верного направления.
С первым углеродным атомом 1C´ в молекуле сахара соединяется азотистое основание.
К третьему и пятому углеродным атомам по гидроксильной группе (3C´, 5C´) присоединяется остаток фосфорной кислоты, который определяет химическую принадлежность к группе кислот ДНК и РНК.
Состав азотистых оснований
Виды нуклеотидов по азотистому основанию ДНК :
Первые два класса — пурины:
Два последние относятся к классу пиримидинов:
Пуриновые соединения по молекулярной массе тяжелее пиримидиновых.
Нуклеотиды РНК по азотистому соединению представлены:
Так же, как тимин, урацил является пиримидиновым основанием. Нередко в научной литературе азотистые основания обозначаются латинскими буквами (A, T, C, G, U).
Пурины (гуанин и аднин) состоят из имидазола и пиримидина. В молекулах пуриновых оснований четыре атома азота и пять атомов углерода. У каждого атома имеется свой номер от 1 дот 9.
Результатом соединений азотистых остатков с остатками пентозы является нуклеозид. Нуклеотид – это соединение фосфатной группы с нуклеозидом.
Образование фосфодиэфирных связей
При взаимодействии двух нуклеотидов образуется динуклеотид. Новое соединение образуется путем конденсации, когда возникает фосфодиэфирная связь между гидроксигруппой пентозы одного мономера и фосфатным остатком другого.
Синтезом полинуклеотида является многочисленное повторение этой реакции. Сборка полинуклеотидов представляет сложный процесс, обеспечивающей рост цепи с одного конца.
Структура ДНК
Молекулы ДНК, как и молекулы белка, имеют первичную, вторичную структуры и третичную. Первичную структуру в цепи ДНК определяет последовательность нуклеотидов. В основе вторичной структуры лежит формирование водородных связей. При синтезе двойной спирали ДНК имеется определенная закономерность и последовательность: тимин одной цепи соответствует аденину другой; цитозин – гуанину, и наоборот. Соединения нуклеидов создают прочную связь цепей, с равным между ними расстоянием.
Зная последовательность нуклеотидов одной цепи ДНК можно по принципу дополнения или комплементарности достроить вторую.
Третичная структура ДНК образовывается путем трехмерных сложных соединений. Это делает молекулу более компактной, чтобы она могла свободно разместиться в небольшом объеме клетки. длина кишечной палочки ДНК более 1 мм, в то время как длина самой клетки менее 5 мкм.
Количество пиримидиновых оснований равняется всегда числу пуриновых. Расстояние между нуклеотидами равняется 0,34 нм. Это постоянная величина, как и молекулярная масса.
Функции и свойства ДНК
Основные функции ДНК:
Процесс самовоспроизведения молекулы нуклеиновой кислоты сопровождается передачей от клетки к клетке копий генетической информаций. Для его осуществления необходимы набор специфических ферментов. В этом процессе полуконсервативного типа образуется репликативная вилка.
Молекула РНК – структура
РНК может быть трех видов, в зависимости от тех функций, которые выполняются в организме:
Роль нуклеотида в организме
В клетке нуклеотиды выполняют важные функции:
Свободные нуклеотиды – главные компоненты, которые участвуют в энергетических и в сигнальных процессах. Они поддерживают нормальную жизнедеятельность отдельных клеток и организма в целом.
Какие бывают типы нуклеиновых кислот? Что они собою являют?
Содержание:
Нуклеиновые кислоты – важнейшие органические соединения, осуществляющие хранение, передачу и реализацию наследственной информации. Это биополимеры – длинные молекулы, образованные мономерами – нуклеотидами. Нуклеиновые кислоты располагаются в ядре клетки.
Описание нуклеиновых кислот
Структура нуклеотидов
Нуклеотиды – это звено, состоящее из трех компонентов – азотистого основания, углеводной части (остатка моносахарида) и остатка фосфорной (ортофосфорной) кислоты.
Азотистое основание – производное пурина и пиримидина. Они классифицируются на две группы – мажорные и минорные. Мажорные, или главные основания – соединения пуринового ряда (аденин А и гуанин) и пиримидинового ряда (цитозин Ц, тимин Т и урацил У).
Минорные основания – гипоксантин, 5-метилцитозин, 6-N-метиладенин, 1-N-метилгуанин и др.
Углеводная часть может состоять из рибозы или дезоксирибозы. Она представляет собой остаток моносахарида. В нуклеиновых кислотах они находятся в циклической форме.
Связь между углеводной частью и азотистым основанием называется гликозидной.
Остаток кислоты связывается с пятым углеродным атомом в сахаре и образует сложноэфирную связь.
Какие существуют типы нуклеиновых кислот
Дезоксирибонуклеиновая кислота ДНК
Рибонуклеиновая кислота РНК
Существует несколько типов РНК:
иРНК (информационная РНК) – РНК, считывающая информацию с ДНК;
тРНК (транспортная РНК) – РНК, которая считывает информацию с иРНК и образует антикодон;
рРНК (рибосомальная РНК) – РНК, с помощью которого происходит синтез белка.
Сходства и различия ДНК и РНК
Сходства ДНК и РНК:
структуры включают в себя остаток ортофосфорной кислоты;
Что такое ДНК и РНК человека простыми словами
Что такое ДНК и РНК человека простыми словами: Pixabay
В клетках всех живых организмов содержится структура, название которой не выговорить с первого раза. Дезоксирибонуклеиновая кислота содержит генетический код и информацию о РНК и белки. Можно ли назвать ДНК главной структурой в организме и зачем ей сопровождение в виде РНК?
Что такое ДНК человека?
Аббревиатуру ДНК используют для обозначения молекулы под названием дезоксирибонуклеиновая кислота. Она состоит из повторяющихся блоков, называемых нуклеотидами (органические соединения), поэтому на картинке выглядит как спираль с поперечными полосками.
В этих частичках содержится генетический код, который определяет характеристики человека — телосложение, рост, цвет глаз, волос. У каждого человека уникальная ДНК. Она идентична только у однояйцевых близнецов. Своя ДНК есть у животных и растений.
Какая структура ДНК человека? Молекула дезоксирибонуклеиновой кислоты состоит из четырех видов нуклеотидов:
Эти блоки склеиваются между собой по определенным правилам: аденин может связываться только с тимином, а цитозин — только с гуанином. Притяжение между нуклеотидами связывает две нити, входящие в состав ДНК. Таким образом, по одной части цепи молекулы всегда можно восстановить вторую: напротив аденина находится тимин, напротив гуанина — цитозин. Такое взаимосоответствие называется комплементарностью.
Что такое ДНК человека: Pixabay
Именно так кодируется информация обо всех признаках организма. От комбинации нуклеотидов зависит, как будет выглядеть человек. Совокупность генетического материала называется геномом человека. Хранение, реализация и передача наследственной информации — задача хромосомы (структура в клеточном ядре).
ДНК как химическое вещество было открыто Фридрихом Мишеров в 1869 году, как указано в статье Петтера Портина. Ученые научились расшифровывать генетическую информацию только в конце ХХ века. Затем ученые сумели извлечь из хромосомы ДНК, разрезать ее на части и сшить произвольным образом, используя ферменты.
Так зародилась генная инженерия, началось производство новых организмов со встроенными чужими генами — ГМО (генетически модифицированный организм). Что касается безопасности продуктов с ГМО, то мнения ученых расходятся, как объясняет Брунильда Назарио из WebMD.
Что такое РНК человека?
РНК — рибонуклеиновая кислота, одна из трех молекул, содержащихся в клеточном ядре. Она участвует в кодировании и выражении генов. Состоит она из длинной цепи, звенья которой называются нуклеотидами. Каждый нуклеотид состоит из рибозы, азотистого основания и фосфатной группы. Генетическая информация зашифрована в последовательности нуклеотидов.
Что такое РНК человека: Pixabay
РНК синтезируется в клетках всех живых организмов. Они выполняют функцию трансляции генетической информации в белки, а также дополнительные задачи — транспортировка аминокислот в рибосомы, синтез белка и другие. Поддержку стабильности генома в процессе передачи и синтеза обеспечивают РНК-связывающие белки.
Что общего у ДНК и РНК человека? Обе структуры — это большие молекулы, состоящие из нуклеотидов. В них содержится генетическая информация. Их функции взаимосвязаны. ДНК передает генетическую информацию в цитоплазму (внутреннюю среду) клетки, где при участии РНК происходит синтез белка.
Между ДНК и РНК есть несколько отличий:
ДНК и РНК — нуклеиновые кислоты, сходные по составу, но различные по функциям. Первая структура отвечает за хранение наследственной информации, вторая — за кодирование информации и передачу информации к месту синтеза белка.
Внимание! Материал носит лишь ознакомительный характер. Не следует прибегать к описанным в нем методам лечения без предварительной консультации с врачом.
Уникальная подборка новостей от нашего шеф-редактора
Нуклеотиды в питании детей раннего возраста
Нуклеотиды — это сложные биологические вещества, которые играют ключевую роль во многих биологических процессах. Они служат основой для построения ДНК и РНК и, кроме того, отвечают за синтез белков и генетическую память, будучи универсальными источниками
Нуклеотиды — это сложные биологические вещества, которые играют ключевую роль во многих биологических процессах. Они служат основой для построения ДНК и РНК и, кроме того, отвечают за синтез белков и генетическую память, будучи универсальными источниками энергии. Нуклеотиды входят в состав коферментов, принимают участие в углеводном обмене и синтезе липидов. Кроме того, нуклеотиды являются компонентами активных форм витаминов, в основном группы В (рибофлавин, ниацин). Нуклеотиды способствуют формированию естественного микробиоценоза, предоставляют необходимую энергию для регенеративных процессов в кишечнике, влияют на созревание и нормализацию функционирования гепатоцитов.
Нуклеотиды представляют собой низкомолекулярные соединения, состоящие из азотистых оснований (пурины, пиримидины), пентозного сахара (рибоза или дезоксирибоза) и 1—3 фосфатных групп.
Наиболее распространенные монофосфаты участвуют в метаболических процессах: пурины — аденозинмонофосфат (АМФ), гуанозинмонофосфат (ГМФ), пиримидины — цитидинмонофосфат (ЦМФ), уридинмонофосфат (УМФ) [1].
Чем же вызван интерес к проблеме содержания нуклеотидов в детском питании?
До последнего времени считалось, что все необходимые нуклеотиды синтезируются внутри организма, и их не рассматривали как незаменимые питательные вещества. Предполагалось, что нуклеотиды, поступающие с пищей, в основном оказывают «местное действие», определяя рост и развитие тонкого кишечника, обмен липидов и печеночную функцию. Однако последние исследования (материалы сессии ESPGAN, 1997) показали, что эти нуклеотиды становятся необходимыми, когда эндогенного запаса недостаточно [2]: например, при заболеваниях, сопровождающихся энергетическим дефицитом, — тяжелых инфекциях, болезнях потребления, а также в неонатальном периоде, во время быстрого роста ребенка, при иммунодефицитных состояниях и гипоксических повреждениях. При этом общий объем эндогенного синтеза снижается, становится недостаточным для удовлетворения потребностей организма. В таких условиях поступление нуклеотидов с пищей «экономит» в организме расходы энергии для синтеза этих веществ и может оптимизировать функцию тканей. Так, врачи издавна советовали после длительных заболеваний использовать в пищу печень, молоко, мясо, бульоны, т. е. продукты, богатые нуклеотидами.
Дополнительная дотация нуклеотидов с пищей крайне важна при вскармливании младенцев. Нуклеотиды были выделены из женского молока около 30 лет назад. К настоящему времени идентифицированы 13 кислоторастворимых нуклеотидов в женском молоке. Давно известно, что состав женского молока и молока различных видов животных не идентичен. Однако многие годы было принято обращать внимание лишь на основные пищевые компоненты: белки, углеводы, липиды, минералы, витамины. Вместе с тем, нуклеотиды в женском молоке существенно отличаются, причем не только по количеству, но и по составу от нуклеотидов в коровьем молоке. Так, например, оротат, главный нуклеотид коровьего молока, содержащийся в значительных количествах даже в адаптированных молочных смесях, не присутствует в женском молоке.
Нуклеотиды являются компонентом небелковой азотной фракции грудного молока. Небелковый азот отвечает приблизительно за 25% общего азота в грудном молоке и содержит аминосахара и карнитин, которые играют особую роль в развитии новорожденных. Нуклеотидовый азот может способствовать наиболее эффективному употреблению белка у младенцев, вскармливаемых грудным молоком, получающих сравнительно меньше белка по сравнению с детьми, которых вскармливают искусственными смесями.
Было выявлено, что в женском молоке концентрация нуклеотидов превышает их содержание в сыворотке крови. Это говорит о том, что грудные железы женщины синтезируют дополнительное количество нуклеотидов, которые поступают в грудное молоко. Также имеются различия в содержании нуклеотидов по стадиям лактации. Так, наибольшее количество нуклеотидов в молоке определяется на 2–4-м месяце, и затем их содержание после 6-7-го месяца [2] начинает постепенно снижаться.
Раннее зрелое молоко содержит преимущественно мононуклеотиды (АМФ, ЦМФ, ГМФ). Их количество в позднем зрелом молоке выше, чем в молозиве, однако меньше, чем в молоке первого месяца лактации.
Концентрация нуклеотидов в грудном молоке на порядок выше зимой, чем в аналогичные сроки кормления в летний период.
Эти данные могут свидетельствовать о том, что в клетках грудных желез происходит дополнительный синтез нуклеотидов, так как в первые месяцы жизни извне поступающие вещества поддерживают необходимый уровень метаболизма и энергетического обмена ребенка. Увеличение синтеза нуклеотидов в грудном молоке в зимний период является защитным механизмом: в это время года ребенок больше подвержен инфекции и легче развивается витаминная и минеральная недостаточность.
Как указывалось выше, состав и концентрация нуклеотидов в молоке всех видов млекопитающих различаются, но всегда их количество ниже, чем в грудном молоке. Это, по-видимому, связано с тем, что потребность в экзогенных нуклеотидах особенно высока у беззащитных детенышей [3].
Грудное молоко — это не только наиболее сбалансированный продукт для рационального развития ребенка, но и тонкая физиологическая система, способная меняться в зависимости от нужд ребенка. Грудное молоко еще долго будет всесторонне изучаться, причем не только количественный и качественный его состав, но и роль отдельных ингредиентов в функционировании систем растущего и формирующегося организма. Смеси для искусственного вскармливания грудных детей также будут совершенствоваться и постепенно превратятся в настоящие «заменители грудного молока». Данные о том, что нуклеотиды грудного молока имеют более широкое физиологическое значение для растущего и развивающегося организма, послужили основанием для введения их в смеси для детского питания и приближения по концентрации и составу к таковым в грудном молоке [3].
Следующим этапом исследований стала попытка установить влияние нуклеотидов, введенных в детские смеси, на созревание плода и развитие младенца.
Наиболее наглядными оказались данные об активации иммунной системы ребенка [4]. Как известно, IgG регистрируется еще внутриутробно, IgM начинает синтезироваться сразу после рождения ребенка, IgA синтезируется наиболее медленно, и активный его синтез возникает к концу 2-3-го месяца жизни. Эффективность их выработки во многом определяется зрелостью иммунного ответа.
Для исследования были сформированы 3 группы: дети, получавшие только грудное молоко, только смеси с нуклеотидами и молочные смеси без нуклеотидов.
В результате было выявлено, что дети, получавшие формулы с нуклеотидными добавками, к концу 1-го месяца жизни и на 3-м месяце имели уровень синтеза иммуноглобулина М, примерно равный таковому у детей, находящихся на грудном вскармливании, но значительно более высокий, чем у детей, получавших простую смесь. Аналогичные результаты получены и при анализе уровня синтеза иммуноглобулина А [4].
Зрелость иммунной системы определяет эффективность вакцинопрофилактики, ведь способность к формированию иммунного ответа на прививку — это один из показателей выработки иммунитета на первом году жизни. Для примера исследовали уровень выработки антител к дифтерии у детей, находящихся на «нуклеотидной» формуле, грудном вскармливании и смесях без нуклеотидов. Уровень антител измерялся через 1 месяц после первой и после последней вакцинации. Установлено, что даже первые показатели были выше, а вторые — достоверно выше у детей, получавших смеси с нуклеотидами [4].
При исследовании влияния вскармливания смесью с нуклеотидами на физическое и психомоторное развитие детей отмечена тенденция к лучшей прибавке массы и более быстрому становлению моторной и психической функции [5].
Кроме того, есть данные, что дотация нуклеотидов способствует более быстрому созреванию нервной ткани, функций мозга и зрительного анализатора, что крайне актуально для недоношенных и морфофункционально незрелых детей, а также малышей с офтальмологическими проблемами [5].
Всем известны проблемы со становлением микробиоценоза у детей раннего возраста, особенно в первые месяцы. Это явления диспепсии, кишечные колики, повышенный метеоризм. Потребление «нуклеотидных» смесей позволяет быстрее нормализовать ситуацию, без необходимости коррекции пробиотиками. У детей, получавших смеси с нуклеотидами, реже отмечались дисфункция желудочно-кишечного тракта, неустойчивость стула, они легче переносили введение последующего прикорма.
Однако при применении смесей с нуклеотидами необходимо иметь в виду, что они сокращают частоту стула, поэтому детям с запорами их следует рекомендовать с осторожностью [6].
Особое значение эти смеси могут иметь у детей с гипотрофией, анемией, а также перенесших гипоксические нарушения в неонатальном периоде. Смеси с нуклеотидами помогают решить ряд проблем, возникающих при выхаживании недоношенных детей. В частности, речь идет о плохом аппетите и низкой прибавке массы тела в течение всего первого года жизни, кроме того, употребление смесей способствует более полноценному психомоторному развитию малышей [5].
Исходя из вышеизложенного применение смесей с нуклеотидными добавками для нас, врачей, представляет большой интерес. Рекомендовать эти смеси мы можем большому кругу детей, тем более что смеси не являются лечебными. Вместе с тем, мы считаем важным указать на возможность индивидуальных вкусовых реакций у детей раннего возраста, особенно при переводе ребенка с обычной смеси на нуклеотидсодержащую. Так, в некоторых случаях, даже при использовании смесей одной фирмы, мы отмечали у ребенка негативные реакции, вплоть до отказа от предлагаемой смеси. Однако все литературные источники утверждают, что нуклеотиды не только не влияют отрицательно на вкусовые качества, но и, напротив, улучшают их, не изменяя органолептических свойств смеси [6].
Представляем обзор смесей, содержащих нуклеотидные добавки и имеющихся на нашем рынке [7, 8]. Это сывороточные смеси фирмы «Фризленд Ньютришн» (Голландия) «Фрисолак», «Фрисомел», в которых содержатся 4 нуклеотида, идентичных нуклеотидам женского молока; сывороточная смесь «Мамекс» (Intern Nutrition, Дания), НАН («Нестле», Швейцария), «Энфамил» («Мид Джонсон», США), смесь «Симилак формула плюс» («Эббот Лабораториз», Испания/США). Количество и состав нуклеотидов в этих смесях разные, что определяется фирмой-производителем.
Все фирмы-изготовители стараются подобрать соотношение и состав нуклеотидов, приблизив его, насколько возможно технически и биохимически, к аналогичным показателям грудного молока. Совершенно ясно, что механический подход не является физиологическим. Безусловно, введение нуклеотидов в смеси для детского питания — это революционный шаг в производстве заменителей грудного молока, способствующий максимальному приближению к составу женского грудного молока. Однако никакая смесь пока не может считаться физиологически полностью идентичной этому единственному, универсальному и необходимому ребенку продукту.
Литература
Е. С. Кешишян, доктор медицинских наук, профессор
Е. К. Бердникова
МНИИ педиатрии и детской хирургии Минздрава РФ, Москва